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Abstract 

Solar cells based on organic-inorganic metal halide perovskites show efficiencies close to 

highly-optimized silicon solar cells. However, ion migration in the perovskite films leads to 

device degradation and impedes large scale commercial applications. We use transient ion-

drift measurements to quantify activation energy, diffusion coefficient, and concentration of 

mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that 

their properties change close to the tetragonal-to-orthorhombic phase transition 

temperature. We identify three migrating ion species which we attribute to the migration of 

iodide (I-) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is 

one order of magnitude higher than the one of mobile I- ions, and that the diffusion 

coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I- 

ions. We furthermore observe that the activation energy of mobile I- ions (0.29 ± 0.06 eV) is 

highly reproducible for different devices, while the activation energy of mobile MA+ depends 

strongly on device fabrication. This quantification of mobile ions in MAPbI3 will lead to a 

better understanding of ion migration and its role in operation and degradation of 

perovskite solar cells. 

 

 

 



Introduction 

Organic-inorganic metal halide perovskites have proven to be a promising candidate for low-

cost photovoltaic devices. Due to their large charge-carrier diffusion length, long charge-

carrier lifetime, and high defect tolerance, perovskite solar cells already reach record 

efficiencies greater than 23%, outperforming any other solution-processed solar cell 

technology.1–4 Hybrid perovskites benefit from a continuously tunable bandgap, making 

them favourable for multi-junction devices with potential power conversion efficiencies 

above 30%.5–9  

Unlike conventional inorganic solar cell materials, hybrid perovskites are ionic solids that 

exhibit ion migration, complicating the efficiency measurements and the definition of a 

steady-state condition in these cells.10 This ion migration has also been shown to be a 

pathway for the degradation of perovskite solar cells.11,12 The understanding of ion 

migration within perovskite solar cells is therefore crucial for the fabrication of stable 

perovskite devices. 

In methylammonium lead triiodide (MAPbI3), both anions (I-) and cations (methylammonium 

MA+, Pb2+) can migrate due to the presence of vacancies, interstitials, or antisite 

substitutions. A large variety of activation energies for ion migration have been published, 

both experimentally and theoretically. Theoretical calculations predict activation energies 

between 0.08 and 0.58 eV, 0.46 and 1.12 eV, and 0.80 and 2.31 eV for the migration of I-, 

MA+, and Pb2+, respectively.13–17 Attempts to experimentally determine the activation energy 

have given a similar variety of results.18–25 Most experimental techniques further fail to 

distinguish between the charge of the ions (anions and cations), which can lead to mis-

assignment of the ion species.  



Here we quantify the activation energy, diffusion coefficient, sign of charge, and 

concentration of mobile ions in MAPbI3 using transient ion-drift, one of the most powerful 

methods to quantify ion migration.26,27 We show that probing the capacitance change 

associated with ion migration requires to measure the capacitance transients on the 

timescale of seconds. Using transient ion-drift we identify footprints of distinct mobile ion 

species which we attribute to the migration of I- (activation energy 0.29 eV) and MA+ (0.39 - 

0.90 eV). We find that the concentration of mobile MA+ ions is one order of magnitude 

higher than the one of mobile I- ions, and that the diffusion coefficient of mobile MA+ ions is 

three orders of magnitude lower than the one for mobile I- ions. As a result, the migration of 

MA+ ions leads to a capacitance transient with a time scale of seconds, where the migration 

of I- ions results in a transient with a time scale of less than a millisecond at 300 K. This 

quantification leads to a better understanding of ion migration, which is a crucial step 

towards stable perovskite solar cells. 



Results and discussion 

Transient ion-drift measurements rely on the external application of an electric field. We use 

a diode configuration to study ion migration. Our diode consists of an inverted planar 

perovskite solar cell architecture with a solution-processed NiOx film as a hole-transporting 

layer and C60 as an electron-transport layer28, as shown in Figure 1a. We chose the inverted 

solar cell structure over the standard one due to the strong tendency to accumulate charges, 

both electronic and ionic, at the TiO2/perovskite interface resulting in a capacitive hysteresis 

and additional dielectric contributions, which is reduced in the inverted structure (see 

section S1 in the Supporting Information (SI)).29 In the inverted solar cell architecture, 

PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) is the most widely 

used hole-transport material, however, its high acidity and tendency to absorb water might 

lead to unwanted device degradation.30 We furthermore avoid using spiro-MeOTAD 

(2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) since typical 

dopants such as lithium salts lead to instabilities due to their high sensitivity to moisture, 

and can show misleading features in the transient ion-drift measurements due to the 

additional dopant ion migration.31,32 The current-voltage characteristics of a perovskite solar 

cell in the dark in forward and reverse voltage scans are shown in Figure 1b (see Figure S3 in 

the SI for current-voltage characteristics measured at 1-Sun). We observe a significant 

difference between the forward and reverse scanning direction at 300 K. When cooling the 

perovskite solar cell, this current-voltage hysteresis is strongly reduced and almost vanishes 

at 180 K (see inset Figure 1b, and Figure S4 in the SI for current-voltage curves measured 

between 180 and 330 K). This has previously been attributed to the inhibition of the ion 

migration at low temperatures.33,34 



 

Figure 1. Inverted MAPbI3 device characteristics. (a) Cross-section scanning electron microscopy, (b) current-

voltage characteristics measured in the dark, and (c) Impedance spectroscopy measured in the dark at 0 V with 

an AC perturbation of 20 mV. The high capacitance at low frequencies is attributed to the high ionic 

conductivity mediated by defect states. 

