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Abstract: In condensation over horizontal tubes where the wall temperature is not measured directly, the Wilson 
plot is used to determine the cooling side heat transfer coefficient. Conventionally, the variation in Nusselt 
number, Nu, with condensate side temperature drop, ΔTs, which accompanies change of cooling side flowrate, is 
assumed to be Nu ∝ 1/ΔTs

n with n = 0.25. This is the free convention condensation value. In this paper a 
technique is devised, not only to check the accuracy of this assumption in the usual vapor side cross flow 
situation, but also to determine the effect on this accuracy of allowing the index n to vary. In a case study the 
best agreement between ΔTs assumed and the value obtained using the cooling side heat transfer coefficient 
which resulted from the Wilson plot, occurred at n = 0.21. Based on the random errors in the measured data, a 
linear regression taking into account the errors in both Wilson plot coordinates gave the cooling side heat 
transfer coefficient and its uncertainty. 
 
Keywords: Heat transfer, condensation, Wilson plots. 
 
INTRODUCTION  

In many laboratory tests or industrial 
applications, where the vapor side performance of 
condensing shell and tube heat exchangers is to be 
determined experimentally, it is not convenient to 
measure wall temperatures directly. Instead, the 
Wilson plot is often used to establish the cooling side 
heat transfer coefficient and hence the vapor side 
condensate film temperature difference. The 
technique originated as Wilson’s method1 over 90 
years ago. In a steam condenser study, Wilson 

introduced the plot 
ovh
1  versus 0.8

cwV
1 , from the 

intercept and slope of which the steam side and 
cooling side heat transfer coefficients may be 
determined if it is assumed that the steam side 
coefficient, hs can be held constant, while the cooling 
water velocity is varied. This is impossible to achieve 
because the condensation film temperature 
difference, ΔTs, varies with Vcw. To account for this 
an explicit expression must be found for ΔTs in terms 
of the heat flux, to allow the reduction of the heat 
conservation equation to a linear form. For this 
purpose Briggs and Young2 introduced the Nusselt 
expression for condensing heat transfer in natural 
convection, Eq.(1). 
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The Seider-Tate3 equation accounted for the variation 
in cooling water properties with Vcw and temperature. 
They rearranged the Wilson plot coordinates in linear 
form, so that the values of hcw and A could be 
calculated from the slope and intercept. Recently, 
Rose4 revived this modified Wilson plot procedure. 
Rearranging Eq.(1), the required form, Eq.(2), 
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is obtained. By equating heat flux through the wall 
and writing the overall ΔTov from saturated vapor to 
cooling water equal to the sum of the temperature 
differences on the cooling water side, wall and 
condensate film side, Eq.(3), 
ΔTov = ΔTs + ΔTw + ΔTcw                 (3) 
two Wilson plot equations, Y = f(X), were obtained4, 

Y1 = aX1 + b ………..Y2 = a + bX2 
From these, the cooling water side heat transfer 
coefficient could be evaluated from the intercepts b 
and a, respectively. Rose4 stated that the two Wilson 
plots, gave different results. 

The aim of this paper is to compare the 
condensate film temperature difference, implied by 
Eq.(2) and the value calculated using the cooling 
water heat transfer coefficient obtained using the 
Wilson plots. Further, an extra degree of freedom is 
introduced   into  Eq.(2)  to  permit   minimization  of    
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any difference between the two. The study is 
illustrated by reference to experimental data5 
obtained from the first condensing row of a steam 
condenser, condensing filmwise, pressure 50 mb, 
approach velocity Vmin=10 m/s and heat fluxes 20-90 
kW/m2. It explores the role of the level of random 
errors in data measurement on the accuracy of the 
Wilson plot. The modified Wilson plot method of 
Rose4 will first be generalized and the method of 
linear regression to be used explained. These will be 
applied in a case study to illustrate the proposed 
technique. 
 
