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Quantification of Epileptiform Electroencephalographic
Activity during Sevoflurane Mask Induction
Mika O. K. Särkelä, M.Sc.,* Miikka J. Ermes, M.Sc.,† Mark J. van Gils, Ph.D.,‡ Arvi M. Yli-Hankala, M.D., Ph.D.,§
Ville H. Jäntti, M.D., Ph.D.,� Anne P. Vakkuri, M.D., Ph.D.#

Background: Sevoflurane may induce epileptiform electro-
encephalographic activity leading to unstable Bispectral Index
numbers, underestimating the hypnotic depth of anesthesia.
The authors developed a method for the quantification of epi-
leptiform electroencephalographic activity during sevoflurane
anesthesia.

Methods: Electroencephalographic data from 60 patients un-
der sevoflurane mask induction were used in the analysis. Elec-
troencephalographic data were visually classified. A novel elec-
troencephalogram-derived quantity, wavelet subband entropy
(WSE), was developed. WSE variables were calculated from
different frequency bands. Performance of the WSE in detec-
tion and quantification of epileptiform electroencephalo-
graphic activity and the ability of the WSE to recognize mis-
leading Bispectral Index readings caused by epileptiform
activity were evaluated.

Results: Two WSE variables were found to be sufficient for
the quantification of epileptiform activity: WSE from the fre-
quency bands 4–16 and 16–32 Hz. The lower frequency band
was used for monophasic pattern monitoring, and the higher
frequency band was used for spike activity monitoring. WSE
values of the lower and higher bands followed the time evolu-
tion of epileptiform activity with prediction probabilities of
0.809 (SE, 0.007) and 0.804 (SE, 0.007), respectively. In deep
anesthesia with epileptiform activity, WSE detected electroen-
cephalographic patterns causing Bispectral Index readings
greater than 60, with event sensitivity of 97.1%.

Conclusions: The developed method proved useful in detec-
tion and quantification of epileptiform electroencephalo-
graphic activity during sevoflurane anesthesia. In the future, it
may improve the understanding of electroencephalogram-de-
rived information by assisting in recognizing misleading read-
ings of depth-of-anesthesia monitors. The method also may
assist in minimizing the occurrence of epileptiform activity and
seizures during sevoflurane anesthesia.

SEVOFLURANE is a nonpungent, short-acting volatile
anesthetic agent. Clinical trials have confirmed its suit-
ability for mask induction in children1 and in adults.2

Many studies have documented that sevoflurane may
induce epileptiform electroencephalographic activity,3–8

and seizure-like movements have been described.9 De-
spite these observations, sevoflurane remains one of the
most widely used volatile anesthetics.

In current anesthesia practice, electroencephalogram
and electroencephalogram-derived variables, such as the
Bispectral Index (BIS; Aspect Medical Systems, Nor-
wood, MA) are often used to monitor the hypnotic com-
ponent of anesthesia. BIS is composed of the weighted
sum of three features derived from spectral, bispectral,
and time-domain contents of the electroencephalo-
gram.10 BIS has been shown to decrease consistently
with increasing sevoflurane end-tidal concentrations and
decreasing Observer’s Assessment of Alertness and Seda-
tion scale score,11 as well as with increasing estimated
sevoflurane effect site concentrations.12,13 However,
during stable and deep sevoflurane anesthesia, BIS has
been reported to increase during epileptiform activity5

or to fluctuate abnormally.14

The objective of this study was to develop a method
for the automatic detection and quantification of epilepti-
form electroencephalographic waveforms during sevoflu-
rane anesthesia to improve the reliability of electroen-
cephalographic monitoring.

Materials and Methods

Electroencephalographic Data
Electroencephalographic data from two previously

published studies were used.4,6 Both studies had institu-
tional approval (Ethics Committee of the Department of
Obstetrics and Gynecology, Helsinki University Hospital,
Helsinki, Finland), and each patient gave written in-
formed consent. Data were obtained from 60 patients
with American Society of Anesthesiologists physical sta-
tus I or II, scheduled to undergo elective gynecological
surgery. Exclusion criteria were age older than 50 or
younger than 18 yr; history of cardiac, pulmonary, or
neurologic disease; body mass index greater than 28
kg/m2; history of esophageal reflux; or alcohol or drug
abuse.

All patients breathed oxygen via a clear facemask for 2
min before anesthetic induction. Anesthesia was in-
duced with a single-breath method via a facemask using
sevoflurane (8% in nitrous oxide, 50% in oxygen) with a
semiclosed anesthesia system containing a carbon diox-
ide absorber and primed with a fresh gas flow of 10
l/min. Nitrous oxide was used according to our routine
clinical practice. The patients were asked to exhale
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forcefully to the residual volume, followed by a vital
capacity breath with a facemask placed tightly over the
nose and the mouth; they were then asked to hold their
breath as long as possible. Thereafter, the patients were
allowed to breathe normally until loss of consciousness
(LOC). After LOC, anesthetic induction continued via
four different techniques: (1) spontaneous breathing for
6 min after the first breath from the facemask, (2) con-
trolled hyperventilation for 6 min after the first breath,
(3) spontaneous breathing for 2 min after LOC followed
by controlled hyperventilation for 3 min, and (4) con-
trolled hyperventilation for 5 min after LOC. Anesthesia
techniques 1 and 2 were used in the work of Yli-Hankala
et al.,4 and techniques 3 and 4 were used in the work of
Vakkuri et al.,6 wherein the anesthetic methods are
described in more detail. Because of technical difficul-
ties, synchrony between the time stamps of the first
breaths and the electroencephalographic data were ab-
sent for six patients with anesthesia techniques 1 and 2.

