Quantification of dissolved CO₂ in silicate glasses using micro-Raman spectroscopy

YANN MORIZET^{1,2,*}, RICHARD A. BROOKER³, GIADA IACONO-MARZIANO² AND BRUCE A. KJARSGAARD⁴

¹Laboratoire de Planétologie et Géodynamique de Nantes (LPGN) UMR CNRS 6112, Université de Nantes, Nantes Atlantique Universités, 2 rue de la Houssinière, 44322 Nantes, France

²Institut des Sciences de la Terre D'Orléans (ISTO) UMR CNRS 7327, Université d'Orléans, Campus Géosciences, 1A rue de la Férolerie, 45071 Orléans Cedex 2, France

³School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, U.K. ⁴Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada

ABSTRACT

This study investigates the potential use of confocal micro-Raman spectroscopy for the quantification of CO₂ in geologically relevant glass compositions. A calibration is developed using a wide range of both natural and synthetic glasses that have CO_2 dissolved as carbonate (CO_3^{-}) in the concentration range from 0.2 to 16 wt%. Spectra were acquired in the 200 and 1350 cm⁻¹ frequency region that includes the v_1 Raman active vibration for carbonate at 1062–1092 cm⁻¹ and the intensity of this peak is compared to various other peaks representing the aluminosilicate glass structure. The most precise and accurate calibration is found when carbonate peaks are compared to aluminosilicate spectral features in the high-frequency region (HF: 700-1200 cm⁻¹), which can be simulated with several Gaussian peaks, directly related to different structural species in the glass. In some samples the "dissolved" CO_{2}^{-} appears to have two different Raman bands, one sharper than the other. This may be consistent with previous suggestions that CO_{3}^{2-} has several structural environments in the glass, and is not related to any precipitation of crystalline carbonate from the melt during quenching. The calibration derived using the HF peaks appears linear for both the full range of glass composition considered and the range of CO₂ concentrations, even when multiple carbonate peaks are involved. We propose the following, compositionally independent linear equation to quantify the CO_2 content in glass with micro-Raman spectroscopy

wt% $CO_2 = 15.17 \times CO_3/HF$

where CO_3/HF is the area ratio of the fitted v_1 carbonate peak(s) at 1062–1092 cm⁻¹ to the remaining area of the fitted aluminosilicate envelope from 700–1200 cm⁻¹. This is similar to the Raman calibration developed for water, but is complicated by the overlapping of these two fitted components. Using error propagation, we propose the calibration accuracy is better than ±0.4 wt% CO₂ for our data set.

The v_1 Raman peak position for carbonate is not constant and appears to be correlated with the density of the melt (or glass) in some way rather than the chemical composition.

Keywords: Raman spectroscopy, CO₂ content, silicate glass, melt density, CO₃ molecules Raman shift