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Abstract. Cytoskeletal proteins function as dynamic and complex components in 
many aspects of cell physiology and the maintenance of cell structure. However, 
very little is known about the coordinated system of these proteins. The 
knowledge of subcellular localization of proteins is crucial for understanding how 
proteins function within a cell. We present a framework for quantification of 
cytoskeletal protein localization from high-content microscopic images. Analyses 
of high content images of cells transfected by cytoskeleton genes involve 
individual cell segmentation, intensity transformation of subcellular 
compartments, protein segmentation based on correlation coefficients, and 
colocalization quantification of proteins in subcellular components. By 
quantifying the abundance of proteins in different compartments, we generate 
colocalization profiles that give insights into the functions of different cytoskeletal 
proteins.  
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1   Introduction 

The cytoskeleton is a cellular skeleton – a dynamic structure in all eukaryotic cells 
and some of prokaryotic cells – that function dynamically in many aspects including 
the maintenance of cell shape, the protection of cells, the organization of the 
cytoplasm, the support of the cellular machinery for motility, the transportation, the 
organization of cells into tissues and the signaling. Since cytoskeletal proteins are 
involved in so many functions, they are chemically connected to the reactions of 
metabolism and to the complex functional networks of small molecules and enzymes 
that transport signals within cells [1][2]. With those signals, cytoskeletal proteins 
generate harmonious responses to the coordinated efforts of cellular networks. 
However, very little is known about the coordinated system of these proteins. 
Investigation of the exact roles of cytoskeletal proteins, therefore, has become an 
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important task that would greatly benefit many research areas including cellular 
mechanics, subcellular organization, metabolic signaling pathway modeling, early 
development of cancer, etc. 

The knowledge of subcellular location of proteins is crucial for understanding how 
proteins function within a cell. Fluorescent microscopy has been used more and more 
frequently to identify protein subcellular locations through image processing, feature 
extraction, and pattern recognition [3][4]. Machine learning methods have been 
previously applied for identifying and predicting the localization patterns of proteins 
by using training data [5][6][7][8]. But such methods were intended for single cell 
and single channel data.  

How different proteins interact with more than one subcellular compartment and 
their presence in more than one location has not been addressed. More cellular 
compartments need to be considered as predicting candidates for a protein’s location 
and prediction of a single subcellular protein pattern is not sufficient. Thus we chose 
to focus on fluorescent signal colocalization – a measurement of overlap between two 
signals. Quantifying a single colocalization parameter is necessary so that a variety of 
proteins can be quickly and easily compared without bias. Determining the 
colocalization between cytoskeletal proteins and subcellular components—such as 
nucleus, cytoplasm, plasma membrane, actin network, etc., will help to define and 
simplify the proteins’ operations and locations. 

There are two basic ways to measure the colocalization [9]: global statistical 
approaches that perform intensity correlation coefficient based analyses; and object-
based approaches. The global statistical approaches mainly use statistics to assess the 
relationship between fluorescence intensities in different compartments, including 
Pearson’s coefficient [10], overlap coefficient [10], a statistical significance algorithm 
based on Pearson’s coefficient [11], intensity correlation analysis [12], etc. However, 
the global statistical approaches rely on individual pixel coincidence analysis, 
globally providing colocalization estimation of the whole image but not of a unique 
structure. In the situation of low transfection efficiency, the cells with no or less GFP 
signals will pull down the overall colocalization estimates. Several methods of object-
based approaches have been proposed such as comparing the position of the centroids 
or intensity centers of the objects [13] and normalized mean deviation product [14]. 
But they all focus on protein-protein colocalization analysis, which is the correlation 
between two different protein channels. In the protein subcellular colocalization 
analysis, the intensities within subcellular compartments are not a major concern. For 
example, DNA is stained to represent the nucleus. The DNA intensities in nuclear 
compartment may not be uniform, but our major concern is how the protein is 
colocalized in the nucleus. Therefore, we introduce a new colocalization measurement 
inducing colocalization profiles indicating the amount of colocalization of proteins 
and subcellular compartments.  

Experiments were carried out on HeLa cell lines transfected with cytoskeletal 
protein genes. High content images of protein localization were measured and 
clolocalization profiles were generated. Statistical analysis showed that the 
cytoskeletal proteins can be clustered into several groups with similar colocalization 
patterns.  
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2   Method 

In order to quantify subcellular localization of cytoskeletal proteins with a single 
parameter, the colocalization, we developed a computational framework involving 
individual cell segmentation, protein segmentation, intensity transformation of 
subcellular compartments, and colocalization computing. In what follows, we 
describe the different steps involved in our approach.  