Electroencephalographic measurements were per-
formed with Zipprep electrodes (Aspect Medical Sys-
tems) positioned on both temporal bones laterally to the
eyes; both mastoid bones; Fp1; Fp2; Fpz; and the ground
electrode at the center of the forehead, between the
eyebrows. A four-channel electroencephalogram was re-
corded with an Aspect A-1000® monitor (Aspect Medical
Systems) using the following electrode pairs: Fp1 and
left mastoid, Fp2 and right mastoid, Fpz and left tempo-
ral, and Fpz and right temporal. Impedances below 5 k�
were considered acceptable. The electroencephalogram
was collected at a sample frequency of 128 Hz; spectral
analysis revealed that the collected electroencephalo-
gram contained frequencies up to 47 Hz. Processed
variables of the A-1000® monitor were collected at 5-s
intervals, including BIS (version 3.0), burst suppression
ratio (BSR), and signal quality index (SQI) from all four
channels. Data recording was performed with a laptop
computer using Datalogger software (Aspect Medical
Systems).

Electroencephalographic analyses were conducted by
a neurophysiologist familiar with the anesthesia electro-
encephalogram (V.J.). The electroencephalographic
phenomena were classified as � activity (�4 Hz; D), slow
� activity (�2 Hz; DS), slow � monophasic activity
(DSM), slow � monophasic activity with spikes (DSMS),
burst suppression (BS), burst suppression with spikes
(SBS), polyspikes, rhythmic polyspikes, and periodic ep-
ileptiform discharges. Polyspikes refers to a waveform
with more than two negative and positive deflections;
rhythmic polyspikes to polyspikes appearing at regular
intervals; and periodic epileptiform discharges to bilat-
eral, periodic complexes. To simplify algorithm develop-
ment, the three latter classes were combined into one
class, labeled periodic discharges (PD), mainly because
the exact definition of time instants for transitions be-
tween these classes is problematic even for an experi-

enced neurophysiologist. Electroencephalographic data
before the onset of � activity were classified as awake
(AW). The electroencephalographic data periods includ-
ing D or DS classes were considered to be associated
with nonepileptiform activity. Although slow monopha-
sic pattern is not typically considered as epileptiform,8

monophasic pattern preceded spike activity and spikes
seemed to emerge as superimposed onto the monopha-
sic pattern (fig. 1). Therefore, monophasic pattern may
have an important role in monitoring as a predictive
indicator of spike activity. The periods including DSM,

Fig. 1. Classified electroencephalogram phenomena and the
corresponding Bispectral Index (BIS), signal quality index
(SQI), combined wavelet subband entropy (cWSE) 4–16 Hz, and
wavelet subband entropy (WSE) 16–32 Hz values. (A) � activity,
(B) slow � activity, (C) slow � monophasic activity, (D) slow �
monophasic activity with spikes, (E) polyspikes, and (F)
rhythmic polyspikes. E and F were placed in the same peri-
odic discharges class. Typically, BIS decreased constantly
during deepening anesthesia until slow � activity gave way to
slow � monophasic activity. Here, BIS is not displayed during
slow � monophasic activity with spikes (D). The simulta-
neous SQI reading is 2, suggesting a high number of false
positives in the artifact detection algorithm. Periodic dis-
charges tended to increase BIS values. Here, during rhythmic
polyspikes (F) occurring during deep level of hypnosis, the
SQI is 100, suggesting a reliable BIS estimate. cWSE 4–16 Hz
values decreased when a monophasic pattern appeared in the
electroencephalogram. WSE 16–32 Hz values decreased with
increasing spike amplitudes.
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DSMS, or PD were therefore considered to be associated
with epileptiform activity in this study. Table 1 (“All
data” column) presents the distribution of the data over
the different electroencephalographic classes. Figure 1
illustrates some examples of the different electroen-
cephalographic classes. Movements of eyes and head
during the awake state caused artifacts. In this phase of
our study, we focused on the electroencephalogram
during anesthesia, and therefore, these artifacts were not
removed.

Feature Generation
We present a novel quantity, wavelet subband entropy

(WSE), for characterizing the evolution of the epilepti-
form electroencephalogram waveforms. WSE is based on
a dyadic multiresolution decomposition of the signal
performed with a discrete wavelet transform using the
Mallat algorithm.15

A wavelet is an oscillating function whose energy is
concentrated in time to better represent transient, non-
stationary signals. For a function to qualify as a wavelet,
it must exhibit certain mathematical properties, one of
which is to have band-pass filter characteristics. In the
wavelet transform, correlation between the signal under
observation and the used wavelet basis function is de-
rived, similarly to the Fourier transform. According to its
mathematical definition, the Fourier transform uses infi-
nitely continuing sine and cosine functions as basis func-
tions. In the wavelet transform basis functions are se-
lected beforehand from the classes of mother wavelets.
The wavelet basis functions are created from the mother
wavelet by scaling and translating it in time. As a result,
the wavelet transform produces information of both
scale and time of each signal component, whereas the
Fourier transform gives information only about the fre-
quency contents of the signal. The fundamental idea of
analyzing a signal at different scales is called multireso-
lution analysis. Because of their better time-localization
property and the possibility to select differently shaped
basis functions, wavelets can be more effective than the
Fourier transform in describing steeply varying or dis-
tinctly localized signals, such as spikes and bursts.16

