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Quantification of Intra-hour Security-constrained
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Abstract—Rapid growth of renewable energy sources (RES) in
the generation capacity mix poses substantial challenges on the
operation of power systems in various time scales. Particularly
in the intra-hour time scale, the interplay among variability and
uncertainty of RES, unexpected transmission/generation outages,
and short dispatch lead time cause difficulties in generation-
load balancing. This paper proposes a method to quantify the
intra-hour flexibility region. A robust security-constrained multi-
period optimal power flow (RSC-OPF) model is first constructed
to quantify the frequency, magnitude, and intensity of insufficient
flexibility. The randomness of RES is captured by uncertainty
sets in this model. The N-k contingency, spinning reserve, and
corrective control limit constraints are included. This model is
then cast into a two-stage robust optimization (RO) model and
solved by the column-and-constraint generation (C&CG) method.
The emergency measures with a least number of affected buses
are derived and subsequently assessed by the post-optimization
sensitivity analysis. Finally, the operational flexibility region is
determined by continuous perturbation on the RES penetration
level and the forecast error. The IEEE 14-bus system and a
realistic Chinese 157-bus system are used to demonstrate the
proposed method.

Index Terms—Power system flexibility, robust optimization, DC
power flow, optimal power flow, contingency analysis.

NOMENCLATURE

A. Variables

Ii,t,c Imbalance state of bus i at time interval t on

contingency c (c=0 denotes the base case).

∆P curt
i,t,c Generation curtailment on bus i at time in-

terval t on contingency c.

∆P shed
i,t,c Load shedding on bus i at time interval t on

contingency c.

P gen
i,t,c Output of dispatchable generator on bus i at

time interval t on contingency c.

θi,t,c Phase angle of bus i at time interval t on

contingency c.

τi,t,c Effective ramping time of dispatchable gen-

erator on bus i at time interval t on contin-

gency c to provide spinning reserve.
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B. Parameters

P g,max
i Maximum output of dispatchable generator

on bus i.

P g,min
i Minimum output of dispatchable generator

on bus i.

RUi Ramping rate of dispatchable generator on

bus i to provide spinning reserve.

∆P g,up
i Ramping up capacity of dispatchable gener-

ator on bus i.

∆P g,dn
i Ramping down capacity of dispatchable gen-

erator on bus i.

Pmax
ij Transmission limit of the branch between

bus i and bus j.

Egen
i , εi The limit of total generation energy and the

corresponding tolerance of bus i.

∆P re,max
i Maximum contingency reserve of dispatch-

able generator on bus i.

Bbus
ij,c Bus admittance matrix element between bus

i and bus j on contingency c.

Bbranch
ij,c Branch admittance between bus i and bus j

on contingency c.

∆P im,max
i Maximum power imbalance on bus i.

τmax Maximum ramping time for dispatchable

generators to provide spinning reserve, typ-

ically 10-15 minutes.

pc Probability of transmission contingency c.

C. Random Variable and Uncertainty Set

P̃ load
i.t Net load on bus i at time interval t.

P load,max
i.t Maximum net load on bus i at time interval

t.

P load,min
i.t Minimum net load on bus i at time interval

t.

D. Numbers and Sets

NB Number of buses.

NT Number of time intervals.

NC Number of contingencies.

NW Number of wind farms.

NL Number of load with uncertain demand.

G (t) Set of online generators at time interval t.
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I. INTRODUCTION

TO achieve more sustainable and competitive economics,

many economic entities have made tremendous efforts

towards increasing the share of renewable energy sources

(RES) in their generation mix. Fast substitution of dispatchable

generation capacity with RES has imposed considerable chal-

lenges on the planning and operation of power systems. The

salient features of RES, namely variability and uncertainty [1],

cause substantial challenges in generation-load balancing and

effective utilization of the renewable energy. These challenges

lead to an emerging research area concerning power system

flexibility, which has attracted much research efforts [2], [3].

The uncertainty and variability of RES present different

characteristics over various time scales [1]. The time scale

separation methodology does not thoroughly consider the

significant variability within various time resolutions, therefore

may cause generation-load balancing issues. Especially, the

intra-hour variability will be an important issue when the RES

penetration level reaches a certain point (see Part II, Grid

Integration in [4]).

This paper aims to propose a method to quantify the intra-

hour flexibility, considering the interplay among the uncer-

tainty and the variability of RES, transmission contingencies,

loss of energy contingencies, and operational constraints of

dispatchable generators due to the short dispatch lead time.

A. Related Work

It is demonstrated that the uncertainty and variability of

RES, the fluctuation of load demand, together with the unex-

pected contingencies drive the need for greater power system

flexibility [3].

1) Flexibility resources:

The provision of flexibility comes from institutional en-

ablers (such as market design [3] and interconnection [5]),

flexible generation technology [6], energy storage [7], [8],

spinning reserves [9], and additional sources of flexibility

(e.g., electric vehicles [10] and demand response (DR) [11],

[12]). Especially, hourly DR program is beneficial in reducing

the cost of security-based power system scheduling [13], in

lowering load payment [14], and in improving the thermal

generation flexibility [15]. DR program in various time scales

also contributes to the load-following reserve [16] and contin-

gency reserve under high RES penetration. The time-flexible

demand [17] and demand response [18] have been applied to

tackle intra-hour load/wind variation and unexpected outages.

2) Definition and metrics:

Various definitions and metrics have been proposed to study

the need for, and the provision of power system flexibility,

ranging from long-term planning [19], [20] to short-term

operation [21]. Power system flexibility can be studied from

insufficiency, provision, and availability perspectives.

In [22], flexibility is defined as “the ability of a system to

deploy its resources to respond to changes in net load”. The

insufficient ramping resource expectation (IRRE) is proposed

to quantify the flexibility in long-term planning. The lack

of ramp probability (LORP) is defined as an operational

flexibility metric in [23] and quantified using a two-step robust

optimization (RO) based framework.

In [24], the flexibility describes “the ability of a power

system to cope with variability and uncertainty over various

time horizons.” The provision of adjustable capacity and

ramping capacity over a given time interval is defined as an

operational flexibility index. The work in [25] extends this

flexibility index as the generation-characteristics-based (GCB)

flexibility, and quantifies the GCB index using an optimization

model, considering the transmission constraints with power

transfer distribution factors (PTDFs).