The transient ion-drift technique relies on probing the ion migration in the perovskite layer 

using capacitance transients at different temperatures. To find the suitable AC frequency 

regime for measuring capacitance transients, we study the frequency-dependence of the 

capacitance of the perovskite diode in the dark (see Figure 1c). At low frequencies, the 

capacitance is dominated by mobile ions which accumulate near the contact interfaces.35 

When reducing the temperature, both the current-voltage hysteresis and the ionic 

capacitance contribution are strongly reduced until they disappear close to 180 K. At high 

frequencies, the capacitance is reduced due to the series resistance of the conductive 

contact layers reducing the cut-off frequency of the device. Between the two limits lies a 

relatively constant plateau, corresponding to the geometric capacitance of the device, which 

is related to the perovskite permittivity (see section S3 in the SI for details).  



 

Figure 2. Influence of ion migration on the band energies. (a) At short circuit, mobile MA+ and I- ions 

accumulate at the interface partially screening the built-in electric field. (b) When applying a forward bias (V0), 

mobile ions will drift towards the bulk, (c) resulting in a uniform ion distribution within the perovskite layer. (d) 

After removing the forward bias, the built-in electric field will drive mobile ions towards the interfaces. This 

drift of mobile ions towards the interfaces results in a capacitance transient used to quantify ion migration. EC 

is the conduction band energy, and EV the valance band energy. 

We chose to measure the capacitance at 10 kHz, at the plateau of the capacitance. Transient 

ion-drift uses the transient capacitance response following a voltage pulse at different 

temperatures (see schematic Figure 2). We apply a forward bias of 0.4 V for 1 second, which 

reduces the width of depletion region and leads to a new equilibrium distribution within the 

previously depleted region (Figure 2a to c), changing the capacitance of the device. This 

change in capacitance did not increase further with longer pulse widths, indicating that a 

uniform distribution of ions was reached after the 1 second voltage pulse duration (see 

Figure S6 in the SI).26 We avoid using higher external voltages since Yuan et al. found that 

external electrical fields as low as 3 V/μm at 330 K can lead to the formation of PbI2.36 After 

turning off the voltage pulse, the built-in electric field will drive both the mobile ions and 

electric charges back to the contact interfaces (Figure 2d). Mobile anions will follow the 

electrons and mobile cations will follow the holes, resulting in a capacitance transient. We 

measure this capacitance transient at temperatures between 180 and 350 K (see Figure 3a), 

above the first-order phase transition from tetragonal to orthorhombic near 165 K.37,38 We 

see no capacitance transient at low temperatures (< 190 K), while a negative capacitance 

change grows in between 190 and 280 K until the capacitance decay it is too fast to 



measure. At higher temperatures, we observe a positive change in capacitance. Assuming 

the total ion concentration is conserved, the electric field varies linearly across the depletion 

region, and thermal diffusion of ions is negligible compared to ion drift, the change in 

capacitance depends only on the temperature, activation energy, diffusion coefficient, and 

concentration of mobile ions as39 

 C(t) = C(∞) + ΔC (1 − s e−tτ)  (1) 

where 𝛥𝐶 is the change in capacitance due to the drift of mobile ions towards the interfaces, 𝐶(∞) the steady-state capacitance, 𝑠 the sign of the charge, and 𝜏 a time constant given by 

 τ =  kB T ε0 εq2D N  
(2) 

where 𝑘𝐵 is the Boltzmann constant, and 𝑇 the temperature (see section S5 in the SI for 

details). 𝐷 = 𝐷0 𝑒− 𝐸𝐴𝑘𝐵𝑇 is the ion-diffusion coefficient where 𝐷0 is the attempt-to-escape 

frequency for ion migration and 𝐸𝐴 the activation energy. The assumption that the electric 

field varies linearly across the depletion region is supported by recent studies showing that 

the electric field varies linearly within the perovskite layer when the perovskite layer is 

subjected to an external or internal electric field.40,41 We can describe the measured 

capacitance transients using exponential functions, which further corroborates that the 

assumption of a linear field is valid in our devices (see section S6 in the SI).26 We note that 

Weber et al. found an additional interface dipole at the perovskite/SnO2 interface.40 This 

interface dipole is deliberately omitted in our structure by using NiOx and C60 as extraction 

layers (see section S1 in the SI). As metals are prone to reacting with I- ions,42 we have 

ensured to perform our measurements shortly after the fabrication of the diodes. In 

addition, we have carefully chosen the AC frequency to ensure that the measured 



capacitance is not affected by potential ion diffusion through the transport layers. (see 

section S7 in the SI). 