The Mallat algorithm computes the discrete wavelet
transform using a cascade implementation of filter banks
of two quadrature mirror filters. At each level of signal
decomposition, two filters are used, a low-pass filter and
a high-pass filter, both followed by down-sampling the
filter output by two. The obtained down-sampled output
samples are wavelet coefficients (cj) at a certain scale j.
Output samples from the low-pass filtering are approxi-
mation coefficients (aj), characterizing original signal on
a coarse degree, whereas samples obtained from the
high-pass filtering are detail coefficients (dj), character-
izing the signal on a fine degree. Detail coefficients dj, at
each scale j and translation index k, are correlations
between the observed signal x(t) and the discretized
mother wavelet �j,k(t):

dj�k� � �
��

�

x(t) �j,k(t)dt (1)

Similarly, approximation coefficients are correla-
tions between the observed signal and the discretized
scaling function, which is orthonormal to the mother
wavelet. When the mother wavelet and scaling func-
tion are discretized in a dyadic manner, i.e., scale and
translation are discretized with steps of 2j, the original
signal can still be reconstructed from the obtained
detail and approximation coefficients.15 After each
level of signal decomposition, approximation coeffi-
cients are supplied to an identical filter bank opera-
tion, thus leading to a finer representation of the
signal at scale j � 1. The obtained approximation and
detail coefficients create a dyadic multiresolution rep-
resentation of the original signal. As can be inferred
from equation 1, it is advantageous to use mother
wavelets that are intrinsically well adapted to repre-
sent the original signal. This leads to better time lo-
calization of the desired signal waveforms, i.e., fewer
coefficients required to accurately describe the origi-
nal signal.17

We performed the Mallat algorithm with three differ-
ent mother wavelets (fig. 2): Daubechies 1, Daubechies

Table 1. Overview of Electroencephalographic Class Distributions in the Development, Test, and Full Data Sets

Development Data Test Data All Data

Class Incidence out of 30 Duration, h:mm:ss Incidence out of 30 Duration, h:mm:ss Incidence out of 60 Duration, h:mm:ss

AW 30 0:54:21 30 0:57:33 60 1:51:54
D 28 0:26:41 28 0:24:27 56 0:51:58
DS 22 0:20:49 22 0:24:08 44 0:44:57
DSM 26 0:28:40 28 0:27:11 54 0:55:51
DSMS 14 0:15:20 14 0:18:54 28 0:34:14
PD 22 1:27:00 25 1:33:58 47 3:00:58
BS 8 0:22:00 4 0:14:38 12 0:36:38
SBS 4 0:08:50 3 0:06:10 7 0:15:00

AW � awake activity; BS � burst suppression; D � � activity; DS � slow � activity; DSM � slow � monophasic activity; DSMS � slow � monophasic activity
with spikes; PD � periodic discharges; SBS � burst suppression with spikes.
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2, and Daubechies 3.18 The Daubechies wavelet family
was selected because Daubechies 1 is a unique mother
wavelet composed of square waves, thus being poten-
tially suitable to capture characteristics of monophasic
patterns. Higher-order mother wavelets Daubechies 2
and Daubechies 3 are more spiky, therefore potentially
being better able to capture spiky electroencephalo-
graphic waveforms. Daubechies wavelets of the order
four and higher also exist, but they are more expanded
in time axis and more sinusoidal-like. Therefore, they
are probably less suitable for our purposes to capture
transient and spiky waveforms. Other wavelet fami-
lies, such as Coiflets and Symlets, also include spiky
mother wavelets. The Mallat algorithm was performed
like a conventional signal filtering, starting from the
first recorded sample and ending with the last sample
of the data record. After processing the signal with the
Mallat algorithm, wavelet coefficients were obtained
at five scales: d1, a1, d2, a2, d3, a3, d4, a4, d5, and a5,
which roughly correspond to frequency bands 32– 64,
0 –32, 16 –32, 0 –16, 8 –16, 0 – 8, 4 – 8, 0 – 4, 2– 4, and
0 –2 Hz, respectively. Wavelet analysis was conducted
with Matlab Wavelet Toolbox (version 2.2; The Math-
Works Inc., Natick, MA), whose user’s guide19** is
recommended reading as an introduction to wavelet
analysis.

Wavelet coefficients cj (both approximations [aj]
and details [dj]) at each scale j, with each mother
wavelet and within each 5-s epoch, sliding at 1-s in-
tervals, were squared and normalized according to the
equation:

ĉj�n� �
cj�n�2

�
m�1

Nj

cj�m�2

, (2)

where cj are coefficients at a certain scale j, Nj is the
number of coefficients at each scale j within a given
epoch, n is the index used within each 5-s epoch, and m
is the summation index. The coefficients ĉj at each scale
were analyzed with the relative form of the Shannon

entropy equation20; the resulting value is called wavelet
subband entropy (WSE):

WSEĉj
� �

�
n�1

Nj

ĉj�n� · log ĉj�n�

log Nj
. (3)

Squaring (equation 2) makes coefficients nonnegative,
which is a necessity for the application of the entropy
equation. Furthermore, it enhances the contribution of
high-amplitude signal values in relation to lower-ampli-
tude signal values, making the entropy equation more
sensitive to the characteristic features of epileptiform
activity. Normalization (equation 2) makes WSE insensi-
tive to changes in the total signal power. Equation 3 can
be interpreted as a “distance” between the wavelet basis
function and the original signal.17

Feature Selection
Epileptiform activity in the data were characterized

mainly by two morphologically different waveforms:
monophasic waves resembling K complexes of natural
sleep and spikes. Our goal was to find optimal features
for the monitoring of these two waveforms. The second
goal was to develop a user-friendly method that works
with a minimal set of electrodes. Therefore, our aim was
to use only one-channel data for the final analysis.