The availability of operational flexibility can be studied via

the existence of feasible operation strategies. In [5] and [26],

operational flexibility is the ability of the power system to

react to a disturbance to keep the system secure. The available

flexibility, considering the ramping, capacity, and energy of

dispatchable generators, transmission constraints in DC power

flow, and N-1 reliability criterion, is described as a polyhedron

entitled “flexibility set”, or “reach set” in [27]. The work in

[28], [29] and [30] construct a flexibility metric using the RO

models to reflect the largest range of uncertainty that a power

system can handle, and the do-not-exceed (DNE) limits of

RES range. By contrast, [31] defines flexibility as trackability,

namely the ability to track any realization of the net load

random process using a probabilistic approach.

3) Modeling and solution methodology:

In view of the spatial-temporal-dependency of the uncer-

tainty and variability of RES, comprehensive inter-temporal

simulations [22], Monte Carlo Simulation [12], and optimiza-

tion methods [32], [33] are applied to study the flexibility

requirements in long-term expansion planning and in short-

term reserve planning. Modeling the dynamics of dispatchable

components using the state-space representation, the flexibility

envelops are calculated using the reach set approach [27], [34],

or a parametric approach [35].

B. Contributions of this paper

As the transmission infrastructure and flexible generation

resources supporting high RES penetration cannot be readily

put in place, the surge in RES installation imposes stress in

the operation of legacy power systems. Therefore, this paper

places the emphasis on operational flexibility assessment.

Specifically, the objective of this paper is to study the evolution

of power systems from available flexibility to insufficient

flexibility, driven by ever-changing system parameters (such

as the RES penetration level and the associated forecast error).

To this end, the essential challenge is to investigate oper-

ational flexibility from a coherent perspective for both avail-

ability and insufficiency within one methodology, considering

the interplay among uncertainty and variability of RES, and

the unexpected outages of transmission lines or generators.

The contributions of this paper are summarized below.

1) This paper proposes a robust security-constrained multi-

period optimal power flow (RSC-OPF) model to quanti-

fy intra-hour operational flexibility considering the N-k

security criterion as well as spinning reserves and con-

tingency reserve constraints of dispatchable generators.

The objective value of this model indicates the worst-

case expectation of total reluctant load shedding and/or

wind curtailment over the studied time horizon. The
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worst-case combination of the unexpected outage and

the wind profile over the studied time horizon is also

identified. In case that insufficient flexibility occurs due

to insufficient reserve from dispatchable generators, the

output of the proposed model can provide the amount

of reserve requirement for various flexible resources,

including but not limited to demand response, energy

storage, and quick-start units.

2) The results obtained by the proposed model can be

used to construct various quantitative flexibility metrics.

For example, despite that the frequency, magnitude, and

intensity of insufficient flexibility are proposed by North

America Electric Reliability Corporation (NERC) [2],

these metrics are not quantitatively defined. In this paper,

these metrics are quantified by the proposed model.

Meanwhile, the effectiveness of emergency measures is

obtained from a post-optimization sensitivity analysis.

3) The intra-hour operational flexibility region is proposed

to describe the maximum/minimum RES penetration

level and the associated forecast error that a power grid

can handle, with the limited dispatchable resources in

a short dispatch lead time. The operational flexibility

region is determined in terms of the flexibility met-

rics (obtained by the proposed model) over the space

spanned by as the RES penetration level and the associ-

ated forecast error. The visualized flexibility region helps

system operators study the impact of the aforementioned

system parameters on operational flexibility.

The proposed model shares some similarities with the

security-constrained unit commitment (SCUC) and the s-

tochastic multi-period OPF [36]. For sake of clarification,

the fundamental differences between the proposed model and

related work are listed below.

1) The objectives of SCUC and the proposed model are

different. The objective of SCUC is to determine the

(typically hourly) unit commitment schedule with mini-

mum commitment and dispatch cost, considering various

operational constraints and transmission/generation con-

tingencies. The uncertainty of RES, particularly wind

power, can be characterized by certain probability dis-

tributions (stochastic SCUC, e.g., [37]), deterministic

uncertainty sets (Robust SCUC, e.g., [38], [39]), or

hybrid of these two formulations [40]. By contrast, the

objective of RSC-OPF is to determine the intra-hour

emergency measures, if necessary, with minimum total

amount of reluctant load shedding and wind curtailment

in the worst case, given the hourly on/off states of

generating units as known parameters.

2) The dispatch lead time and the time resolutions between

SCUC and the proposed model are different. The day-

ahead SCUC considers hourly unit commitment. Look-

ahead UC will be applied to bridge the SCUC and

real-time economic dispatch for incorporating large-

scale intermittent RES. However, RSC-OPF considers

the operational flexibility within the intra-hour time

scale, which leads to a much shorter dispatch lead time

and very limited dispatchable resources. Therefore, it

is necessary to scrutinize the operational constraints

vigorously. Particularly, unlike a pre-specified reserve

level (such as 20%) or a constant reserve bound (e.g.,

SCUC and [18], [16]), the spinning reserve constraints

on dispatchable generators in RSC-OPF scan each loss

of energy contingency to guarantee the system reliability.

3) The transmission contingencies are processed in differ-

ent fashion in SCUC and in RSC-OPF. SCUC consists of

a master UC sub-problem, a base case network security

evaluation sub-problem and a number of contingency

network security evaluation sub-problems [41]. In S-

CUC, transmission contingencies are checked for each

single hour, independently. By contrast, in RSC-OPF, the

transmission contingency will last for a time horizon.

In this studied time horizon, the limited contingency

reserve along with the uncertainty and variability of

RES output will impose great stress in power system

operation. The interaction between contingencies and

RES output over the studied time horizon is studied by

the RSC-OPF model, with consideration on the time-

related operational constraints and limited contingency

reserve.

4) The salient feature of this work is the combination of the

probabilistic nature of the contingencies and the deter-

ministic uncertainty set to describe the uncertain nature

of RES output in the intra-hour time scale. Different

from the scenario-base methods (e.g., [37], [17], [18],

[16]), the proposed model is able to identify the worst-

case combination of intra-hour RES output realization

and the most severe contingency, which together lead to

insufficient flexibility.

5) To focus on the proposed method in assessing the

operational flexibility, the load-following reserve and the

contingency reserve come from dispatchable generators

in this paper. However, the proposed method can be

extended to consider the contribution of various flexible

resources in operational flexibility, as to be discussed in

Section II.

The rest of this paper is organized as follows. The proposed

RSC-OPF model is formulated as a two-stage RO model in

Section II. The 1st stage minimizes the number of power

imbalance events over the time horizon, i.e., the frequency of

insufficient flexibility. The 2nd stage minimizes the magnitude

of total power imbalance over the time horizon, i.e., the

magnitude of insufficient flexibility. In Section III, the proposed

RSC-OPF model is solved by the column-and-constraint gen-

eration (C&CG) algorithm [42]. Inspired by [43], a modified

Benders Decomposition (BD) procedure is derived to reduce

the computational complexity introduced by the contingency

list. The case studies are provided in Section IV. Finally, this

paper is concluded in Section V.