To identify processes associated to these capacitance changes we use the rate window 

analysis, originally introduced by Lang to analyse deep-level transient spectroscopy (DLTS) 

measurements.43 The capacitance change extracted by this method is given by  𝛥𝐶 = 𝐶(𝑡1) − 𝐶(𝑡2), where 𝑡1 and 𝑡2 depend on the typical decay times of the capacitance 

at a certain temperature to extract a peak associated with each activation energy. When 

choosing 𝑡1 = 2𝑡2 from milliseconds to seconds we find three peaks corresponding to three 

separate processes, which we label A1, C1, and C2 (see Figure 3b). The capacitance change 

associated with C1 and C2 both are positive and describe the migration of a cation. A1 is 

negative and describes the migration of an anion. We hence assign A1 to the migration of I- 

ions and C1 and C2 to the migration of MA+ ions. We exclude the migration of Pb2+ ions since 

theoretical studies suggest that they are unlikely to migrate.17 Note that we cannot rule out 

the migration of H+ ions, which was calculated to have an activation energy of 0.29 eV.44 

However, the predicted concentration of H+ ions in MAPbI3 is in the order of 1011 cm-3,45 

orders of magnitude lower than what we have measured. 

The temperature dependence of the peaks in the rate window analysis together with their 

time scales can be used to obtain activation energy and diffusion coefficient of ion 

migration. This method, however, uses only two points of each transient to extract the time 

scales. To quantify ion migration using all data points, we fit the measured capacitance 

changes to exponential decays to obtain the time constants 𝜏 at different temperatures 

(Equation 1). By means of an Arrhenius plot we can extract both the activation energy and 

diffusion coefficient (see Figure 3c). We again identify the three species, C1, C2, and A1, 

where A1 occurs at much faster timescales and lower temperatures.  



 

Figure 3. Ion migration in MAPbI3. (a) Capacitance transient measurements between 180 and 350 K with steps 

of 10 K measured at 0 V with an AC voltage of 10 mV at 10 kHz after a voltage pulse of 0.4 V for 1 second. (b) 

Rate-window plot of measured capacitance transients with different time constants ranging from milliseconds 

(red) to seconds (blue) reveal three ion species with different thermal emission rates. We attribute A1 to the 

migration of I- ions and C1 and C2 to the migration of MA+ ions. (c) Arrhenius plot of the observed thermal 

emission rates as a function of temperature. The linear fit reveals the activation energy and the diffusion 

coefficient of the mobile ion species. 

To estimate the sample-to-sample, and lab-to-lab variation we measured solar cells 

fabricated at AMOLF and at the University of Konstanz, with power conversion efficiencies 

ranging from 1 to 12% (see section S9 in the SI for details). The obtained characteristics of 

mobile ions for all the devices are shown in Figure 4 and the mean values are summarized in 

Table 1. We find that the activation energy for the migration of I- ions is very reproducible 

across all devices, while the activation energy for the migration of MA+ ions depends strongly 

on the fabrication conditions, which is consistent with the wide distribution of activation 

energies for the migration of MA+ ions in literature. The wide distribution of activation 

energies for the migration of I- ions in the literature could be explained by the 

misinterpretation of mobile ion species, since most techniques cannot distinguish between the 

migration of anions and cations. The transient ion-drift measurements are able to 



simultaneously distinguish between mobile cations and anion, and detect low 

concentrations of mobile impurities (~ 0.01% of the doping density). Our measurements thus 

show that many theoretical calculations cannot be experimentally verified within the margin 

of error.  

Interestingly, we obtain a diffusion coefficient of 10-9 cm2 s-1 for I- ions which is three orders 

of magnitude higher than the diffusion coefficient for MA+ ions of 10-12 cm2 s-1 (see Table 1). 

The diffusion coefficients measured here are very close to the diffusion coefficients 

measured with NMR (10-9 cm2 s-1 for I- and 10-15 - 10-12 cm2 s-1 for MA+),46,47 and to those 

obtained in recent studies by Li et al. (5 x 10-8 to 6 x 10-9 cm2 s-1 for I-) and Bertoluzzi et al. 

(8 x 10-9 cm2 s-1 for I-).48,49 Solute-dopant pairing can significantly slow down the ionic 

diffusion,26 which could be the reason for the slow diffusion of MA+ ions. Only the MA+ ions 

have a transient decay time in the order of seconds at typical operation temperatures (< ms 

for I-). Thus, our results suggest that mobile MA+ ions are the origin of the observed current-

voltage hysteresis in MAPbI3 perovskite solar cells. Previously, also I- has been assigned 

responsible for the current-voltage hysteresis,17 however, the sensitivity of transient ion-

drift to the sign of the ion excludes this possibility. 