Data were randomly divided into two sets, develop-
ment and test data (table 1), so that both of the sets
contained approximately the same number of cases rep-
resenting each of the four anesthesia techniques. The
development data set was used for feature selection and
method development. The test data set was used for
performance assessment.

Epileptiform activity evolved typically from D to DS
and then to DSM, DSMS, and PD, in that sequence. A
monophasic pattern appeared at the transition from DS
to DSM. The optimal feature set for detecting presence
of monophasic patterns was selected on the basis of the
performance of a linear discriminant classifier developed
to discriminate between two groups of electroencepha-
lographic classes. Groups were a union of D and DS
classes and a union of DSM, DSMS, and PD classes. The
root-mean-square error was used as performance crite-
rion of the classifier. The total group of potentially useful
features contained 120 features; WSE values from the
aforementioned 10 bands with 3 different mother wave-
lets at 4 channels, creating 10 � 3 � 4 � 120 features.
The optimal feature set was found using a feature selec-
tion algorithm, sequential floating forward search,21 ef-
fectively implementing an iterative stepwise regression
algorithm but allowing for backtracking (possible re-
moval of earlier selected features). Backtracking allevi-
ates the potential problem of so-called nesting, the situ-
ation when, once a feature has been added to a feature
subset, it cannot be removed anymore in later iterations.

** Available at: http://www.mathworks.com/access/helpdesk/help/toolbox/
wavelet/. Accessed August 16, 2007.

Fig. 2. The mother wavelets used in the study: (A) Daubechies 1,
(B) Daubechies 2, and (C) Daubechies 3.
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Nesting may lead to suboptimal feature set selections.
Considering the limited number of cases and for prac-
tical monitoring reasons, the size of optimal feature
set was predefined to be maximally three. If the in-
crease in performance by adding a next best feature
was minimal (below a preset threshold), the feature
selection process was stopped even if the number of
three features was not reached, thus potentially lead-
ing to feature set sizes of smaller than three. To enable
the use of one-channel electroencephalographic mon-
itoring different classifiers and thus different optimal
feature sets, were developed for the four different
channels separately (i.e., using only features from one
single channel). The channel with the best-performing
feature set was then chosen for the implementation.
Similarly, the optimal feature set for spike activity
monitoring was obtained using sequential floating for-
ward search with a linear discriminant classifier that
aimed to discriminate between the D, DS, and DSM
groups and the DSMS and PD groups. Table 2 illus-
trates the division and labeling of the classes.

Performances of different best-performing classifiers
were initially assessed with receiver operating character-
istic (ROC) curve analysis. An ROC plot displays the
sensitivity of the detector versus (1 � specificity) for all
possible cutoff values.16 For the detection of monopha-
sic patterns, we conducted additional ROC curve analy-
sis where only DS and DSM classes were included. This
was done to emphasize the method’s ability for detect-
ing the important stage when a monophasic pattern
starts to emerge, thus being the first predictive indicator
of the upcoming spike activity.

Cutoff values for monophasic pattern and spike detec-
tion were specified using the ROC plot analysis. To
select the optimal cutoff point, we need to evaluate the
effects of false-positive and false-negative results. Here,
both of these effects were considered equal, and the
optimal cutoff value was found by looking for the point
on the curve with the smallest distance to sensitivity �
1 and specificity � 1.16

Performance Evaluation
The optimal feature sets’ performances were assessed

using prediction probability, sensitivity, and specificity
analyses using the test data set. Prediction probability
(PK) is commonly used to study the performance of
anesthetic depth indicators,22 where it quantifies the
concurrence between the correct behavior of the anes-
thetic depth indicator with the observed depth of anes-
thesia. We calculated PK values for each optimal feature
set’s ability to predict the class of electroencephalo-
graphic waveforms described. The electroencephalo-
graphic classes were labeled according to increasing
severity of the epileptiform activity (arguments for this:
see Discussion). In our classification, D and DS presented
waveforms without epileptiform activity and were labeled
0, DSM presented mild severity and was labeled 1, DSMS
presented moderate severity and was labeled 2, and PD
presented a severe pattern and was labeled 3. In addi-
tion, we calculated PK values for the monophasic pattern
detection and the spike activity detection. To compen-
sate for bias and allowing derivation of robust estimates
of SEs and confidence intervals (CIs), PK values were
estimated using the jackknife method. In this case, for a
sample of n data points, the method requires computa-
tion of n � 1 estimates of PK; one from the total sample
of n points and n estimates calculated from subsets
obtained by deleting one different data point per estima-
tion. Cutoff values obtained from the development data
set were used to calculate sensitivity and specificity over
the test data set. Table 2 illustrates the division and
labeling of the electroencephalographic classes used to
evaluate the method’s ability to detect monophasic pat-
terns and spikes, and PK analysis for evolutionary elec-
troencephalogram waveforms.

BIS and WSE during Epileptiform Activity
To study the behavior of BIS, the SQI, and the WSE

variables of the optimal feature sets during epileptiform
activity, mean, SD, median, and quartiles for each vari-
able were calculated for each electroencephalographic
class. Normality of the distribution of the variables was
assessed with the Kolmogorov-Smirnov test. In case the
variable distribution was found to be significantly differ-
ent from the normal distribution, a nonparametric pair-
wise test was used to assess differences between feature
values of evolutionarily successive electroencephalo-
graphic classes. More specifically, for each patient, aver-
age feature values for each class were calculated and
compared with the Wilcoxon signed rank test (SPSS
version 14.0; SPSS Inc., Chicago, IL). A value of P � 0.05
was considered significant in all tests. In some instances,
the BIS algorithm was incapable of calculating reliable
BIS values; in those cases, the value was not displayed on
the monitor screen. We analyzed BIS-not-displayed time
as a proportion of total time in each electroencephalo-
graphic class.