II. MODEL FORMULATION AND FLEXIBILITY METRICS

A. Problem Statement and Assumptions

This study investigates intra-hour operational flexibility over

a time horizon of ≤24 hours. The operational flexibility is

studied via the existence of feasible operation strategies to

avoid reluctant load shedding and/or wind curtailment, subject
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to comprehensive operational constraints. The power system

can be described as flexible if, in the worst-case realization of

uncertainty from both RES and unexpected outages, a feasible

operation strategy over the time horizon can be identified. The

amounts of load shedding and wind curtailment are introduced

as slack variables in the power balance constraint, making the

power balance as soft constraints.

The assumptions to formulate the model are listed below.

1) The hourly day-ahead unit commitment is predetermined

and is regarded as the input for the intra-hour operational

flexibility assessment.

2) It has been demonstrated [32] that non-parametric repre-

sentation is suitable to describe the intra-hour deviation

of wind outputs. The uncertainty of the net load is

therefore described using the uncertainty set.

3) The unexpected outage of transmission lines affects the

entire time horizon.

B. Mathematical Formulation

The RSC-OPF model for operational flexibility assessment

is formulated as (1)-(9). The objective function (1) is to

minimize the worst-case expectation of total power imbalance

(load shedding and wind curtailment as the corresponding

emergency measures) of the power system over a time horizon.

For each time interval under each contingency, the operational

constraints include power balance (2)-(3), generator output

limits (4), and transmission limits (5). The uncertainty of

net load of each bus is modeled as an uncertainty set in

(3a). For example, for an uncertain load demand with the

mean value as 30 MW and 3% forecast error, the associated

uncertainty set is [29.1, 30.9] MW. To safeguard the loss

of energy contingencies, the spinning reserve (6) is taken

into considerations. In the presence of any loss of energy

contingency, the survival units should ramp up to a given

period τmax to compensate the lost generation capacity. Note

that the effective spinning reserve (determined by τi,t,cRUi)

should not exceed the available reserve (see e.g., [44]). The

dispatchable generators are subject to ramping rate limits

(7). Some dispatchable generators are supposed to deliver

certain energy (8) due to bilateral contract constraints or fuel

constraints (e.g., natural gas contract and reservoir capacity).

Particularly, in the presence of transmission contingencies,

the adjustment of each dispatchable generator for corrective

control is limited to the corresponding contingency reserve (9)

(see e.g., [37], [45]) due to the short dispatch lead time. Note

that the spinning up/down reserve to hedge the uncertainty of

the net load (3a) has been determined by (4) and (7).

1) Objective function:

maxmin

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pcIi,t,c
(

∆P curt
i,t,c +∆P shed

i,t,c

)

)

(1)

2) Operational constraints ∀i, ∀t, ∀c:

P gen
i,t,c−

NB
∑

j=1

Bbus
ij,cθj,t,c+Ii,t,c(∆P shed

i,t,c −∆P curt
i,t,c ) = P̃ load

i,t (2)

P̃ load
i,t ∈

[

P load,min
i.t , P load,max

i.t

]

(3a)

∆P shed
i,t,c ≥ 0,∆P curt

i,t,c ≥ 0 (3b)

Ii,t,c ∈ {0, 1} (3c)

∀i ∈ G (t), P g,min
i ≤ P gen

i,t,c ≤ P g,max
i (4)

−Pmax
ij ≤ Bbranch

ij,c (θi,t,c − θj,t,c) ≤ Pmax
ij (5)

∀i, j ∈ G (t), P gen
i,t,c + τi,t,cRUi ≤ P g.max

i (6a)

0 ≤ τi,t,c ≤ τmax (6b)

P gen
i,t,c ≤

∑

j 6=i

(τj,t,cRUj) (6c)

3) Inter-temporal constraints:

−∆P g,dn
i ≤ P gen

i,t,c − P gen
i,(t−1),c ≤ ∆P g,up

i ,

∀i ∈ G (t) ∩ G (t− 1), ∀t, ∀c (7)

Egen
i − εi ≤

NT
∑

t=1

P gen
i,t,c ≤ Egen

i + εi, ∀i, ∀c (8)

4) Corrective control limits ∀t, ∀c > 0:

−∆P re,max
i ≤ P gen

i,t,c − P gen
i,t,0 ≤ ∆P re,max

i , ∀i ∈ G (t) (9)

Note that the objective function (1) and power balance

(2) contain the product of binary variables and continuous

variables. By introducing a non-trivial bound ∆P im,max
i , the

amount of power imbalance of each bus is governed by

the inequality constraints (10). The objective function and

power balance can therefore be rewritten as (11) and (12),

respectively.

0 ≤ ∆P shed
i,t,c ≤ ∆P im,max

i Ii,t,c

0 ≤ ∆P curt
i,t,c ≤ ∆P im,max

i Ii,t,c (10)

maxmin

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pc
(

∆P curt
i,t,c +∆P shed

i,t,c

)

)

(11)

P gen
i,t,c −

NB
∑

j=1

Bbus
ij,cθj,t,c + (∆P shed

i,t,c −∆P curt
i,t,c ) = P̃ load

i,t (12)

Remark 1:The decision variable Ii.t.c determines the power

imbalance state of bus i at time interval t on contingency c.
The non-trivial ∆P im,max

i can be configured to prevent an

unrealistically large power imbalance occurring in a partic-

ular bus (see Section IV C), or to prevent power imbalance

occurring in connection buses (without load or generation).

In summary, the proposed RSC-OPF model is given as

follows.

maxmin

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pc
(

∆P exce
i,t,c +∆P insuf

i,t,c

)

)

s.t.(10), (12), (3)− (9) (13)
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Remark 2: The emergency measures (i.e., the recourse

actions) considered in the proposed model are load shed-

ding and wind curtailment. Other resources that improve the

operational flexibility, such as demand response, quick-start

units, and energy storage, can also be considered in the

intra-hour operational flexibility assessment. To this end, the

proposed model can be extended to incorporate the demand

response (DR) program model (see e.g., [13], [14]), the energy

storage model (e.g., [46]), and the quick-start unit model

[43]. However, the discrete DR bid scheme and the quick-

start unit as the recourse actions will lead to a mixed-integer

model in the 2nd stage of the proposed RO model. A nested

C&CG algorithm [43] will be applied to solve the proposed

model with discrete DR bid scheme and quick-start units.