Close to the tetragonal-cubic phase-transition temperature (327 K)45 we observe a decrease 

in activation energy and an increase in diffusion coefficient for one of the migrating MA+ ions 

(C1), with the exception for the device with a power conversion efficiency of 1%. A similar 

behaviour has previously been observed and attributed to the volume change in the unit cell 

at temperatures close to the tetragonal-cubic phase transition.50,51 Note that C2 might show 

a similar behaviour at lower temperatures, however, the activation energy of C2 in the 

tetragonal phase could not be resolved in our measurements due to its long-time constant. 

The obtained activation energies of the two migration pathways for MA+ (C1 and C2) in the 



cubic phase are comparable, yet the diffusion coefficient of C1 is somewhat higher than the 

diffusion coefficient of C2. Using Kelvin probe force microscopy, Yun et al. found that ion 

migration near grain boundaries is much faster than inside the grains due to higher ionic 

diffusivity at grain boundaries.52 We thus speculate that these are both mobile MA+ species 

where C1 has a higher diffusion coefficient, which could be due to ion movement in vicinity 

to grain boundaries.  

 

Figure 4. Characteristics of mobile ions in MAPbI3. (a) Activation energy, (b) diffusion coefficient at 300 K, (c) 

and concentration of mobile ions in MAPbI3 perovskites obtained by transient ion-drift. The downward and the 

upward triangle represents measurements below and above the tetragonal-to-cubic phase-transition 

temperature. The mean values are summarized in Table 1. 

We measure the concentration of mobile ions from the change in capacitance following the 

voltage pulse. Since the capacitance 𝐶(∞) ∝ √𝑁, where 𝑁 is the doping density, the 

concentration of mobile ions 𝑁𝑚𝑜𝑏𝑖𝑙𝑒 within the probed depletion region can be estimated 

as53 

 (𝚫𝑪 + 𝑪(∞)𝑪(∞)  )𝟐 ∝ (𝑵𝒎𝒐𝒃𝒊𝒍𝒆 + 𝑵𝑵 ). (3) 

The obtained concentrations for mobile I- and MA+ ions are summarized in Figure 4c. We 

note that we assume a typical doping density of 1 x 1017 cm-3 for all the measured perovskite 

films and temperatures (see section S3 in the SI).54 Although the density of mobile ions 

depends on the fabrication, we find that the concentration of the mobile MA+ ions is 



systematically about one order of magnitude higher than that of the mobile I- ions. The 

measured mobile ion concentration is rather low compared to other studies, which report 

values of around 1018 cm-3.49 However, several recent studies measure a mobile ion 

concentration comparable to what we measure, on the order of 1015 cm-3,40,41 suggesting 

that less than 10% of the screening of the electric field within the perovskite layer is 

produced by the presence of mobile ions. We note that electrical neutrality is still given, as 

the concentration obtained is the concentration of mobile ions within the perovskite film, 

not all ions present in the perovskite film. 

 

Table 1. Characteristics of mobile ions in MAPbI3. 

 A1 C1 C2 

Migrating ion species I- MA+ MA+ 

Charge negative positive positive 

Concentration (cm
-3

) (1.1 ± 0.9) x 1015 (1.3 ± 0.8) x 1016 (5.0 ± 4.0) x 1015 

Phase structure tetragonal tetragonal cubic cubic 

Activation energy (eV) 0.29 ± 0.06 0.90 ± 0.45 0.46 ± 0.25 0.39 ± 0.24 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(3.1 ± 2.8) x 10-9 (3.4 ± 3.3) x 10-12 (6.8 ± 5.3) x 10-12 (1.6 ± 0.8) x 10-12 

 

Capacitance transients such as the ones observed here could also originate from deep-level 

charge traps. A powerful method to measure charge-carrier traps is DLTS,43 a method which 

is very similar to transient ion-drift. In DLTS available states in the bandgap are filled with 

charge carriers by applying a voltage pulse. Trapped charge carriers can then be thermally 

excited to conducting states and swept out of the depletion region by the junction potential, 

resulting in a capacitance transient. DLTS has been used to study fast (< milliseconds) charge 

trapping in perovskite solar cells,55 in contrast, ion migration in perovskites typically 

proceeds on long timescales of milliseconds to seconds.56,57 Furthermore, the ratio of rise 

and decay times of the capacitance in DLTS and transient ion-drift is different, so that we can 



distinguish ion migration from trapping and de-trapping of charge carriers (see section S8 in 

the SI for details).27 We can therefore attribute the observed transients as the result of ion 

migration rather than deep-level charge traps. Atomistic simulations furthermore suggest 

that deep-level defects require such high formation energies that their formation is 

unlikely.1  

 