Table 2. Division into Different Electroencephalographic
Classes for Classifier Development and Performance
Evaluation

Class Monophasic Pattern Present Spike Present Severity

AW Not used Not used Not used
D No No 0
DS No No 0
DSM Yes No 1
DSMS Yes Yes 2
PD Yes Yes 3
BS Not used Not used Not used
SBS Not used Not used Not used

AW � awake activity; BS � burst suppression; D � � activity; DS � slow �

activity; DSM � slow � monophasic activity; DSMS � slow � monophasic
activity with spikes; PD � periodic discharges; SBS � burst suppression with
spikes.
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We examined BIS and WSE values at a deep level of
hypnosis, using 2 min 30 s as the period of focus, starting
3 min after the first breath of the inhalation induction.
LOC was registered for 30 patients with anesthesia tech-
niques 3 and 4. The median time from the beginning of
mask induction to LOC was 45 s, and the range was
30–100 s. In 54 patients, the median time delay from the
first facemask breath to the appearance of � or slow �
activity was 63 s, with a range of 34–171 s. End-tidal
sevoflurane concentrations for patients with anesthesia
techniques 1 and 2 were 4.4–6.5% during the time
period studied.

We estimated the capability of our method to detect
the situation where BIS was greater than 60 despite a
deep level of hypnosis during the inspection time. De-
tection was defined to have occurred if either of the WSE
variables was equal to or below its cutoff value. Event
sensitivity was calculated with the any-overlap method.
The any-overlap is the traditional method used in study-
ing the accuracy of automatic seizure detectors.23 The
method calculates the ratio of matched seizures (an
algorithm seizure overlaps a seizure as annotated by a
human expert) by the total number of expert-annotated
seizures in the record. Our method’s event sensitivity
was calculated as the ratio of detections over the total
number of events when BIS was constantly greater than
60. In addition, we conducted a pairwise comparison
between BIS and WSE variables by calculating traditional
sensitivity as a ratio of detections and the total number of
BIS readings greater than 60. All analyses were per-
formed with Matlab 6.5 and 7.1 (The MathWorks, Inc.).

Results

Feature Selection
Channel Fp2–right mastoid proved to be the best chan-

nel in terms of performance with a linear discriminant
classifier. Channel Fp1–left mastoid was almost equally
good, whereas the other two channels were consider-
ably worse in their performance. The WSE of coefficients
(using mother wavelet Daubechies 1) corresponding to
frequency bands 4–8 and 8–16 Hz obtained the best
classification performance for monophasic pattern de-
tection. The WSE variable for the detection of monopha-
sic patterns was a combination of WSE (cWSE) from the
two frequency bands:

cWSE4�16 Hz � 0.4391 · WSE4�8 Hz

� 0.5609 · WSE8�16 Hz. (4)

Weights for equation 4 were obtained from the linear
regression analysis. On the basis of ROC curve analysis,
detection of monophasic patterns was set to occur when
cWSE 4–16 Hz was equal or below the cutoff value 0.78.
The ROC curve for monophasic pattern detection is
illustrated in figure 3.

The WSE of coefficients (Daubechies 3 mother wave-
let) corresponding to a frequency band of 16–32 Hz was
found to be the best for spike detection. Spike activity
was set to be detected when WSE 16–32 Hz was equal or
below the cutoff value 0.80. The ROC curve for spike
detection is presented in figure 4.

Fig. 3. The receiver operating characteristic curve for monopha-
sic pattern detection with combined wavelet subband entropy
4–16 Hz.

Fig. 4. The receiver operating characteristic curve for spike
activity detection with wavelet subband entropy 16–32 Hz.
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Performance Evaluation
The PK value for the cWSE 4–16 Hz ability to follow

evolutionary electroencephalographic patterns was
0.809 (SE, 0.007; 95% CI, 0.795–0.823), and for WSE
16–32 Hz the PK value was 0.804 (SE, 0.007; 95% CI,
0.790–0.818). The PK value for cWSE 4–16 Hz to detect
the presence of monophasic patterns was 0.934 (SE,
0.006; 95% CI, 0.922–0.946), sensitivity 86.1% (SE, 0.4%;
95% CI, 85.3–86.8%), and specificity 87.2% (SE, 0.6%;
95% CI, 86.0–88.4%). The PK value for WSE 16–32 Hz
ability to detect spike activity was 0.868 (SE, 0.008; 95%
CI, 0.852–0.884), sensitivity 79.8% (SE, 0.5%; 95% CI,
78.8–80.7%), and specificity 82.5% (SE, 0.6%; 95% CI,
81.4–83.6%).

BIS and WSE during Epileptiform Activity
Using the Kolmogorov-Smirnov test and visual exami-

nation of histograms, the distributions of the BIS and
WSE values were found to be significantly different from
the normal distribution. The medians and quartiles of BIS
and both WSE values in each electroencephalographic
class are presented in figure 5 and table 3. BIS values
decreased with deepening anesthesia from awake to �
(df � 54, P � 0.001) and from � to slow � activity (df �
40, P � 0.001).