Note that the hourly DR and quick-start unit model should be

extended into intra-hour time scale, which will also increase

the computational complexity.

C. Quantification of Flexibility Metrics

The results obtained by the proposed model provide the

worst-case total power imbalances due to insufficient flexibili-

ty. Various quantitative metrics can therefore be constructed

based on these results. For example, inspired by [2], the

frequency of insufficient flexibility (FIF) can be defined as the

expectation of the number of insufficient flexibility events over

a time horizon. The magnitude of insufficient flexibility (MIF)

can be defined as the expectation of total power imbalance

(load shedding and wind curtailment) over the time horizon.

The intensity of insufficient flexibility (IIF) can be defined

as the average power imbalance per event. Accordingly, FIF,

MIF, and IIF are calculated as follows.

FIF =

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pcIi.t.c

)

/NT (14)

MIF =

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pc
(

∆P exce
i,t,c +∆P insuf

i,t,c

)

)

(15)

IIF = MIF/

(

NB
∑

i=1

NT
∑

t=1

NC
∑

c=0

pcIi.t.c

)

(16)

Different from those metrics focusing on realizable ramping

capacity (e.g., [20], [22]), these metrics represent the worst-

case expectation of total amount of emergency measures in

the presence of various generation/transmission contingencies,

due to the violation of comprehensive operational constraints,

including but not limited to capacity and ramping constraints.

Therefore, these metrics are robust (therefore conservative)

against all possible realization of RES output.

III. SOLUTION METHODOLOGY

The corrective control limits in (9) introduce coupling

between the base case and other contingencies. In this section,

the C&CG algorithm is first applied to perform flexibility

assessment for each contingency, including the base case.

Then the modified Benders Decomposition (BD) procedure

is derived to solve the entire model.

A. C&CG algorithm to assess flexibility for each contingency

Once (9) is removed, the flexibility assessment for each

contingency can be performed independently. The proposed

model associated with each contingency can be cast into a

compact form as

maxmin bTy (17a)

s.t. x ∈ {0, 1}n (17b)

Hy ≥ h (17c)

Ny = d̃ (17d)

Ax+By ≥ g (17e)

d̃ ∈ [dmin,dmax] (17f)

where x denotes Ii,t,c, y denotes the rest decision variables,

(17b) denotes (3c), (17c) denotes (3b), (4)-(8), (17d) denotes

(12), (17e) denotes (10), and (17f) denotes (3a).

The basic idea of the C&CG algorithm for solving two-

stage RO models is to identify the worst-case realizations of

uncertainty gradually. Given a set of identified realization of

uncertainty D = {d1,d2, ...dk}, the master problem (MP)

associated with (17) is formulated as below.

min
x,yl,η

η (18a)

s.t. x ∈ {0, 1}n (18b)

η ≥ 0 (18c)

η ≥ bTyl, ∀l ≤ k (18d)

Hyl ≥ h, ∀l ≤ k (18e)

Nyl = dl, ∀l ≤ k (18f)

Ax+Byl ≥ g, ∀l ≤ k (18g)

Note that system operators may be interested in a few

buses with large power imbalance (high intensity inflexibility

event), rather than a number of buses with minor power

imbalance (low intensity inflexibility event). Therefore, (18a)

is reformulated to minimize the total number of buses with

power imbalance, given by eTx + η, where e is an array of

1 with the compatible size. As a result, system operators are

able to derive emergency measures (load shedding and/or wind

curtailment) on a limited number of affected buses. Therefore,

the MP associated with (17) is given by

(MP) min
x,yl,η

eTx+ η (19a)

s.t. (18b)− (18g) (19b)

With the optimal solution (x∗,y∗
l , η

∗) obtained by solving

(19), the subproblem (SP) associated with (17) is given by

(SP) Q (x∗) = max
d̃

min
y

bTy (20a)

s.t. Ny = d̃ (20b)

My ≥m (20c)

d̃ ∈ [dmin,dmax] (20d)

where M = [H;B] ,m = [h; g −Ax∗]. Here, [;] is the

vertical concatenation of two matrices or vectors.
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Note that the SP in (20) should either yield a new worst-

case realization of d̂ if x∗ leads to a feasible SP, otherwise

should generate feasibility cuts for the MP. By merging the

dual of the inner minimization problem, (20) can be cast into

a non-convex bilinear programming model, and subsequently

cast into a mixed-integer linear programming (MILP) model

(see detail in the Appendix).

To summarize, the C&CG algorithm to solve (17) is de-

scribed as in Algorithm 1. Notice that, if d̂ is an infeasible

realization given x∗, a new instance d̂ will be inserted in the

non-empty set D. As a result, a feasibility cut (18g) will be

generated with this new instance. Subsequently, a change in

x will be enforced by re-solving (19). Assuming the solution

of SP can be obtained from an oracle, the convergence of the

C&CG algorithm is proven in [42].

Algorithm 1 Column-and-Constraint Generation

1: Lower bound LB ← −∞, upper bound UB ←∞;

2: D ← empty;

3: while |UB − LB| / |LB| > tolerance do

4: Solver MP in (19), obtain the optimal solution

(x∗,y∗
l , η

∗);
5: LB ← eTx∗ + η∗;

6: Solve SP in (20) to obtain a worst-case realization d̂;

7: if d̂ is a feasible realization given x∗ then

8: UB ← min
{

UB, eTx∗ +Q (x∗)
}

;

9: end if

10: if |UB − LB| / |LB| ≤ tolerance then

11: break;

12: else

13: D = D ∪ d̂;

14: end if

15: end while

B. Modified BD considering contingencies

Note that the power balance in (12) is generally satisfied

owing to the variables ∆P exce
i,t,c and ∆P insuf

i,t,c (if the ∆P im,max
i

is sufficiently large). The difference between [43] and this

work is that an optimality cut is generated other than the

feasibility cut in [43]. Note that the RO model is a MILP

and not applicable for dualization. Therefore, we generate

optimality cuts in (17) to reduce the MIF in the objective

function, with the obtained 1st stage decision variable and the

worst-case realization. Accordingly, the procedure of modified

BD to solve the proposed model is as follows.