2.1   Cell Segmentation 

Images were segmented into small objects using a multi-resolution segmentation 
technique based on object-oriented image analysis. This method is used to create 
object primitives as the first processing step in the segmentation analysis. The 
criterion for the segmentation is that average heterogeneity of image objects weighted 
by their size in pixels should be minimized. After the primary segmentation, the 
image objects are classified as nuclear objects and cell body objects based on flexible 
thresholds of nuclei and cell intensities. The nucleus objects are used as seeds for 
region growing method for cell segmentation, on the assumption that each cell has 
only one nucleus. A rule set was then developed for cell segmentation. The cell body 
object was fused with its neighbor nucleus. When one cell body object has more than 
one neighbor nuclear object, it was fused with the nuclear object that shared the 
largest border with it. The region growing method with multi-resolution segmentation 
provided better segmentation results than other advanced segmentation algorithms 
(Fig. 1): Level set method with shape marker and marking function [15] combined 
with nuclear information and level set method with topological dependence [16].  

             

             
                          (a)                          (b)                      (c)                       (d) 

Fig. 1. (a) Images of actin and nuclear channels, and segmentation results of (b) region growing 
with multi-resolution segmentation, (c) adaptive level set method with shape marker combined 
with nuclear information, and (d) level set method with topological dependence 
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In the experiments, cells were labeled with fluorescence to highlight nuclei, actin, 
and proteins of the cells. The green fluoresce protein (GFP) was selected to identify a 
particular protein. The nuclear and actin channels were used to identify subcellular 

compartments. Let :nf RΩ → , :af RΩ → and :gf RΩ →  represent the images 

of nuclear channel, the actin channel, and the GFP channel, respectively, 

where 2RΩ ⊂ is the 2D image domain and x ∈Ω denotes the 2-D coordinates of a 

pixel site in the image. Let iw ⊂ Ω denote the area of an individual cell, and i N∈  

be the labels of cells in one image.  

2.2   Intensity Transformation of Subcellular Compartments 

In this study, we are interested in five subcellular compartments: nucleus, cytoplasm, 
actin, plasma membrane, and cytosol. For most of the subcellular compartments, the 
intensity distributions of labeled signals were uniform, but the colocalization amounts 
of proteins were different. Thus the intensity transformations of subcellular 
compartments are performed using an intensity information of actin and nucleus 
staining as well as the position and relation information of subcellular compartments. 
Instead of computing the colocalization of the protein signal and the compartment 
signal, we compute the colocalization of the protein signal and the intensity 
transformed images of the compartments. Let a compartment be denoted by 

{ }, , , , ,c nucleus cytoplasm actin membrane cytosol= and :cf RΩ →%  denote 

the intensity transformed image in the compartment c . 

Actin: This is the compartment identified from the actin channel. A ceiling threshold 
is used to account for over-saturation and the intensity values in the actin channel 
were rescaled to the range [0, 1]. 
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where at and at′ are positive numbers representing upper and lower thresholds of the 

actin channel.  

Cytoplasm: This is the compartment identified as the non-nuclear region. The 
transformation for the cytoplasm compartment is kept uniform. 

           ( ) 1 ( ), ;cytosplasm nucleus if x f x x w= − ∈% %                                       (2) 
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Nucleus: This is the compartment identified from the nuclei channel. We keep the 
intensities of the nucleus compartment uniform:  
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nt  represents the threshold of the nuclei channel. 

Plasma Membrane: This is the compartment identified as the border region of a cell. 
The intensities of plasma membrane were transformed using an exponential function 
of the minimum Euclidean distance to the cell border.  
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Where      ( )2
( ) min , , ;i id x x x x w x w′ ′= − ∈ ∈∂                           (5) 

and , ,m m mt t t′ ′′ are positive numbers representing the parameters of the exponential 

function with iw∂ representing the border. 

Cytosol: This is the compartment identified as cytoplasm without the components of 
actin and the plasma membrane. 

  ( ) max{0, ( ) ( ) ( )}, ;cytosol cytoplasm membrane actin if x f x f x f x x w= − − ∈% % % %    (6) 

2.3   Protein Segmentation 

In order to identify the protein localization, cells were transfected with the protein 
tagged with GFP. By localizing the scattering of GFP-tagged proteins in the cells, its 
localizations in different subcellular compartments were identified. Before identifying 
the subcellular localization of the protein, the segmentation of protein needs to be 
correctly performed. Since the GFP intensities vary in different cells and 
compartments in different images, protein segmentation becomes a crucial component 
in finding the balance between capturing most of the protein information and 
highlighting the most specific protein information. Because the protein exists as small 
units, it cannot be segmented into one connected component. Thus, classical 
segmentation algorithms, such as watershed and region growing, become unsuitable. 
An automated thresholding method of identification of colocalized pixels has been 
earlier developed for protein-protein colocalization analysis [11].  