WILSON PLOT MODIFIED  

The Rose equations were afforded another 
degree of freedom by letting the index n in Eq.(1) 
vary. Physically this allows for the effect of forced 
convection on the steam side Nusselt number. Thus, 
we may write for the more general case. 
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Using Rose’s notation4, write 
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icw DW
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Nomenclature    
A Nusselt Eq. constant, Eq.(1)  Qcw cooling water flow rate, m3/s 
a, b Wilson plot constants  Re  two phase Reynolds number, Re=ρVD/μ,(-)
Amax duct cross-sectional area, m2  T temperature, C 
Amin flow area between tubes, m2  V velocity, m/s 
Amv mean void area12, m2  Wcw hcw/Ci, kW/m2K 
Ci cwcw /Wh   x defined Eq.(5), K 
Con1 Eq.(23), ms/K   X1, X2 Wilson plot parameters, Eqs.(11), (12),(-) 
cp liquid specific heat at constant pressure,   y defined Eq.(6), K 
 kJ/kgK   Y1, Y2 Wilson plot parameters, Eqs.(9), (10),(-) 
D tube outside diameter (condensing   z defined Eq.(7), K 
 surface), m Greek symbols 
Di annulus outside/tube inside diameter, m χ2 merit function, Eq.(17) 
F parameter, Eq.(33) χ2

prob probability of χ2 
F1 Eq.(23), K/ms ΔT temperature difference, K 
G parameter, Eq.(33) 

 

μ liquid viscosity, kg/ms 
g gravitational acceleration, m/s2  ρ liquid density, kg/m3 
h heat transfer coefficient, kW/m2K  σ error 
hcw cooling water side heat transfer   Subscripts 
 coefficient3,6. kW/m2K  cw cooling water 
hfg latent heat, kJ/kg  cwi cooling water inlet 
k liquid thermal conductivity, kW/mK  cwo cooling water outlet 
L effective tube length/pass, m  dat Data 
Lgap minimum gap between tubes, m  lm log mean 
K1 ρcwcpcw/πNpass, Eq.(20), kWs/m3K  max referring to Amax 
n exponent in Nusselt Eq.(1)  min referring to Amin 
Ndat number of data points  mv referring to Amv 
Npass number of tube passes per row (= 5)  s steam, condensate film 
Nu Nusselt number  sat saturation 
P parameter, Eq.(32)  ov overall 
ptr transverse tube pitch, m  v vapor 
pl longitudinal tube pitch, m  w,wall wall 
q heat flux density, tube outside wall,     
 kW/m2    
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Here, Wcw is the assumed cooling water heat transfer 
coefficient calculated using a recommended 
correlation, eg. Seider and Tate3 for a circular tube 
and Gnielinsky6 for an annulus. Ci is the correlation 
factor multiplier of Wcw (hcw = Ci Wcw) to be 
determined by the Wilson plot. Thus, from Eq.(3) 
write 
ΔTov = ax + y + bz              (8) 
Therefore, similarly to Rose4, write 
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thus the modified Wilson plot Eqs.4 become Eqs.(13) 
and (14) 
Y1 = aX1 + b                                       (13) 
Y2 = a + bX2                                          (14) 
where 

n1
1

Aa −−
=                           (15) 

iC
1b =                           (16) 

In each case the error in the slope and intercept of the 
Wilson plot, caused by experimental uncertainty, is 
due both to errors in the abscissa and ordinate, X and 
Y. 

 
Weighted linear fit caused by errors in both 
coordinates:  

The problem is to apply a weighted linear fit to 
linear Eqs.(13) and (14). A Fortran subroutine 
fitexy7,8         

         ( ) ( ) ( ) ( )[ ]prob
22

dat χ,χ,bσ,aσb,a,,Yσ,Xσ,NY,X,fitexy  
is used. The input is the Ndat values, X, Y, above. The 
output is the best fit to the slope and intercept of the 
Wilson plot and the errors σ(a) and σ(b), the merit 
function, χ2, and its probability χ2

prob. The merit 
function is defined by Eq.(17)  
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and is the quantity minimized. The denominator of 
Eq.(17) is the variance of the linear combination Yi-
a-bXi of two random variables Xi and Yi

7, or the 
inverse of the weights applied to each of the terms in 
the summation, Eq.(17). It measures the agreement 
between the data and the straight line model chosen 
to fit it. Low values of χ2

prob indicate a poor fit. 
Reference8 shows examples of the use of routine 
fitexy. 
 