1) Remove constraint (9) from the base case, solve the

following relaxed base case sub-model using Algorithm

1, and obtain P gen
i,t,0.

maxmin

(

NB
∑

i=1

NT
∑

t=1

(

p0∆P curt
i,t,0 +∆P shed

i,t,0

)

)

(21a)

s.t. (10), (12), (3)− (8) (21b)

2) Reformulate (9) into

P gen
i,t,c ≥ P gen

i,t,0 −∆P re,max
i

−P gen
i,t,c ≥ −P gen

i,t,0 −∆P re,max
i (22)

Use Algorithm 1 to solve the following contingency sub-

model for each contingency c, independently.

maxmin

(

NB
∑

i=1

NT
∑

t=1

pc
(

∆P curt
i,t,c +∆P shed

i,t,c

)

)

(23a)

s.t. (10), (12), (3)− (8), (22) (23b)

3) For each contingency c > 0, solve (23) with the 1st

stage decision variable and identified worst-case realiza-

tions (therefore (23) degrades to a deterministic linear

programming model), and obtain the local Lagrangian

multiplier πc associated with (22). Generate the opti-

mality cut for all contingencies using

α ≥

NC
∑

c=1

πc

[

P gen
i,t,0 −∆P re,max

i ;−P gen
i,t,0 −∆P re,max

i

]

(24)

with the binding constraints in (22).

4) Use Algorithm 1 to solve the following base case sub-

model

maxmin

(

α+

NB
∑

i=1

NT
∑

t=1

p0
(

∆P exce
i,t,0 +∆P insuf

i,t,0

)

)

(25a)

s.t. (10), (12), (3)− (8), (24) (25b)

5) If the change of the objective value (25a) is less than

1%, stop; otherwise go to 2).

The relationships among the aforementioned sub-models are

shown in Fig.1. Instead of solving the original model, we use

C&CG algorithm to solve the contingency sub-models and

base case sub-model within the Benders iteration, in order

to reduce the computational complexity. We want to remark

that the modified BD cuts may not theoretically guarantee

the global optimality since the RSC-OPF is a mixed-integer

model. However, the modified BD cuts have been successfully

applied in similar applications, such as stochastic SCUC [37]

and robust SCUC [43].

exce insuf

, , , ,
1 1 0

max min

s.t.  (10),(12),(3)-(9)

NB NT NC

c i t c i t c
i t c

p P P

exce insuf

0 , ,0 , ,0
1 1

max min

s.t.  (10),(12),(3)-(8)

NB NT

i t i t
i t

p P P

exce insuf

, , , ,
1 1

for =1,2,... , solve:

max min

s.t.  (10),(12),(3)-(8),(22)

NB NT

c i t c i t c
i t

c NC

p P P

exce insuf

0 , ,0 , ,0
1 1

max min

s.t.  (10),(12),(3)-(8),(24)

NB NT

i t i t
i t

p P P

Remove corrective 

control limits (9)

gen

, ,0i tP
Reformulate corrective 

control limits (9) into (22)

Benders optimality cuts
gen

, ,0i tP

Original

model

Relaxed base 

case sub-model

Contingency

sub-model

Base case 

sub-model

Benders

iteration

Fig. 1. Relationship among sub-models in Benders iteration
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C. Computational complexity analysis

As the BD process decomposes the base case sub-model

and the contingency sub-models, we analyze the computational

complexity with the base case, without loss of generali-

ty. When using Algorithm 1 to solve the base case RSC-

OPF model, the number of binary variables in MP (19) is

NB×NT , while the number of constraints are dependent on

the number of the worst-case realizations obtained from the

SP model (20). To solve the SP with the equivalent MILP

model (see Appendix), the number of binary variables is

(NW +NL)×NT × 2, the number of continuous variables

is (NW +NL)×NT × 4.

Despite that the number of binary variables is large, we

want to remark that the computational time to solve the pro-

posed RSC-OPF model depends on the extent of operational

inflexibility. For example, if the power system is flexible

(without reluctant load shedding or wind curtailment), the

binary variables associated with both MP and SP should be

zero. Therefore, the MILP solve will obtain the solution with

zero MILP gap by solving the corresponding LP relaxation

models. The state-of-the-art MILP solver is also able to

remove redundant variables and constraints with heuristics in

the pre-process stage. Based on our simulation results, if the

operational inflexibility is not significant (which is true for

most realistic cases) and the number of insufficient flexibility

events is small, the MILP solver is able to obtain the integer

solution within reasonable computational time.

IV. CASE STUDIES

In this section, comprehensive case studies are presented to

demonstrate the applications of the proposed model using the

IEEE 14-bus system and a realistic Chinese 157-bus system.

The C&CG algorithm and the modified BD are implemented

on MATLAB with YALMIP. The MILP solver is CPLEX

V.12.5. The MILP gap for the MILP solver is set to be 0.1%.

The termination tolerance of the C&CG algorithm is 1%. The

case studies are performed on a personal computer with an

8-core 3.4 GHz i7 processor and 6 GB RAM.

A. Wind and Load Profiles

The daily load and wind profiles in Fig.2 are taken from

EirGrid system data on Nov. 21st 2015 (15-minute intervals)

[47]. The actual total load demand is normalized by 4000 MW

to obtain the load profile curve, and the predicted total wind

output is normalized by 840 MW to obtain the wind profile

curve. Based on the EirGrid data, the maximum wind forecast

error on that day is ±45%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Load Profile

Wind Profile

Time interval

p
.u

.

Fig. 2. Load and wind profiles

B. IEEE 14-bus System Case

1) Computational settings:

The IEEE 14-bus system data are taken from [48] and

normalized by 100 MVA. The total load demand is 259 MW.

The generators on bus 1, 2, 3, and 6 are dispatchable. The

wind generator is located on bus 8. The characteristics of

generators are listed in Table I. Let τmax=15 min. For ease of

discussion, let ∆P g,up
i = ∆P re,max

i =-∆P g,dn
i =RUi×15 min.

The bi-directional transmission limit of each branch is 150

MW. To investigate the impact of transmission constraints on

the wind penetration level, the branch between bus 7 and

bus 8 is replaced by two branches (denoted as (a) and (b)

respectively), with a 75 MW transmission limit each. Set the

probabilities of contingencies as p0 = 1, pc = 0.02, ∀c > 0.

The system topology is shown in Fig. 3. For a given forecast

error δ, the uncertainty sets associated with these two curves

are spanned by [1− δ, 1 + δ].

TABLE I
GENERATOR CHARACTERISTICS OF IEEE 14-BUS SYSTEM

Bus Pmax(MW) Pmin(MW) RUi(MW/15min)

1 332.4 50 47.06

2 150 0 25

3 150 0 25

6 150 0 25

8 100 N.A. N.A.