Therefore, we develop an algorithm to segment the proteins by thresholding based 
on the correlation of its intensities with that of the responding compartment. The basic 
idea is to preserve most of the GFP pixels that are correlated with the intensities of the 
cell or its compartments, and remove the pixels that are least correlated or distributed 
almost randomly.  



294 S. Zhu et al. 

For each candidate threshold, the correlation coefficient is computed on both 
selected (intensities higher than the candidate threshold) and unselected pixels 
(intensities lower than the candidate threshold). Correlation coefficients high on 
selected pixels and low on unselected pixels indicate that the current thresholds can 
save high correlated pixels and remove low correlated pixels, respectively. Thus, we 
want to achieve the proper balance between these two thresholds.  

Several correlation coefficients were tested such as Pearson correlation coefficient 
and overlap coefficient. The intensity correlation quotient (ICQ) provided the best 

segmentation results. For one given cell image with channel 1f , 2f , and a given 

image region w , the ICQ value is based on the intensity correlation coefficient ρ  

[17]. The correlation coefficient at a pixel is: 

         1 2 1 1 2 2( , , ) ( ( ) )( ( ) ),f f x f x f x x wρ μ μ= − − ∈ ;                 (7) 

1μ and 2μ denote the mean intensities values with the region w of the two channels.  

The ICQ is defined as the ratio of the positively correlated pixels and the 
negatively correlated pixels in the region w . The correlation coefficient for two 
denoted areas is: 

                  1 2( , , ) 0.5,f f w
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δ δ

+

+ −= −
+

                                            (8) 

where ( ( ) 0)
x w

xδ δ ρ+

∈

= >∑ donates the total number of positively correlated 

pixels, and ( ( ) 0)
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∈

= <∑  donates the total number of negatively correlated 

pixels. The range of ICQ falls between [-0.5 0.5]. When ICQ 0≈ , random 
correlation;   -0.5 ≤ ICQ < 0, negative correlation; 0 < ICQ ≤ 0.5, positive correlation.  

The Algorithm 1 gives a way to determine the optimum threshold for protein 

segmentation within the cell. :cellf RΩ → is the cell image obtained by combining 

the nuclei channel and the actin channel: ( ) ( ) ( ),cell a n if x f x f x x w= + ∈ . T is the 

final threshold generated for protein segmentation in this particular cell region iw . 

2.4   Colocalization 

After segmentation of proteins within the cell and intensity transformation of 
subcellular compartments, the colocalization of proteins and subcellular 
compartments is quantified by a “colocalization” measurement that gives a better 
understanding about the percentage protein localized in a compartment. The 
colocalization of a protein p in a compartment c is defined as: 
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where pW represents the set of pixels in the region occupied by the 

protein p . p ( )f x is the intensity distribution of the GFP channel highlighting protein 

p and ( )cf x% is the intensity transformation of the compartment c . 

Algorithm 1. Determination of Threshold for Protein Segmentation 
begin  

max{ ( ) : }g i
x

t f x x w= ∈  

1 2 0t t= =  

1 0r =  

2 1r =  

while 0t ≥  
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endif 
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        2t t=  

endif 
1t t= −  
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end 

2.5   Protein Localization Profiling 

Using a library P of GFP-tagged cytoskeletal protein constructs, we compute the 

colocalization values of the protein in the five subcellular compartments. For given 

protein p P∈ , the colocalization profile is ( ) { ( , )}Col p Coloc c p= , where 

{ }, , , , ,c nucleus cytoplasm actin membrane cytosol= we then cluster those 

protein profiles in order to find the functional proteins.  
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3   Experiments and Results 

3.1   Sample Preparation 

Eighty-nine Invitrogen GFP-tagged cytoskeletal protein constructs were transfected to 
Hela cells in two 96-well plates (2 wells per construct, some constructs are duplicated). 
Each well has about 10,000 cells before transfection. Lipofectamine2000 transfections 
were taken to each well with constructs concentration 10ng/ul. Then the cells are fixed 
and stained with Hoechst33342 (nuclei) and Texas red phalloidin (Actin). 