Both WSE variables decreased in a monotonic fashion
from class DS to DSM, from DSM to DSMS, and from
DSMS to PD. For cWSE 4–16 Hz, class D values are
significantly higher than DS (df � 42, P � 0.05), DS
higher than DSM (df � 39, P � 0.001), DSM higher than
DSMS (df � 24, P � 0.001), and DSMS higher than PD
(df � 21, P � 0.05). For WSE 16–32 Hz, class DS values
are significantly higher than DSM (df � 39, P � 0.001),
DSM higher than DSMS (df � 24, P � 0.001), and DSMS
higher than PD (df � 21, P � 0.01).

The signal quality index and proportion of BIS-not-
displayed time for different electroencephalographic
classes are presented in table 3. During DSMS and PD
activity, the proportion of BIS-not-displayed time tended
to increase and SQI tended to decrease. BIS values
greater than 60 during the period of deep hypnosis were
observed in 34 of the 54 patients. The event sensitivity
for detecting this situation was 97.1%. The sensitivity for
detection of a BIS reading greater than 60 was 92.5%.

Discussion

We developed a novel feature, wavelet subband entropy,
for the monitoring of epileptiform electroencephalo-
graphic waveforms occurring in sevoflurane anesthesia.
Epileptiform activity during sevoflurane anesthesia is
characterized by an evolutionary pattern,3,4,6,8,24 starting
with gradual slowing of the electroencephalogram (figs.
1A and B), that leads first to appearance of the monopha-
sic pattern (fig. 1C). Later, spike activity starts with a

gradual increase in amplitude and, when evolving fur-
ther, becomes rhythmic and periodic (figs. 1D–F). The
method developed is able to react to the start and end of
the epileptiform activity (fig. 6) and to produce consis-
tently decreasing values following the evolutionary
pattern described (fig. 5). The method improves under-
standing of the electroencephalogram-derived informa-
tion during anesthesia by recognizing and interpreting
potentially misleading readings of depth-of-anesthesia
monitors. The proposed method provides output that is
specific to epileptiform activity and does not react for
other electroencephalographic changes occurring dur-
ing anesthesia.

The method is aimed to be used as a supplementary
component for a depth-of-anesthesia monitor, thus im-
proving the reliability of the device. Epileptiform activity

Fig. 5. Median and quartile values of (A) Bispectral Index, (B)
combined wavelet subband entropy 4–16 Hz, and (C) wavelet
subband entropy 16–32 Hz for each electroencephalographic
class. AW � awake activity; BS � burst suppression; D � �
activity; DS � slow � activity; DSM � slow � monophasic activ-
ity; DSMS � slow � monophasic activity with spikes; PD �
periodic discharges; SBS � burst suppression with spikes.
*Statistical significance (P < 0.05) between classes.
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during sevoflurane mask induction, although general-
ized, has been shown to be predominant in the frontal
region,8 therefore making depth-of-anesthesia monitors
especially vulnerable to these waveforms. With sevoflu-
rane, epileptiform activity in neurologically healthy sub-
jects is typically observed in deep anesthesia,8,24 although
patients with brain lesions, even without symptoms,
may exhibit seizure activity also during the emergence
phase.25

The developed method identifies otherwise unex-
plained increases or fluctuations of the monitor, thereby
assisting to optimize anesthetic drug administration. Tar-
geting BIS to 40–60 during the maintenance phase de-
creases the use of sevoflurane by 29% compared with
the control group.26 Our data demonstrate BIS values
greater than 60 in 63% of patients during deep level of
sevoflurane-induced hypnosis with epileptiform activity.
The proposed method detected this with event sensi-
tivity of 97.1%. Only a single BIS reading of 62 in a
patient whose electroencephalogram otherwise had
BIS values less than 60 remained undetected. Further,
we illustrated that BIS tends to display no index value
on the monitor screen during epileptiform electroen-
cephalographic activity. The high proportion of BIS-
not-displayed time during DSMS and PD activity may
be caused by the BIS algorithm assuming these wave-
forms to be artifacts. The distribution of SQI values
supports this assumption. In our visual analysis from
these time periods, we did not observe a large number
of artifacts.

In a previous study,6 we showed that patients with
rhythmic or periodic spike activity experienced a simul-
taneous increase in heart rate, and patients without such
activity did not show the increase. Involvement of the
cardiovascular system in ongoing epileptiform activity
may imply a more severe type of electroencephalo-
graphic abnormality. This has been demonstrated espe-
cially in electroconvulsive therapy, where seizures are
associated with a hemodynamic arousal.27,28 Several
studies have shown an increase of heart rate during
seizures.29–32 Periodic discharges have been hypothe-

sized to represent the last of the progressive electroen-
cephalographic stages of untreated generalized convul-
sive status epilepticus.33 That stage is accompanied with
the reduction in the cerebral blood flow and brain glu-
cose level, a further decline in brain oxygenation, thus
creating a risk for an irreversible brain damage.34 In
sevoflurane anesthesia, periodic discharges have been
demonstrated to precede the seizure.3,24 These aspects
support our hypothesis of the adverse nature of periodic
discharges. As demonstrated by a PK value of 0.8 and
figure 5, WSE consistently decreased with an increasing
severity of epileptiform activity. Further studies are
needed to estimate ability of our method to predict
seizures in sevoflurane anesthesia.