Measurement data errors-relation to errors in X 
and Y: 

X and Y are functions of the measured data 
quantities A,B,C….,X,Y ≡ f(A, B, C….). The errors 
σ(X) and σ(Y) in X and Y are related to the errors in 
the experimental data quantities, A, B, C…., σ(A), 
σ(B), σ(C)…., by the usual relation Eq.(18), for 
example,  
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The data which is subject to random measurement 
errors during the Wilson plot tests considered here5 
and the values of these errors, are shown in Table 1. 
These errors were in effect the random errors of 
reading the data and an allowance for instability in 
the experimental conditions during the test. 
 

Table 1: Data measurement errors 

Data σ(data) 

Qcw 
Tcwi, Tcwo 

Tsat 

0.005Qcw m3/s 
0.02 K 
0.1 K 

 
The errors in D, Di, L and kwall are systematic 

errors of the Wilson plot tests and are therefore not 
included in Eq.(18). Obviously these errors, together 
with the error, here to be estimated, in the cooling 
water side heat transfer coefficient from the Wilson 
plot tests, will affect the accuracy of the steam side 
heat transfer coefficients eventually derived from the 
main condensation tests. The uncertainty in thermal 
properties, due to the uncertainty of condensate film 
and cooling water temperatures, is not included here 
to avoid difficulties in presentation. However, with 
obvious modifications it can be. The appropriate 
average temperature of condensate film and cooling 
water were used in determining the properties 
themselves. The object here is to illustrate the 
general method of assessing the errors involved in 
the Wilson plot tests and that is not affected by the 
omission. 
 
X, Y error differential coefficients: 

Equations (9), (10), (11), and (12) for Y1, Y2, X1 
and X2 can be written in terms of the measured data. 



Quantification of errors in the wilson plot applied to condensation on the outside of tubes  

Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 

34

First, q must be expressed in terms of the measured 
quantities 

( )
DL

TTQK
q cwicwocw1 −
=                        (19) 

where 

pass
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K =                          (20) 

Thus, writing q in Eq.(9) in terms of measured data, 
using Eq.(19), 
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Similarly for Eqs.(10) and (12) using Eq.(19) 

( ) n1
n

11wall

i

n1
1

1n1
n

1
3

1

lm
2

FCon2k

D
Dlnk

FConDK

ΔTkY
−−−

−=      (24) 

icw
1n

n
11n

n
12 DW

kFConX −−=                                   (25) 

Equations (21), (22), (24), and (25) express Y1, X1 
and Y2, X2 in terms of data values and geometry, all 
of which are subject to measurement error, as 

[ ]satcwicwocw1 T,T,T,QfY ≡                                    (26) 
[ ]n,T,T,QfX cwicwocw1 ≡                          (27) 

and 
[ ]n,T,T,T,QfY satcwicwocw2 ≡                                  (28) 
[ ]n,T,T,QfX cwicwocw2 ≡                            (29) 

Note that both Y2 and X2 are dependent on n but only 
X1 depends on n, not Y1. In view of the conditions 
imposed   above,  the   quantities,  K1  and   Con1  are  
 
 

treated as constants. The differential coefficients in 
the equivalent of Eq.(18) applied to the problem are 
listed in the Appendix. 
 