3.2   Imaging 

Imaging of transfected cells was performed by Cellomics vHCS: Scan V Target 
Activation application system with 20X magnification. For each image sample there 
were 96 wells containing 48 constructs transfection results; and for each well there 
were 40 fields being scanned. Thus, the number of images in this dataset is about 
7680. For each image, there are three fluorescent channels: blue (Hoechst33342) 
staining nuclei, red (Texas red - phalloidin) staining actin, and green (GFP) staining 
the particular protein.  

3.3   Image Processing 

After the high-content imaging, the images are analyzed with the computational frame 
work described in Methods section, involving individual cell segmentation, Intensity 
transformation of subcellular compartments, protein segmentation based on 
correlation coefficients, and colocalization quantification of proteins in subcellular 
components. For cell segmentation, a multi-resolution segmentation technique 
provided by Definiens Developer was used [18]. In the intensity transformation step, 

the fitting parameters for the exponential function are: mt =1.054, mt′ =1.53, 

mt′′ =2.241. 

A colocalization matrix is generated with the dimension of 89 proteins ×  5 
subcellular compartments ×  the number of cells transfected with each protein. The 
colocalization matrix went through post data analysis to generate final conclusions. 

3.4   Cell Selection 

Before clustering the proteins, we apply a cell selection procedure based on nucleus 
area to delete part of the under-segmented cells as the nucleus area should have little 
variance in normal cells. The histogram of Nucleus Area feature is represented as a 
two peak curve, one peak is relatively smaller than the other. From biology we know 
that the higher peak shows the population of the normal nucleus and the smaller peak 
appears at the position where the area is twice of the normal nucleus area, showing 
the under-segmented two-connected nuclei. A single Gaussian-fit is applied to the 
histogram of nucleus area and the interval which contains 90% of the values from the 
fitting distribution was computed. The interval is [302,997]. Although the interval still 
contains some under-segmented nuclei, it successfully removes many of the miss-
segmented cells. 
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In the current image dataset, the low transfection efficiency largely affects the final 
results of the colocalization analysis: a large number of cells are not transfected 
pulling down the total sample number; while the over-expressed ones show abnormal 
morphology and consequently abnormal colocalization results. After the transfection, 
the cytoskeletal proteins will first head to their normal subcellular locations or their 
functional locations. But in the over-expressed situation, more and more cytoskeletal 
proteins are generated and run everywhere inside the cell, which makes plenty of 
noise and reduces the significance of the functional locations of the particular 
cytoskeletal protein. Thus, we perform a GFP-intensity analysis to find the optimized 
intensity interval to eliminate abnormal-transfected cells.  

In the GFP intensity analysis, the transfected cells are clustered into several GFP-
intensity groups. By computing the colocalization values for each GFP intensity 
group, the colocalization trends along with the increasing GFP intensities are 
investigated and we concluded that the colocalization values do change greatly with 
the increasing GFP intensity. In the high GFP intensity intervals (greater than 50), we 
could find that the colocalization values in the Nucleus compartment increased, 
indicating that the over-expressed cells could round up, as dead cells or toxic cells, 
which been proved by observation. This phenomenon affects the overall 
colocalization results, especially the constructs with low transfection efficiency. To 
keep the particular colocalization pattern as well as to avoid noise, the intensity 
interval [20, 30] seems to be a good choice for the cell selection. 

3.5   Colocalization Indexing 

In order to provide a standard comparison between subcellular compartments, we 
perform k-means clustering separately on all 5 colocalization values. The sums of 
squared distances are examined to determine the best number of clusters. For each K, 
the K-means clustering is replicated 100 times to mitigate the effects of different 
initial conditions. Three is decided as the number of clusters as most of the 
colocalization values show inflection on it. The cluster labels from 1 to 3 are assigned 
to each protein to represent its colocalization degree for a specific subcellular 
compartment. 

3.6   Protein Clustering 

K-means clustering is performed again based on the cluster label of each protein for 
further protein classification. The sums of squared distances are examined to 
determine the best number of clusters. For each K, the K-means clustering is 
replicated 100 times to mitigate the effects from different initial conditions. Four is 
chosen as the number of the clusters and all the proteins are clustered into four 
clusters (Table 1): cluster 1 – 21 proteins with equally distributions within cells; 
cluster 2 – 21 proteins with high colocalization in plasma membrane; cluster 3 – 34 
proteins with high colocalization in actin and cytosol; and cluster 4 – 13 proteins 
which are toxic to cells leading to cell round up. In Table 2 all proteins in each cluster 
are listed. As cytoskeletal proteins dynamically function within cells, the 
colocalization profiles will provide a distribution ratio among the subcellular 
compartments rather than one specific compartment. Although the exact functions of 
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most of proteins remain unclear, the results can be validated with literature research. 
It is noticeable that some proteins in the same protein family are clustered together 
with similar colocalization profiles, such as TAGLN and TAGLN2, ITGB1and 
ITGB2, MYO3A and MYO1A, etc. Another validation is the comparison of reported 
functions of proteins and colocalization profiles. For example, cluster 3 shows high 
colocalization in actin compartment, and 22 of 34 proteins in this cluster are reported 
as having relative functions with the actin network.  