1 2 3

45

6 7

8

9 10

11 12 13 14

Fig. 3. IEEE 14-bus system

For this system, two cases are presented to demonstrate the

applications of the proposed model. The first case visualizes

the flexibility region and identifies the critical transmission

paths, while the second case investigates the impact of ramping

capacity on intra-hour operational flexibility. We define the

wind penetration level β to scale the wind profile in Fig. 2.

2) Case 1: Flexibility region and critical transmission path-

s:

Let β=1.2 and the wind forecast error be 30%. The load

demand on each bus is scaled by the load profile in Fig. 2,

with the forecast error set to 3%. This case consists of a total

of 12 buses with uncertain power injection/demand, including

1 wind generator bus plus 11 load buses. The flexibility

assessment is conducted considering all N-1 contingencies.

Two contingencies are used as examples to demonstrate the

spatial-temporal relationship of insufficient flexibility and the

sensitivity analysis. Considering the outage on branch 1-2, a
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14.09 MW shortage in generation occurs on bus 2 at time

interval 41. The sensitivity of the top 5 binding constraints are

listed in Table II, which indicates an insufficiency in spinning

reserve and contingency reserve. Considering the outage on

one of the branches of 7-8, which is the most severe contin-

gency, 79 insufficient flexibility events occur on bus 8. The

time intervals and the amount of wind curtailment associated

with these events are depicted in Fig. 4. System operators can

estimate the amount of wind curtailment versus time during

system operation in the worst-case realization of wind output.

The sensitivities of the top 5 binding constraints are listed in

Table III, showing the insufficiency of transmission capacity.

TABLE II
BINDING CONSTRAINTS OF CASE 1: OUTAGE ON BRANCH 1-2

Time Interval Component Constraint Sensitivity

41 Gen. on Bus 3 (6b) Upper Bound 2.00 (p.u./hr)

41 Gen. on Bus 6 (6b) Upper Bound 2.00 (p.u./hr)

41 Gen. on Bus 1 (6b) Upper Bound 1.88 (p.u./hr)

41 Gen. on Bus 3 (9) Upper Bound 1.00 (p.u./p.u.)

41 Gen. on Bus 2 (6b) Upper Bound 1.00 (p.u./hr)
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Fig. 4. Wind curtailment on bus 8 due to outage on branch 7-8 (a)

TABLE III
BINDING CONSTRAINTS OF CASE 1: OUTAGE ON ONE BRANCH OF 7-8 (A)

Time Interval Component Constraint Sensitivity

34 Branch 7-8 (5) Lower Bound 1.00 (p.u./p.u.)

35 Branch 7-8 (5) Lower Bound 1.00 (p.u./p.u.)

36 Branch 7-8 (5) Lower Bound 1.00 (p.u./p.u.)

37 Branch 7-8 (5) Lower Bound 1.00 (p.u./p.u.)

38 Branch 7-8 (5) Lower Bound 1.00 (p.u./p.u.)

For the outage on one of the branches of 7-8, as indicated

in Fig. 4, the FIF is 79/96, the MIF is 2099.98 MW, and the

IIF is 26.58 MW/event.

As for the computational complexity of the RSC-OPF

model for this case, for each contingency (the base case is

regarded as contingency 0), MP includes 1152 (12×96) binary

variables, SP includes 2304 (12 × 2 × 96) binary variables.

Considering total 22 contingencies, the BD process converges

by 5 iterations. The total CPU time is 1648 s. The average

CPU time to solve the base case sub-model is 2 s. The average

CPU time to solve each N-1 contingency sub-model is 12 s.

The average CPU time to generate the Benders cut for each

N-1 contingency is 2 s. The total CPU time can be reduced if

the contingency sub-models are solved in parallel. By contrast,

without BD process, the total number of binary variables will

be increased by 22 times into one single model. The CPU time

to solve this large-scale RO model is 8.1 h. The BD process

reduces the computational complexity substantially with the

relative difference of 0.93% in objective value.

To investigate the interplay between the wind penetration

level β and the forecast error on the operational flexibility, we

perturb β from 0.8 to 1.2 by increments of 0.05, and perturb

the wind forecast error from 5% to 30% by increments of 5%.

The flexibility assessment is conducted with 54 combinations

of β and wind forecast error. The contour of the MIF (in

p.u.) is depicted in Fig. 5, from which it can be seen that the

acceptable forecast error drops as the wind penetration level

increases. The wind penetration level for this system has an

upper bound due to the limitation of the transmission capacity.

The contour line with the smallest MIF value (i.e., 0.004 p.u. in

Fig. 5 (top)) can be regarded as the boundary of the flexibility

region spanned by the forecast error and the wind penetration

level.

We then calculated the average MIF associated with each

N-1 contingencies over the 54 combinations of the forecast

error and wind penetration level. The most important five

branches are identified in Table IV. The first two branches

imply that a transmission expansion may be needed to improve

the wind penetration level. The rest of the branches imply

that the spinning reserve and contingency reserve are slightly

insufficient in the presence of the corresponding contingency,

since all the transmission limit constraints are not binding.
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Fig. 5. Flexibility region (p.u.) (top) and contour of MIF (p.u.) (bottom) of
Case 1

TABLE IV
IMPORTANCE RANKING OF BRANCHES

Branch Average MIF (MW)

7 - 8 (a) 11.46

7 - 8 (b) 11.46

2 - 3 0.030

6 - 13 0.026

3 - 4 0.025
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3) Case 2: Ramping capacity assessment:

In this case, the proposed model is used to assess the impact

of ramping capacity on intra-hour operational flexibility, iden-

tifying the worst-case scenario of wind output and ramping

events. Furthermore, the spatial and temporal characteristics

of power imbalance due to lack of ramping capacity, if any,

will be quantified using the proposed model.

For this case, we set β = 1.45, the load demand to be deter-

ministic, and set the wind forecast error to 25%. Additionally,

the ramping rates of the dispatchable generators are reduced to

50% of the value in the 4th column of Table I. The assessment

is performed for the base case. The minimum wind output,

the maximum wind output, and the worst-case realization of

wind output obtained by RSC-OOPF, are depicted in Fig. 6.

For this worst-case realization, the most severe wind ramping

down event takes place on time interval 29, when the load

demand is sharply increasing. In this worst-case realization

of wind profile at time interval 29, the wind output is 131

MW. At time interval 30, the wind output drops to 80 MW.