Application: 

The above optimization, Eq.(18), was applied to 
a data set taken from the first condensing row of a 15 
row horizontal steam condenser, titanium tube 
diameter 19 mm, 0.5 mm thick, described in 
references5,9. Cooling water flowed in the annulus 
formed by a 14 mm diameter insertion in the tube. 
The tube configuration was staggered with horizontal 
and transverse pitches of 25.4 mm. Five tubes 
formed the row tested. Cooling water flowed through 
the tubes in series. Each tube was connected by a 
passage in the tube plates. The temperatures Tcwi and 
Tcwo were measured at the inlet and outlet of the 5 
tube row. The tests were conducted with a vertically 
downwards inlet steam velocity of 10 m/s, heat 
fluxes up to 90 kW/m2 and a pressure of 50 mbar. 
Index n, Eq.(1) was varied from 0.16 to 0.26, 

corresponding to index 
1n

n
−

 from 0.19 to 0.35, 

Eq.(2). Typically, the resulting values of X and Y 
and their errors are shown in Tables 2 and 3 for n = 
0.25 and 0.21, respectively. Figures 1(a) and (b) 
show examples of the corresponding modified 
Wilson plots Y = f(X), Eqs.(13) and (14). 

Table 4 shows the values of Ci obtained by the 
Wilson plots, with un-weighted least squares fits, 
using Eqs.(13) and (14). As can be seen the 
difference between the values predicted by the 
Wilson plots, Eqs.(13) and (14), is only about 0.5%. 

The results of the weighted linear regression 
based on errors in both X and Y, Eqs.(13) and (14) 
are shown in tables 5 and 6 in the Appendix. Ci and 
A were calculated using Eqs.(15) and (16). The 
probability, χ2

prob of χ2 is high, particularly at the 
higher values of n, so that  the error in Ci predicted is  
 

Table 2: Wilson plot, n = 0.25, values of X and Y and errors σ(X) and σ(Y) 

ΔTov X1 Y1 σ(X1) σ(Y1) X2 Y2 σ(X2) σ(Y2) 

5 
5 
5 
5 
5 

0.632 
0.472 
0.381 
0.301 
0.554 

1.466 
1.331 
1.306 
1.239 
1.334 

0.006 
0.004 
0.003 
0.002 
0.005 

0.068 
0.055 
0.052 
0.047 
0.059 

1.582 
2.119 
2.625 
3.327 
1.806 

2.319 
2.820 
3.429 
4.122 
2.409 

0.016 
0.019 
0.023 
0.027 
0.017 

0.124 
0.133 
0.155 
0.176 
0.122 

10 
10 
10 
10 
10 

0.791 
0.686 
0.558 
0.467 
0.353 

1.509 
1.442 
1.381 
1.312 
1.224 

0.005 
0.005 
0.004 
0.003 
0.002 

0.038 
0.033 
0.030 
0.028 
0.024 

1.264 
1.457 
1.793 
2.141 
2.835 

1.908 
2.101 
2.475 
2.809 
3.470 

0.009 
0.010 
0.011 
0.013 
0.017 

0.055 
0.057 
0.062 
0.068 
0.179 

15 
15 
15 
15 
15 

0.840 
0.720 
0.593 
0.507 
0.366 

1.573 
1.498 
1.427 
1.360 
1.247 

0.005 
0.004 
0.003 
0.003 
0.002 

0.027 
0.025 
0.022 
0.020 
0.017 

1.190 
1.390 
1.687 
1.973 
2.730 

1.872 
2.082 
2.407 
2.683 
3.404 

0.007 
0.008 
0.010 
0.011 
0.015 

0.038 
0.040 
0.043 
0.047 
0.055 
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Table 3: Wilson plot, n = 0.21, values of X and Y and errors σ(X) and σ(Y) 

ΔTov X1 Y1 σ(X1) σ(Y1) X2 Y2 σ(X2) σ(Y2) 