To conclude, we have shown that transient ion-drift is a fast and accurate method to 

quantify, with high precision, the activation energy, diffusion coefficient, sign of charge, and 

concentration of mobile ions in perovskite solar cells. In MAPbI3 perovskites we observe that 

both MA+ and I- are migrating. We find that the concentration of mobile MA+ ions is 

significantly higher than the concentration of mobile I- ions and that the diffusion coefficient 

of I- ions is three orders of magnitude higher than the diffusion coefficient of MA+ ions. On 

timescales associated with current-voltage measurements, only the migration of MA+ ions is 

slow enough to cause a current-voltage hysteresis in MAPbI3 solar cells. The migration of I- is 

still relevant for the device operation, and the degradation of perovskite solar cells. The 

migration of mobile I- ion is very reproducible across devices fabricated in different 

laboratories, while the migration of mobile MA+ ions strongly depends on the fabrication, 

which explains the wide distribution of activation energies for the migration of MA+ ions in 

literature. Our measurements guide the future theoretical investigation into ion migration in 

halide perovskites and offer quantitative insight into the parameters of the mobile ion 

species, and hence the degradation pathways of perovskite solar cells.  

 

Experimental methods 

Diode fabrication: Laser patterned indium tin oxide (ITO) glass substrates were cleaned by 

ultra-sonication for 20 minutes subsequently in detergent in deionized water, deionized water, 



acetone, and isopropanol, followed by oxygen plasma for 20 minutes at 100 W. Nickel oxide 

(NiOx) precursor solution (0.1 M nickel(II) nitrate hexahydrate (Aldrich) in ethanol) filtered with 

a 0.45 µm PTFE membrane was spun on the cleaned ITO glass at 4000 rpm for 30 seconds. This 

step was then repeated two times.28 Annealing at 350 °C for 1 hour with a ramping speed of 

3 °C/min induced NiOx film formation. The MAPbI3 perovskite precursor solution was prepared 

by mixing of total 1.35 M of methylammonium iodide (MAI, solaronix) and lead(II) iodide (PbI2, 

Aldrich) with 1:1 molar ratio dissolved in N,N-dimethylformamide (anhydrous, Aldrich) at 

60 °C. The MAPbI3 precursor solution was filtered through a 0.45 µm PTFE membrane spun 

onto NiOx coated substrates at 5000 rpm for 25 seconds in a nitrogen filled glove box. 5 

seconds after the beginning of the rotation, 180 μL of chlorobenzene anti-solvent (anhydrous, 

Aldrich) was quickly dropped onto the substrate. After the MAPbI3 spinning process, the 

substrates were annealed at 100 °C for 15 minutes. 30 nm of C60 (0.5 Å/s rate, 99.9%, Aldrich), 

8 nm of bathocuproine (0.2 Å/s, 99.99%, Aldrich), 50 nm of silver (1 Å/s, 99.99%, Kurt J. Lesker) 

and 150 nm of gold electrode (1 Å/s, 99.999%, Kurt J. Lesker) were sequentially deposited on 

top of MAPbI3 layer by thermal sublimation/evaporation at pressures below 2 × 10-7 mbar. 

Differences in the sample fabrication for devices made at AMOLF and the University of 

Konstanz can be found in section S10 in the SI. 

Electrical measurements: To avoid air exposure, the sample was loaded into a Janis VPF-100 

liquid nitrogen cryostat inside a nitrogen-filled glovebox. Current-voltage, impedance 

spectroscopy, capacitance-voltage, and transient ion-drift measurements were performed at a 

pressure below 2 x 10-6 mbar in the dark using a commercially available DLTS system from 

Semetrol. To ensure thermal equilibrium the temperature of the sample was held constant for 

at least 30 minutes before current-voltage, impedance spectroscopy, and capacitance-voltage 

measurements. The capacitance was modelled by a capacitor in parallel with a conductance. 



Capacitance transient measurements were performed from 180 to 350 K in steps of 2 K with a 

heating rate of about 2 K per minute. The sample was held at 180 K for one hour before 

starting the transient ion-drift measurement. 

Imaging of device cross-section: To obtain a clean cross-section of the device, it was immersed 

in liquid nitrogen for 60 seconds and cleaved in the center. The cross-sectional image was 

taken with a FEI Verios 460 scanning electron microscope in the secondary electron mode. An 

acceleration voltage of 5 kV and a working distance of 4 mm were used and field immersion 

mode was applied for an optimized resolution. 
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S1 EFFECT OF CONTACT LAYERS 

By measuring the current-voltage characteristic at different scan rates, a distinction can be 

made between capacitive and non-capacitive hysteresis.1 Figure S1 illustrates the effect of 

capacitive hysteresis in perovskite solar cells using TiO2 as an electron transport material. This 

effect is attributed to the accumulation of both ionic and electronic charges at the 

TiO2/perovskite interface in a highly reversible manner resulting in a double-layer structure.1 

This effect is not observed in the inverted structure using NiOx. 

 

Figure S1. Dark current-voltage characteristics of diodes based on (a) TiO2/MAPbI3/spiro-OMeTAD and (b) 

NiOx/MAPbI3/C60 illustrating different hysteretic effects as a function of the scan rate. 