Meanwhile, the load ramps from 234 MW to 251.7 MW. The

total net load increases by 68 MW within 15 mins. By contrast,

the total ramping capacities of all dispatchable generators sum

up to 61 MW. A shortage in ramping capacity of 7 MW takes

place at time interval 29.
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Fig. 6. Worst-case realization of wind output obtained by RSC-OPF

A total of 5 power imbalance events occur in this time

horizon, as shown in Fig. 7. The MIF associated with this

worst-case realization is 13.60 MW. System operators can

derive the load shedding and wind curtailment on the identified

buses at appropriate time interval to maintain generation-load

balancing. The top 5 binding constraints and the corresponding

sensitivities are listed in Table V, indicating that an insufficien-

cy in ramping capacity results in insufficient flexibility.
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Fig. 7. Power imbalance events due to insufficient flexibility

TABLE V
BINDING CONSTRAINTS OF CASE 2

Time Component Constraint Sensitivity

29 Gens. on bus 1,2,3,6 (7) Upper Bound 1.00 (p.u./p.u.)

31 Gens. on bus 1,2,3,6 (7) Upper Bound 1.00 (p.u./p.u.)

33 Gens. on bus 1,2,3,6 (7) Upper Bound 1.00 (p.u./p.u.)

36 Gens. on bus 1,2,3,6 (7) Upper Bound 1.00 (p.u./p.u.)

38 Gens. on bus 1,2,3,6 (7) Lower Bound 1.00 (p.u./p.u.)

To validate the aforementioned worst-case realization wind

output, we apply Monte Carlo Simulation to generate 2000

wind output curves using the uniform distribution between

maximum and minimum wind output, and subsequently solve

RSC-OPF with these curves. The worst-case realization of

wind output among these 2000 curves is depicted as in Fig. 8.

The MIF associated with this worst-case realization of wind

output is 10.20 MW (less than 13.60 MW identified by RSC-

OPF), which could be over-optimistic.
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Fig. 8. Worst-case realization of wind output obtained by Monte Carlo
simulation

C. Chinese 157-bus System Case

The 157-bus system [49] in Gansu, China is part of Chinese

northwest grid. The characteristics of this system is listed in

Table VI. The total capacity of the thermal plants is 21951

MW, the total capacity of the hydro plants is 7938 MW, the

total load demand is 22903 MW, and the total wind output is

6722 MW. The minimum output of the hydro plants is 30%,

and the minimum technical output of the thermal plants is

55%. The load and wind output are scaled by the curves in

Fig. 2. The forecast error of wind output is set to 20%.

The flexibility assessment is conducted for the base case. By

solving the RSC-OPF model, the aggregate power imbalances

are depicted in Fig. 9. During load valley periods (i.e., time

intervals between 10 and 25), wind curtailment occurs due

to the minimum technical output of thermal plants, whereas

during load peak periods (i.e., time intervals between 70

and 75), load shedding occurs due to the spinning reserve

constraints. The binding constraints are listed in Table VII,

showing the insufficient spinning reserves are the major cause

of insufficient flexibility on the base case.

TABLE VI
SYSTEM CHARACTERISTICS OF THE CHINESE 157-BUS SYSTEM

Component Number Component Number

Lines 228 Thermal Plants 29

Transformers 30 Hydro Plants 40

Buses 157 Wind Farms 29
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Fig. 9. Aggregate power imbalance of the base case Chinese 157-bus System

TABLE VII
BINDING CONSTRAINTS OF BASE CASE OF 157-BUS SYSTEM

Time Component Constraint Sensitivity

70 Gens. on bus 6,7,43,46 (6a) Upper Bound 1.00 (p.u./p.u.)

71 Gens. on bus 6,7,43,46 (6a) Upper Bound 1.00 (p.u./p.u.)

72 Gens. on bus 6,7,43,46 (6a) Upper Bound 1.00 (p.u./p.u.)

73 Gens. on bus 6,7,43,46 (6a) Upper Bound 1.00 (p.u./p.u.)

74 Gens. on bus 6,7,43,46 (6a) Upper Bound 1.00 (p.u./p.u.)

The comparisons between hourly and intra-hour assess-

ments are listed in Table. VIII, which shows that hourly

operational assessment may not cover all insufficient flexibility

events. The spinning reserve is critical, otherwise the flexibility

assessment would be over-optimistic. This table also presents

the computational time to demonstrate the performance of

the proposed method. For the 96 time interval flexibility

assessment considering the reserve constraint (6), the C&CG

algorithm takes 2 iterations to obtain the final solution. The

MP model is solved twice, with the average computational

time as 10.2 s. The SP model is solved once to identify the

worst-case realization of wind output, with the computational

time as 240 s. Considering 30 different N-1 contingencies to

trip one of the parallel transmission lines, the BD process

converges in 4 iterations. Each iteration needs to solve the

base case sub-model for once, and the contingency sub-models

for 30 times. The total computational time is 12.3 h. If

the contingency sub-models are solved in a parallel manner,

the computation time will be reduced considerably. Without

BD process, the RSC-OPF model for this 157-bus system

considering various contingencies is intractable.

TABLE VIII
COMPUTATIONAL RESULTS UNDER DIFFERENT CONFIGURATIONS

Constraints
Time

Resolution
FIF

MIF

(p.u.)

IIF

(p.u./event)

CPU

Time (s)

with (6) 60 min 5/24 52.89 10.58 62

without (6) 15 min 16/96 122.72 7.67 184

with (6) 15 min 22/96 207.50 9.43 276

From the system operator’s viewpoint, it is important to

identify the least number of load shedding actions. Take the

assessment on time interval 72 as an example. The system-

specific parameter ∆P im,max
i of each load bus is varied from

10% to 30% of its predicted output. The minimum number

of buses with load shedding for each value of ∆P im,max
i are

depicted in Fig. 10. A tradeoff can be achieved between the

amount of load shedding and the number of affected buses.

By contrast, if the number of buses with power imbalance is

not minimized in the 1st stage (as in (18)), the power balance

will take place in 92 buses, i.e., all load and generation buses.

The flexibility region of this system is depicted in Fig.

11, showing insufficient flexibility occurs as wind output

decreases, as a result of spinning reserve constraints. In other

words, the wind penetration level for this system has a lower

bound due to the limitation of spinning reserve.

It is seen from the simulation results that the lower bound

of wind penetration level is primarily determined by the

spinning reserve constraints (binding at time intervals between

70 and 75). During this period, the wind output is decreasing

whereas the output of conventional units cannot increase since

the reserve capacities are limited. Quick-start units could

be applied to mitigate the insufficient flexibility during this

period. The upper bound of wind penetration level is restricted

by the minimum technical output of thermal units, as the wind

curtailment occurs at time intervals between 10 and 15. The

wind penetration level could be improved during that period by

applying pump storage units to store the excessive generation.
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Fig. 10. Minimum number of buses with load shedding
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Fig. 11. Flexibility region (top) and contour of MIF (p.u.) (bottom) of Chinese
157-bus system on the base case

D. Discussions

The above case studies indicate that spinning reserve and

contingency reserve are critical for hedging the risk arising
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from the uncertainty of both RES and unexpected transmis-

sion/generation outages over intra-hour time scales. While the

case studies are performed for 24 hours, the proposed method

can also be applied in a rolling framework to conduct intra-

hour flexibility assessment for 4-6 hours. With the continuous

update on the wind prediction, the flexibility region will help

system operators aware the impact of RES output on the

operational flexibility. Emergency measures can be prepared

to safeguard the worst-case realization of RES output.