5 
5 
5 
5 
5 

2.383 
1.794 
1.462 
1.165 
2.094 

1.466 
1.331 
1.306 
1.239 
1.334 

0.020 
0.014 
0.011 
0.008 
0.017 

0.068 
0.055 
0.052 
0.047 
0.059 

0.420 
0.557 
0.684 
0.859 
0.477 

0.615 
0.742 
0.893 
1.064 
0.637 

0.004 
0.004 
0.005 
0.006 
0.004 

0.032 
0.034 
0.039 
0.045 
0.031 

10 
10 
10 
10 
10 

2.894 
2.481 
2.032 
1.713 
1.307 

1.509 
1.442 
1.381 
1.312 
1.224 

0.018 
0.015 
0.012 
0.010 
0.007 

0.038 
0.033 
0.030 
0.028 
0.024 

0.351 
0.403 
0.492 
0.584 
0.765 

0.530 
0.581 
0.679 
0.766 
0.936 

0.002 
0.002 
0.003 
0.003 
0.004 

0.015 
0.015 
0.017 
0.018 
0.021 

15 
15 
15 
15 
15 

2.952 
2.542 
2.108 
1.813 
1.326 

1.573 
1.498 
1.427 
1.360 
1.247 

0.017 
0.014 
0.012 
0.010 
0.007 

0.027 
0.025 
0.022 
0.020 
0.017 

0.339 
0.393 
0.474 
0.552 
0.754 

0.533 
0.589 
0.677 
0.750 
0.940 

0.002 
0.002 
0.003 
0.003 
0.004 

0.010 
0.011 
0.012 
0.013 
0.015 
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Figure 1: Modified Wilson plots, n = 0.21 and 0.25, (a) Eq.(13) (b) Eq.(14) 
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acceptable7. This implies that the level of random 
error of the data measurements assumed is 
reasonable. This assurance is necessary since the 
random error element arising from instability in 
conditions during the tests is difficult to determine. 
 
Table 4: Ci obtained by unweighted Wilson plots, n = 

0.25 and 0.21 
n Ci, Eq.(14) Ci, Eq.(15) 

0.25 
0.21 

0.971 
0.992 

0.965 
0.987 

 
Regardless of the value of index n chosen in the 

range 0.16 ≤ n ≤ 0.26, both Wilson plots, give the 
same values of Ci. The error in Ci is ±3%. The fit, 
measured by the merit functions χ2, is slightly better 
using Eq.(14). 

What is most notable is that Ci decreases by 
about 4% as n rises from 0.16 to 0.26. This is only 
slightly  more than  the estimated  error in Ci itself. It   
 
 
 

should be noted that Wilson plot experiments carried 
out under n more stable conditions with higher 
instrument sensitivity would lead to lower values of 
σ(Ci) therefore increasing the significance of the 
variation of Ci with n. 
  ΔTs(assumed), based on Eq.(4), with the 
optimized value of constant A, was compared with 
ΔTs(Wilsoplot) calculated using Ci from the Wilson 
plots. Figure 2(a) shows this comparison for n = 
0.25, optimized coefficients A = 1.343 and Ci = 
0.994 (Table 5) based on Eq.(13). The fit for n = 
0.21, A = 3.628, Ci = 1.011 (Table 6) is shown in 
Fig. 2(c). Figures 2(b) and (d) show the 
corresponding values for Wilson plot, Eq.(14). 
Although the agreement shown is excellent, there is a 
small inherent systematic variation between 
ΔTs(assumed) and ΔTs(Wilson plot) represented by 
the inflexion in the data points in the figures. Partly, 
this is because the power law relationship, Eq.(4) is 
limited  in its  ability  to  represent  the  experimental   
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Figure 2: Validity of Eq.(4). (a) n=0.25, Eq.(13) (b) n=0.25, Eq.(14) (c) n=0.21,  Eq.(13) (d) n=0.21, Eq.(14) 
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n=0.25, A=1.345, χ2=4.0
Ci=0.994, er(Ci)=3.1%, χ2

prob=0.99
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Figure 2(continued): Validity of Eq.(4). (a) n=0.25, Eq.(13) (b) n=0.25, Eq.(14) (c) n=0.21,  Eq.(13) (d) n=0.21, 

Eq.(14) 
 
evidence in forced convection condensation. 