 

Figure S2 shows the capacitance versus frequency at different temperatures for the inverted 

and the regular perovskite solar cell structure. At the temperature range between 180 and 

300 K no phase transition of the MAPbI3 layer is to be expected. However, the regular devices 

structure shows a strong change in the high-frequency region at these temperatures, 

indicating dielectric contributions of contact layers play an important role. For the 

measurement of transient ion-drift, such interfacial effects shall be minimized. 



 

Figure S2. Impedance spectroscopy measured at different temperatures in the dark at 0 V with an AC 

perturbation of 20 mV of (a) an inverted (NiOx/MAPbI3/C60) and (b) a regular (TiO2/C60/MAPbI3/spiro-OMeTAD) 

and perovskite solar cell. 

 

S2 DARK AND LIGHT CURRENT-VOLTAGE CHARACTERISTICSs 

Inverted perovskite solar cells have been shown to have only little hysteresis when 

illuminated,2–5 but hysteresis may still be present in the dark. Figure S3 shows the current-

voltage characteristic of an inverted perovskite solar cell measured with a scan rate of 

300 mV/second under 1-Sun from a solar simulator (Oriel 92250A) using a Keithley 2636A 

source-measure unit after 15 minutes light soaking. During this measurement, the sample 

was masked and placed in nitrogen inside an air-tight sample holder. Figure S4 shows current-

voltage characteristics of an inverted perovskite solar cell in the dark, measured between 180 

and 330 K. We note that there is a significant difference between the current-voltage 

hysteresis measured in the dark and under illumination. This difference may be caused by 

photo-induced ion migration, as it has been shown that the activation energy for ion migration 

is reduced by illumination.6,7 When the perovskite solar cell is cooled, the current-voltage 

hysteresis is reduced and almost vanishes at 180 K. 



 

Figure S3. Current-voltage characteristics of an inverted perovskite solar cell (NiOx/MAPbI3/C60) measured at 

1-Sun at room temperature. 

 

 

Figure S4. Temperature dependent current-voltage hysteresis measured in the dark at (a) 180 K, (b) 210 K, 

(c) 240 K, (d) 270 K, (e) 300 K, and (f) 330 K. 

 

S3 MOTT-SCHOTTKY CHARACTERISTICS 

Figure S5 shows the capacitance as a function of voltage measured at 10 kHz, where the 

measured capacitance corresponds to the geometric capacitance and the series resistance can 

be neglected (see Figure 1c). We observe a plateau at low voltage, which indicates full 



depletion under short-circuit conditions. In such a case of full depletion, the geometrical 

capacitance can be related to the perovskite permittivity. Assuming a parallel plate capacitor 

with the thickness of the perovskite layer, we obtain a permittivity of 15.3 for the perovskite 

layer, averaged over the measured temperatures, somewhat lower than the calculated value 

of 24.1 from electronic structure calculation in the absence of molecular reorientations.8  

 

Figure S5. Mott-Schottky characteristics of an inverted perovskite solar cell (NiOx/MAPbI3/C60) measured at 300 

and 180 K in the dark with an AC perturbation of 10 mV at 10 kHz. 

 

When a voltage 𝑉 is applied in forward direction, the depletion capacitance 𝐶𝐷 is increased. 

This increase in capacitance is correlated to a decrease in depletion-layer width. The 

depletion capacitance as a function of applied voltage can be approximated by the Mott-

Schottky relation as 

𝐶𝐷 = √ 𝑞 𝜀0 𝜀 𝑁2 (𝑉𝐵 − 𝑉) 

where 𝑞 is the elementary charge, 𝜀0 the vacuum permittivity, 𝜀 the perovskite permittivity, 𝑁 the doping density, and 𝑉𝐵 the built-in potential.9 From the 𝐶−2(𝑉) plot we obtain a built-

in potential of 0.92 V and a doping density of 7.0 x 1016 cm-3. The slope of the Mott-Schottky 

plot furthermore suggests a p-type MAPbI3 layer. Theoretical calculations predict that the 

p-type doping of MAPbI3 originates from negatively charged Pb2+ and MA+ vacancies, where 



positively charged I- vacancies might result in n-type doping.10 Note that the Mott-Schottky 

analysis is only meaningful when the depletion capacitance can be clearly identified.11 Since 

the ionic capacitance contribution dominates the depletion capacitance at high 

temperatures, we performed the Mott-Schottky analysis at 180 K. 

For the calculation of the concentration of mobile ions, a constant doping density of 

1 x 1017 cm-3 is assumed for all devices. Since our obtained doping concentration at 180 K is 

close to typical vales at room temperature (1 x 1017 cm-3),11 we believe that the measured 

temperature window lies within the extrinsic region in which the doping density is 

reasonably constant. 

 

S4 ION REDISTRIBUTION 

 

 

Figure S6. (a) Amplitude of the capacitance transient when applying a voltage of 0.4 V as a function of filling 

pulse duration. The grey line indicates the filling pulse duration used for the transient ion-drift measurements. 