Table 1. Colocalization of Protein Clusters 

 

Nucleus CytoP CytoS Actin PM protein 
No. 

Cluster
1 

52.42%
±  4.54% 

47.58%
±  4.54% 

16.26%
±  3.31% 

49.40%
±  5.41% 

14.37%
±  5.81% 

21 

Cluster
2 

56.63%
±  8.48% 

43.37%
±  8.48% 

7.85% 
±  2.66% 

43.96%
±  4.66% 

37.60%
±  4.18% 

21 

Cluster
3 

34.70%
±  6.08% 

65.30%
±  6.08% 

18.62%
±  3.36% 

53.23%
±  7.53% 

20.54%
±  5.50% 

34 

Cluster
4 

75.72%
±  9.07% 

24.28%
±  9.07% 

6.81% 
±  3.07% 

45.99%
±  13.04% 

15.57%
±  7.27% 

13 

Comparing the proteins within the same cluster and in different clusters, proteins 
with similar colocalization profiles are considered to have similar functions. For 
example, a set of proteins with unclear function such as filamin A interacting protein 
1 (FILIP1) and tropomyosin 1 (TPM1), are seen to have similar profiles showing 
significantly high colocalization values in plasma membrane (cluster 2) together with 
other proteins having related functions with plasma membrane such as integrin beta 1 
(ITGB1), integrin beta 2 (ITGB2), and villin 2 (VIL2). 

Table 2. Proteins in Protein Clusters 

 

protein No. Protein Brief Name 

Cluster1 21 CORO2B,PDLIM3,DNM2,TAGLN,TNS,TEKT3,PTK9,PLS1,JAMIP2, 
ATP1B3,VAMP4,PXN,MSN,ADRM1,MRLC2,TAGLN2,ARPC5,VIM, 
NINJ2,PFN2,PARVA 

Cluster2 21 TUBA6,TGOLN2,CORO1B,ATP6V1C1,TAGLN3,VIL2,TUBD1, 
TUBGCP3,PARVG,RDX,CAPZA3,ACTG1,PTK9,TPM1,ITGB1,ITGB2, 
ADAM15,ARHGEF6,EIF2C1,WASF2,FILIP1 

Cluster3 34 DCAMKL1,WASPIP,KLHDC9,CTTN,VIL1,ACTB,WASL,ZYX,CDC42, 
CFL1,EVL,TUBE1,CLIP3,DSTN,PAK4,VASP,LPXN,KIF2C,ITGB7, 
PLS3,ARPC1B,TUBG1,GTSE1,ACTN2,MYO3A,ACTN1,ARP11,CNN3, 
LCP1,TPM2,MYO1A,ANLN,FSCN1,KRT8 

Cluster4 13 WAS,ATP5G2,ITGB3BP,FSCN3,GJB2,TUBA1B,KPTN,TEKT1,TUBB2, 
KAT5,WASF3,DCTN1,CAV3 
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4   Conclusions 

In this work, we developed a computational framework and optimized every step in 
the framework to quantify the subcellular localization of cytoskeletal proteins with a 
single colocalization measurement. The framework is applied on a two-dimensional 
image set, containing around 8000 images of cells transfected with 89 cytoskeletal 
protein constructs. The subcellular localizations of those cytoskeletal proteins are 
quantified and localization patterns are investigated to provide references in 
investigation of protein functions. Proteins with unknown functions can be 
investigated by comparing with colocalization profiles generated in a cytoskeletal 
protein library. 

For image-based subcellular localization quantification, two-dimensional analysis 
is not sufficient. In future work, the whole framework will be transferred to the three-
dimensional domain. The quantification of subcellular localization on three-
dimensional space will provide more accurate results. The quantification of 
subcellular localization will greatly benefit the investigation of functions of 
cytoskeletal proteins. 

Acknowledgments. This work was partly supported by Computation and Systems 
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