The advantage of having two variables, sensitive to
electroencephalographic changes in different frequency
bands, becomes clear when one observes the distribu-
tion of WSE values over different electroencephalo-
graphic classes. The most prominent decrease in median
values for cWSE 4–16 Hz was between classes DS and
DSM, and with WSE 16–32 Hz it was between classes
DSM and DSMS (fig. 5). cWSE 4–16 Hz proved to be
useful as a predictive indicator of spike activity. Visual
classification of the electroencephalogram with 1-s res-
olution was a demanding task because electroencepha-
lographic activity continuously evolved and, although
most patterns were recognizable, discrimination be-
tween some classes was difficult. Given these difficulties,
the PK values for the evolutionary patterns are encour-
aging. Performance measures for detection of the
monophasic pattern were better than those for spike
detection. This was probably partly due to high-fre-
quency noise corrupting some recordings, complicating
the recognition of spikes.

Spike activity was easily captured by one frequency
band only. For the monophasic pattern monitoring, we
used the combination of two adjacent frequency bands,
because that improved sensitivity during the emerging
phase of monophasic pattern (fig. 7). Additional analysis
with DS and DSM classes only was reasonable, because
the initial analysis contained a substantial amount data

Table 3. BIS, Combined Wavelet Subband Entropy 4–16 Hz, Wavelet Subband Entropy 16–32 Hz, Signal Quality Index of the BIS,
and Proportion of BIS-not-displayed Time for Different Electroencephalographic Classes

Class BIS Median (IQR) cWSE 4–16 Hz Median (IQR) WSE 16–32 Hz Median (IQR) SQI Median (IQR)
Proportion of

BIS-not-displayed Time, %

AW 97.2 (93.8–97.6) 0.71 (0.58–0.81) 0.84 (0.82–0.86) 31.7 (20.0–46.7) 12.9
D 68.6 (26.6–90.8) 0.82 (0.80–0.84) 0.85 (0.84–0.86) 66.7 (45.8–96.7) 3.9
DS 30.6 (18.0–43.8) 0.81 (0.79–0.83) 0.85 (0.83–0.86) 90.0 (63.3–96.7) 2.6
DSM 44.7 (32.8–67.0) 0.75 (0.71–0.79) 0.82 (0.78–0.85) 69.2 (43.3–94.2) 5.1
DSMS 44.8 (32.4–67.1) 0.73 (0.68–0.77) 0.76 (0.72–0.80) 66.7 (23.8–90.0) 14.7
PD 57.5 (45.9–69.9) 0.70 (0.65–0.74) 0.74 (0.69–0.78) 65.8 (38.3–86.7) 10.0
BS 25.0 (7.6–45.9) 0.73 (0.65–0.78) 0.70 (0.62–0.78) 96.7 (81.7–100.0) 1.6
SBS 22.0 (12.8–42.5) 0.73 (0.53–0.79) 0.71 (0.54–0.77) 81.7 (59.8–95.8) 0.6

AW � awake activity; BIS � Bispectral Index; BS � burst suppression; cWSE � combined wavelet subband entropy; D � � activity; DS � slow � activity;
DSM � slow � monophasic activity; DSMS � slow � monophasic activity with spikes; IQR � interquartile range; PD � periodic discharges; SBS � burst
suppression with spikes; SQI � signal quality index; WSE � wavelet subband entropy.
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from the PD class (table 1), which is not necessarily
characterized by the monophasic pattern (fig. 1: com-
pare C and D with E and F). As expected, the monopha-
sic pattern was best detected with Daubechies 1 (also
known as the Haar wavelet), which can be represented
with the step function and thought of as a sequence of
square waves. Spikes were best detected with Dau-
bechies 3, which has similarities with the morphology of
epileptiform spikes (fig. 2).

During burst suppression, variability in both WSE vari-
ables was high. Suppressions longer than or equal to 5 s

result in high WSE values, because the signal of the
analyzed epoch is flat and entropy of a flat distribution is
high. However, during burst suppression, the BIS value
is highly influenced by the BSR. It has been shown with
an A-1000® monitor that BIS can be estimated with the
equation BIS � 50 � BSR/2, when the BSR is greater
than 40%.35 With the newer A-2000® monitor, a relation
between BIS and BSR is still present, although the equa-
tion is slightly different.13,36 The BIS algorithm’s burst
suppression detection seemed reliable also during epi-
leptiform burst suppression periods, resulting in reason-

Fig. 6. Examples of the behavior of electroencephalogram (EEG), Bispectral Index (BIS), signal quality index (SQI), combined wavelet
subband entropy (cWSE) 4–16 Hz, and wavelet subband entropy (WSE) 16–32 Hz during four sevoflurane inductions; each graph
contains 10 min of the recordings. Horizontal dashed lines correspond to a BIS level of 60 and cutoff values for cWSE 4–16 Hz and
WSE 16–32 Hz, which are 0.78 and 0.80, respectively. Vertical dotted lines correspond to the boundaries of visual electroencepha-
logram classification. AW � awake activity; D � � activity; DS � slow � activity; DSM � slow � monophasic activity; DSMS � slow �
monophasic activity with spikes; PD � periodic discharges. (A) BIS decreased below 60 during DS and DSM activity. At the onset of
PD activity, BIS increased to greater than 60 and remained there until the end of PD activity. The SQI remained high during the
epileptiform activity. Both WSE variables reacted to the onset and end of PD activity. (B) BIS decreased below 20, indicating deep
anesthesia. When the DSMS pattern appeared in the electroencephalogram, BIS began a gradual increase, exceeding 60 during PD
activity. After the end of PD activity, BIS returned to a level indicating deep anesthesia. WSE variables gradually decreased during
epileptiform electroencephalographic periods and returned to their baseline levels when PD activity disappeared. (C) For the patient
without epileptiform activity, BIS worked reliably, and during anesthesia, WSE variables remained above their cutoff values. (D) BIS
remained high when the AW pattern immediately turned into DSM activity. A decrease in the cWSE 4–16 Hz variable indicated the
appearance of the monophasic pattern; later, spikes appeared in the electroencephalogram, resulting in a gradual decrease for WSE
16–32 Hz.
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able BIS values. Therefore, we concentrated on the data
before burst suppression.