(b) Background capacitance and capacitance transient after applying a filling pulse of 0.4 V for 1 second at 

300 K. The capacitance transient was measured after the background capacitance had reached a steady state. 

 

S5 TRANSIENT ION-DRIFT 

Transient ion-drift is a powerful method to quantify mobile ions in perovskite materials with 

very high accuracy in a fast and non-destructive way. By measuring the capacitance 



transient, the technique is uniquely able to distinguish between mobile cations and anions, 

with concentrations as low as 0.01% of the doping density.  

Transient ion-drift measures the change of capacitance over time under a constant bias. 

Assuming thermal diffusion to be negligible against drift and that the total ion concentration is 

conserved, the ion diffusion equation is given by: 𝛿𝑁𝑖𝑜𝑛𝛿𝑡 = 𝛿𝑁𝑖𝑜𝑛𝛿𝑥 𝜇𝐸 

where 𝜇 is the ion mobility and 𝐸 is the electric field. Assuming that the electric field varies 

linearly across the depletion region, the electric field can be written as 𝐸(𝑥) = 𝐸0(1 − 𝑥𝑊𝐷), 

where 𝑊𝐷 is the depletion width.12 Assuming that the ions are initially uniformly distributed, 

the capacitance transient induced by ion drift is given by: 

𝑁𝑖𝑜𝑛(𝑡) = 𝑁𝑖𝑜𝑛0 exp 𝑡𝜏 

where 𝑁𝑖𝑜𝑛0 is the initial ion concentration and 𝜏 = 𝑊𝐷𝜇𝐸𝑀. Using the Einstein relation (𝜇 = 𝐷 𝑞𝑘𝐵𝑇) 

and expressing the electric field as a function of the doping density 𝑁 as 𝐸0 = 𝑞 𝑊𝐷𝑁𝜀0 𝜀 , where 𝑞 

is the elementary charge, 𝜀0 is the vacuum permittivity, and 𝜀 is the perovskite permittivity, 

the time constant can be written as: 

𝜏 = 𝑘𝐵 𝑇 𝜀0 𝜀𝑞2𝐷 𝑁   
where 𝑘𝐵 is the Boltzmann constant and 𝑇 the temperature. 𝐷 = 𝐷0𝑒− 𝐸𝐴𝑘𝐵𝑇 is the ion 

diffusion-coefficient where 𝐷0 is the attempt-to-escape frequency for ion migration and 𝐸𝐴 

the activation energy. 

To quantify ion migration within the perovskite layer, one has to carefully chose a perovskite 

device structure to avoid capacitive hysteresis, interfacial effects, and ion migration within 

the transport layers (see also section S1). It is not possible to distinguish between mobile 



ions within the perovskite layer and mobile ions within the other layers of the device 

structure. It is thus important to avoid, as far as possible, mobile ions within the other layers 

of the device structure. For measuring capacitance transients, one furthermore has to 

carefully chose an AC measurement frequency to measure the capacitance change of the 

perovskite layer. Most commercially available capacitance transient measurement systems 

use a fixed AC measurement frequency of 1 MHz. Measuring capacitance transients with 

such a high frequency requires devices with a very low series resistance. For most 

perovskite-based devices, however, the series resistance of the transparent conductive 

oxide starts to dominate the impedance response at such high frequencies (see also 

section S6). We thus conclude that an AC measurement frequency of 1 MHz is not suitable 

for measuring capacitance transients of perovskite devices in the majority of cases. 

 

S6 FITTING CAPACITANCE TRANSIENTS 

Figure S7 shows measured capacitance transients from 180 to 350 K with steps of 10 K 

measured at 0 V after applying a voltage pulse of 0.4 V for 1 second (identical to Figure 3a of 

the main text). The grey dotted lines in Figure S7(a) indicate the modelled capacitance decay 

due to ionic drift according to the values in Table S1. For the Arrhenius plot we limited the 

data analysis to temperatures where the number of exponentials to use was evident from the 

scan and the fit quality was good (as indicated by the colors in Figure 3c of the main text). 

Figure S7(b) to (e) exemplary show fits to capacitance decays at 200, 240, 290, and 340 K. 



 

Figure S7. (a) Measured capacitance transients together with the modelled capacitance decay due to ionic drift 

of A1, C1, and C2 shown as black dotted lines. Exemplary fits of measured capacitance decay at 200 (b), 240 (c), 

290 (d), and 340 K (d). One exponential decay function is used to fit (b) and (d) and two exponential decay 

functions to fit (c) and (e). Grey points are experimentally measured data and blue lines are obtained fits. 

 

S7 IMPEDANCE SPECTROSCOPY 

In a perovskite solar cell, mobile ions can migrate through the transport layer towards the 

electrodes. 13 As metals are prone to reacting with I- ion, this ion migration can induce an 

additional series resistance related to contact degradation.14 It is thus important to carefully 

choose an AC measuring frequency for which the impedance response corresponds to the 

capacitive character of the device, as oppose to the resistances. 