The expression, Eq.(30), measures the % 
difference between ΔTs(assumed) and ΔTs(Wilson 
plot). 
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where  ΔTsa   = ΔTs(assumed)  and  ΔTsc = ΔTs(Wilson   
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Figure 3: Suitability of Eq.(4) to represent steam side 
ΔTs, Eq(13). 

plot). Figure 3 shows er(ΔTs) for the whole  range of 
values of  n and for both Wilson  plots, Eqs.(13) and 
(14). The  errors are the same for the two plots, but 
vary with n from 1.8 to 2.6%, with a minimum value 
at n = 0.21. 
 
Best estimate of Ci: 

For the set of data used, the value of index n = 
0.21 in Eq.(4) best assured that the assumed variation 
in steam-side heat transfer with heat flux, used in the 
Wilson plot, corresponded to the value calculated 
using the derived value of Ci, Fig.3. Ci is 1.01±3%, 
Tables 5 and 6. Comparing this value with that at n = 
0.25, the result obtained using the recommended 
method (n = 0.25)2,4, Ci = 0.99±3%. The comparison 
is set out in Fig. 4. There is a significant difference of 
about 2% between the means. The random error in 
the saturation temperature data considered here, 
σ(Tsat) = 0.1K, is mainly responsible for the 
uncertainty in Ci. Reducing it to 0.05K, which was 
well within the discrimination of the pressure 
transducer used to determine Psat, caused er(χ2

prob) to 
be unacceptably low. The problem was the scatter of 
the Wilson plot caused by pressure fluctuations in the 
rig10. The technique described will obviously become 
more significant when the  random errors in  the data, 

(c) 

(d)
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Figure 4: Comparison of recommended Wilson plot technique with present modification 
 
both due to readings errors and fluctuating 
conditions, are lower. The usefulness of the 
technique, mainly due to the weighting of errors is 
not least in the check it affords on the reality of these 
random error assumptions. 

Although they may not be used a priori in the 
analysis, it is interesting to determine the value of n 
which gives the best fit of Rose’s correlations 
Eqs.(31) and (32)11, to Eq.(1). These correlations are 
recommended as the best fit to data for single tubes 
and, with the correct choice of equivalent flow area, 
for bundles of tubes.  
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F and G, Eq.(33), allow for the relative effects of 
gravitational and velocity fields and for the effect of 
inertia and vapor shear. Equations (31) and (32), 
were used to calculate Nu over the range of ΔTs 
values, determined by the Wilson plot, for each of 
the experimental data points at the approach velocity 
Vmax = 10 m/s. Separate calculations were carried out 
for steam velocities, V, based on the measured steam 
mass flowrate and the areas Amin, Amax and Amv. The 
mean void area Amv, Eq.(34)12 is given by 
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The calculated velocities were Vmax = 10 m/s, Vmin = 
40 m/s and Vmv = 17.9 m/s for the test geometry. The 
results are shown in a log-log plot in Fig. 5, where 
the slope n, is the value which gives the smallest 
error in matching Eq.(1) to Eqs.(31) or (32). For V = 
Vmin, n is 0.20, for V = Vmax, n = 0.17 and for V = 
Vmv, n = 0.18. These values are lower than n = 0.21, 
the optimum value obtained from the Wilson plots, 
Fig. 3, but correspond to a negligible difference 
between ΔTs(assumed) and ΔTs(Wilson plot), Fig.3. 
 
CONCLUSION 
1. This work presents a modification to current 
methods of applying the Wilson plot to obtain the 
cooling side heat transfer coefficient. The 
modification comprises a technique to ensure that the 
assumed relationship between heat flux and ΔTs on 
the condensate side is as close as possible to that 
calculated using the derived cooling side heat 
transfer coefficient at the test points. This was 
achieved by allowing the index n of the 
conventionally used Nusselt relation for filmwise 
condensation in natural convection to vary. The 
values of the Wilson plot coordinates were weighted 
by the contribution of experimental errors to them. 
2. The Wilson plot regression was carried out 
assuming errors in both coordinates. 
3. The two Wilson plots, Eqs. (13) and (14) gave 
almost identical values of slope and intercept for all 
values of index n. 
4. For the data studied, the minimum difference 
between the assumed ΔTs and that calculated using Ci 
from the Wilson plot occurred at n = 0.21. At n = 
0.25, the presently recommended value, Ci was about 
2% lower. The corresponding error in Ci in both 
cases was ±3%. This error was associated rather with 
fluctuating conditions in the condenser that with 
errors in instrument readings. 
5. The technique is expected to be more significant 
under steadier condenser conditions and with lower 
random errors of measurement. 
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APPENDIX 
Derivatives of X1 and Y1: 
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The gradients of ΔTlm with respect to Tcwo, Tcwi and Tsat, given in reference5, are repeated below. 
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Derivatives of X2 and Y2: 
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where Var is one of Qcw, Tcwo, Tcwi, the appropriate derivatives of X2 are obtained by multiplying the right hand 