The proposed model, establishing basic results, can be

generalized to include the uncertainty budget, penalty/cost

terms on the load shedding and wind curtailment.

The flexibility regions demonstrated in the case studies

are obtained by assuming the RES penetration levels and

the associated forecast errors are consistent throughout the

power grid. However, the concept of flexibility region can be

applied to study operational flexibility with diverse RES power

injections, which lead to a high-dimensional flexibility region.

This high-dimensional flexibility region can be visualized with

projection onto some particular bus.

The flexibility region is different from the power flow

feasibility region (which is generally determined by the power

injections, power flow equations and operational constraints)

in that the power flow balance in the RSC-OPF model is

regarded as a soft constraint due to the introduced slack

variables in (12). We apply the flexibility region to characterize

the operational flexibility in terms of the amount of power

imbalance. In other words, this region is able to coherently

characterize the power system from feasible to infeasible in

the sense of DC power flow.

V. CONCLUSION

It is critical to assess the operational flexibility to accom-

modate a high penetration of RES with existing resources.

To investigate intra-hour operational flexibility, an RO mod-

el is constructed to quantify the insufficient flexibility. The

proposed method provides system operators with the following

key results: 1) the minimum and/or maximum range of RES

penetration level and the forecast error (i.e., flexibility region);

2) quantitative metrics if the RES output is beyond the

flexibility region; 3) a worst-case combination of the RES

output profile and the unexpected outage, which together

incur insufficient flexibility over a studied time horizon; 4)

emergency measures on a limited number of affected buses if

insufficient flexibility occurs.

Future work would investigate how the insufficient flexibil-

ity metrics provide incentives for new investments to achieve

equilibrium of operational flexibility.

APPENDIX

REFORMULATION OF SP INTO MILP

In this Appendix, the reformulation of the subproblem (SP)

of RO into a MILP model is briefly introduced. Note that the

SP in (20) should yield a new worst-case realization of d̃,

whether the optimal solution of the 1st stage variable x∗ leads

to a feasible SP in (20) or not. To this end, the SP in (20) is

converted into an infeasibility detection model given by

Q (x∗) = max
d̃

min
y+,y

−
,s,s1,s2

bT (y+ − y−) + ρT (s1 + s2)

(26a)

s.t. N(y+ − y−) + (s1 − s2) = d̃ (26b)

M(y+ − y−)− s = m (26c)

y+ ≥ 0,y− ≥ 0, s ≥ 0, s1 ≥ 0, s2 ≥ 0 (26d)

d̃ ∈ [dmin,dmax] (26e)

where ρ is a vector of a sufficiently large number (e.g., 1E4)

with the compatible size. If ρT (s1 + s2) → 0 by solving

(26), a worst-case realization of d̃, which leads to a feasible

SP in (20), is generated. Otherwise, a worst-case realization

of d̃ leading to an infeasible SP in (20) is identified. In either

case, this new worst-case realization will be fed into the MP to

enforce a change in the 1st stage variables due to the feasibility

cut (18g).

Note that the inner minimization problem in (26), including

the objective function and (26b)-(26d), is a standard LP model.

By merging the dual of the inner minimization problem, (26)

can be recast into a non-convex bilinear programming model

as below.

Q (x∗) = max
d̃,w1,w2

d̃Tw1 +mTw2 (27a)

s.t. NTw1 +MTw2 = b (27b)

w2 ≥ 0 (27c)

− ρ ≤ w1 ≤ ρ (27d)

dmin ≤ d̃ ≤ dmax (27e)

For the polyhedral uncertainty set in (27e), we only need to

consider its vertices to identify a worst-case realization (see

Theorem 1 in [50]). Therefore, (27e) can be reformulated using

a pair of binary variables Z+ and Z−, as follows,

d̃ = d̄+ (Z+ −Z−)∆d (28)

where ∆d and d̄ are the deviation and average value of random

variables, respectively, given by

∆d =
dmax − dmin

2
(29a)

d̄ =
dmax + dmin

2
(29b)

Plug (28) and (29) into (27), a non-convex bilinear model

with the production of binary variables and continuous vari-

ables in the objective function is given by

Q (x∗) = max
Z+,Z

−
,w1,w2

d̄Tw1 +mTw2

+ (diag(Z+)w1 − diag(Z−)w1)
T∆d (30a)

s.t. (27b), (27c), (27d) (30b)

Z+ +Z− ≤ 1 (30c)

where diag(•) denote the transformation of an array into the

corresponding diagonal matrix. We introduce two variables k1
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and k2 to represent the production of binary variables and

continuous variables, given by

k1 = diag(Z+)w1 (31a)

k2 = diag(Z−)w1 (31b)

Subsequently, the following McCormick cuts are applied to

exactly convert the production of binary variables and contin-

uous variables into linear inequalities, as follows.

− diag(Z+)ρ ≤ k1 ≤ diag(Z+)ρ (32a)

− diag(1−Z+)ρ ≤ k1 −w1 ≤ diag(1−Z+)ρ (32b)

− diag(Z−)ρ ≤ k2 ≤ diag(Z−)ρ (32c)

− diag(1−Z−)ρ ≤ k2 −w2 ≤ diag(1−Z−)ρ (32d)

Plug (31) and (32) into (30), a MILP model is established to

solve (20) as follows.

Q (x∗) = max
Z+,Z

−
,w1,w2,k1,k2

d̄Tw1 +mTw2

+ (k1 − k2)
T∆d (33a)

s.t. (27b), (27c), (27d), (32) (33b)

Z+ +Z− ≤ 1 (33c)

It is seen from above that, for each random variable, a pair of

binary variables and 4 continuous variables will be introduced

in the MILP formulation of SP.

To account for uncertainty budget, one can include addition-

al restriction on the number of 1 element in the array of Z+

and Z−. Since the optimal solution of (33) lies in the vertices

of the polyhedral uncertainty set, the optimal solution will be

obtained within a limited number of iterations, see Proposition

1 in [42].
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