In the study by Jääskeläinen et al.,24 epileptiform ac-
tivity occurred in all eight subjects at the burst suppres-
sion level of steady state sevoflurane anesthesia. Previ-
ously, Kaisti et al.5 had used the same data set and
reported BIS values of 44 and 73 with two subjects
having epileptiform discharges. The probable reason for
high BIS values in only two subjects was that all patients
were at burst suppression level and BIS was influenced
by the BSR. This may be the explanation also for the
results of Julliac et al.,8 where a BIS increase greater than
20 was observed in 5 of the 11 patients with epilepti-
form activity. In our data set, epileptiform activity pre-
ceded burst suppression, thus being the probable reason
for the higher incidence of the high BIS values. This may
be related to the activating effects of nitrous oxide to the
burst suppression electroencephalogram.37 Otherwise,
data obtained in other studies8,24 contained similar elec-
troencephalographic patterns, occurring in the same se-
quence as in our data. Similar patterns have occurred
also with sevoflurane mask-induced anesthesia in chil-
dren.7 Several new versions of the BIS algorithm have
been released since version 3.0. However, we are not
aware of any improvements in the algorithm regarding
epileptiform activity. A recent study of Julliac et al.8 with
an A-2000® monitor (XP platform) demonstrated that the
problem still exists. The current recommendation of
Aspect Medical Systems is to look at the raw electroen-
cephalographic waveform when epileptiform activity is
suspected.38

We will continue development of the algorithm for the
burst suppression level. Once the method is fine-tuned
to work reliably during burst suppression, WSE variables

can be monitored throughout the whole range of the
anesthesia electroencephalogram. Also, the method may
prove useful in the monitoring of status epilepticus pa-
tients, whose electroencephalographic waveforms ex-
hibit similarities to the epileptiform electroencephalo-
gram in sevoflurane anesthesia.33,39

Eye movements caused low values of cWSE 4–16 Hz
during the awake state. Thus far, we have tested our
method only with the epileptiform electroencephalo-
gram in sevoflurane anesthesia, and in these circum-
stances, epileptiform activity is not suspected with
awake patients moving their eyes. To further improve
the reliability of the method, eye movement artifacts can
be detected with the separate technique using, for ex-
ample, template matching, and WSE calculation can be
eliminated in the case of detected eye movements. Also,
cardiac artifacts may influence WSE variables; simulta-
neous electrocardiogram measurement is required for
eliminating this effect.

Besides improving the reliability of electroencephalo-
graphic monitoring during sevoflurane anesthesia, the
developed method may have benefits to avoid epilepti-
form electroencephalographic and seizure activity dur-
ing any kind of anesthesia. Seizures during anesthesia,
although not common, are likely to increase costs. Pa-
tients may become admitted to the intensive care unit or
they may have a prolonged follow-up with subsequent
detailed neurologic testing24,40 and brain scans.24,25

In the past, patients were reassured that there were
risks for damage only when seizures were prolonged, as
in status epilepticus. Emerging experimental studies in
chronic models, human magnetic resonance imaging,
and neuropsychological studies have provided new in-
formation about adverse long-term consequences of sei-
zures. There is increasing evidence that single seizures
and repeated brief seizures evoked by kindling produce
neuronal damage and brain cell death. A single kindled
seizure doubles the rate of apoptosis in the hilar neurons
of the dentate gyrus.41 Seizure-induced cell death and
damage may adversely affect functional properties of
neural circuits and networks, and subtle seizure-induced
neuronal loss or circuit reorganization could have clini-
cally significant impact on cognition and behavior.41

Although seizure-induced damage seems less prominent
in the immature nervous system, early life seizures have
adverse effects on a variety of cognitive and behavioral
domains.41 These observations should be carefully taken
into account when administrating sevoflurane, espe-
cially because of its popularity in pediatrics. We did not
record seizure activity, and our patients had an unevent-
ful postanesthetic recovery.

Currently available electroencephalographic monitors
for anesthesia practice do not offer automatic recogni-
tion of epileptiform activity. Therefore, the incidence of
epileptiform electroencephalogram in sevoflurane anes-
thesia is not known and may be more common than

Fig. 7. The receiver operating characteristic curve for the
monophasic pattern detection with combined wavelet subband
entropy (cWSE) 4–16 Hz, wavelet subband entropy (WSE) 8–16
Hz, and WSE 4–8 Hz when only slow � activity (DS) and slow �
monophasic activity (DSM) classes are used in the analysis.
Generally, cWSE 4–16 Hz had a better sensitivity than WSE 8–16
Hz at the important stage when a monophasic pattern emerged
and was selected for the final implementation.
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expected. Several reports of seizure-like phenomena
with patients in propofol anesthesia also exist, but few
of these have accompanying electroencephalographic
recordings.40 Clinical detection of intraoperative sei-
zures are difficult because neuromuscular blocking
agents are commonly used.

Wavelet subband entropy variables proved successful
in detecting and quantifying sevoflurane-induced epilep-
tiform activity and are suggested as a promising method
for the prediction and prevention of epileptiform activ-
ity during sevoflurane anesthesia.
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26. Aimé I, Verroust N, Masson-Lefoll C, Taylor G, Laloë P-A, Liu N, Fischler M:
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