side of Eqs.(36), (37) and (38) by 2
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Fit tables: 

Table 5: Wilson plot fit, Y1 = aX1 + b, σ(Tcwo=Tcwi) = 0.02K, σ(Tsat) = 0.10K, σ(Qcw)=0.005Qcw 
 

n a b σ(a) Σ(b) χ2 A Ci %σ(Ci) χ2
prob 

0.16 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.23 

0.24 

0.25 

0.26 

0.049 

0.064 

0.083 

0.110 

0.146 

0.196 

0.264 

0.358 

0.490 

0.675 

0.938 

0.973 

0.976 

0.979 

0.982 

0.986 

0.989 

0.993 

0.997 

1.001 

1.006 

1.010 

0.004 

0.005 

0.006 

0.008 

0.010 

0.014 

0.019 

0.025 

0.034 

0.047 

0.066 

0.029 

0.029 

0.029 

0.028 

0.028 

0.028 

0.028 

0.027 

0.027 

0.027 

0.026 

10.7 

9.8 

9.0 

8.2 

7.5 

6.9 

6.4 

6.0 

5.7 

5.4 

5.3 

12.64 

9.843 

7.667 

5.922 

4.654 

3.630 

2.828 

2.206 

1.721 

1.343 

1.048 

1.028 

1.025 

1.022 

1.018 

1.015 

1.011 

1.007 

1.003 

0.994 

0.994 

0.990 

3.0 

3.0 

2.9 

2.9 

2.8 

2.8 

2.8 

2.7 

2.7 

2.6 

2.2 

0.63 

0.71 

0.78 

0.83 

0.87 

0.91 

0.93 

0.95 

0.96 

0.96 

0.97 

  

Table 6: Wilson plot fit, Y2 = a + bX2, σ(Tcwo=Tcwi) = 0.02K, σ(Tsat) = 0.10K,, σ(Qcw)=0.005Qcw 
 

n a b σ(a) Σ(b) χ2 A Ci %σ(Ci) χ2
prob 

0.16 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.23 

0.24 

0.25 

0.26 

0.049 

0.063 

0.084 

0.110 

0.146 

0.195 

0.263 

0.357 

0.488 

0.673 

0.937 

0.969 

0.977 

0.978 

0.981 

0.985 

0.990 

0.993 

0.998 

1.002 

1.006 

1.011 

0.004 

0.005 

0.007 

0.009 

0.012 

0.016 

0.021 

0.029 

0.041 

0.057 

0.079 

0.032 

0.032 

0.032 

0.032 

0.032 

0.032 

0.032 

0.032 

0.031 

0.031 

0.031 

9.1 

7.7 

7.5 

6.4 

6.0 

5.4 

5.0 

4.5 

4.2 

4.0 

3.9 

12.55 

9.869 

7.660 

5.959 

4.656 

3.632 

2.831 

2.210 

1.725 

1.345 

1.050 

1.032 

1.024 

1.022 

1.020 

1.015 

1.010 

1.007 

1.002 

0.998 

0.994 

0.990 

3.3 

3.3 

3.2 

3.2 

3.2 

3.2 

3.2 

3.2 

3.1 

3.1 

3.1 

0.77 

0.86 

0.87 

0.93 

0.95 

0.97 

0.98 

0.98 

0.99 

0.99 

0.99 

 