Figure S8 shows the impedance response of the perovskite solar cells at different 

temperatures. A phase angle close to −90° indicate that the impedance corresponds to the 

capacitance of the device. At frequencies above 10 kHz, the phase angle increases while the 

modulus approaches the series resistance of the device, indicating that the capacitance 

response is governed by the series resistance. We therefore measure the capacitance as a 



function of voltage and time with an AC frequency of 10 kHz, where the impedance response 

is dominated by the capacitance of the device over the whole temperature range of interest. 

 

Figure S8. Impedance spectroscopy of an inverted perovskite solar cell (NiOx/MAPbI3/C60) measured at 0 V with 

an AC perturbation of 20 mV in the dark, separated in (a) modulus and (b) phase angle. 

 

S8 TRANSIENT ION-DRIFT VERSUS DEEP-LEVEL TRANSIENT SPECTROSCOPY 

To distinguish between ion diffusion and electronic effects such as trapping and de-trapping, 

we compare the rise and decay time of capacitance following the forward bias and returning 

to short circuit conditions.12 For mobile ions, it is expected that the time required to lead to a 

uniform ion distribution after applying a forward bias is longer than the time required for ions 

to drift back to the interfaces after removal of the forward bias. In contrast, for traps the 

capture rate is much higher than the emission rate. Figure S9 shows the measured capacitance 

transient of an inverted perovskite solar cell measured at 210 K, showing that the measured 

capacitive transient is due to the diffusion of mobile ions. 



 

Figure S9. Capacitance transient of an inverted perovskite solar cell (NiOx/MAPbI3/C60) measured in the dark (a) 

while applying a voltage pule of 0.4 V and (b) at short circuit, after removing the voltage bias. The dashed lines 

are fits obtained using an exponential decay function with the timescale indicated in the inset. 

  

S9 STATISTICS AND REPRODUCIBILITY ACROSS LABORATORIES 

Many examples in the literature show that the performance of perovskite solar cells depend 

heavily on the fabrication, even in the same laboratory. Also, ions are presumably affected 

by, and affecting degradation. To study this, we measure seven different devices and 

compare the transient ion-drift response.  

Device #1 corresponds to the device shown in Figure 1 and Figure 3 the main text. Device #2 

corresponds to a device fabricated in the same way as device #1. Device #3 represent a poor 

performing device. Devices #4, #5, and #6 are devices fabricated in the laboratory of the 

University of Konstanz. All devices have the same device structure (NiOx/MAPbI3/C60), but 

the MAPbI3 layer has an average thickness of 105 nm in devices #1, #2 and #3 and 275 nm in 

devices #4, #5 and #6. The values obtained for activation energy, diffusion coefficient, and 

concentration for mobile ions for the measured samples are summarized in Table S1 – S6. 

Note that we could not resolve the slow MA+ species in the devices manufactured at the 

University of Konstanz. 



A typical current-voltage characteristic curve together with an external quantum efficiency 

spectrum of an inverted perovskite solar cell fabricated in Konstanz is shown in Figure S10. 

We furthermore note that in devices with an average MAPbI3 thickness of 275 nm, we 

observed an initial capacitance decay at high temperatures related to the redistribution of 

ions inside the depletion layer (see Figure S11).15 For DLTS, such an initial decay in 

capacitance is not expected, as the drift of free charge carriers out of the depletion layer is 

much faster than the emission rate. The capacitance change due to transient ion-drift, 

however, can be due to a combination of both the redistribution inside the depletion layer 

and the drift of mobile ions towards the contacts. 

 

Table S1. Characteristics of mobile ions in device #1 with a short-circuit current density of 17.7 mA/cm2, an 

open-circuit voltage of 0.98 V, a fill factor of 56%, and a power-conversion efficiency of 9.6%. 

 A1 C1 C2 

Migrating ion species I- MA+  MA+  

Charge negative positive positive 

Concentration (cm
-3

) (1.7 ± 0.1) x 1015 (2.5 ± 0.1) x 1016 (1.1 ± 0.1) x 1016 

Phase structure tetragonal tetragonal cubic cubic 

Activation energy (eV) 0.37 ± 0.01 0.95 ± 0.02 0.28 ± 0.01 0.43 ± 0.01 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(3.2 ± 1.4) x 10-9 (1.8 ± 2.4) x 10-12 (4.7 ± 2.7) x 10-12 (4.4 ± 3.7) x 10-13 

 

Table S2. Characteristics of mobile ions in device #2 with a short-circuit current density of 13.4 mA/cm2, an 

open-circuit voltage of 0.88 V, a fill factor of 48%, and a power-conversion efficiency of 5.7%. 

 A1 C1 C2 

Migrating ion species I- MA+  MA+  

Charge negative positive positive 

Concentration (cm
-3

) (2.1 ± 0.1) x 1015 (3.9 ± 0.1) x 1015 (2.4 ± 0.1) x 1015 

Phase structure tetragonal tetragonal cubic cubic 

Activation energy (eV) 0.39 ± 0.01 0.40 ± 0.01 0.23 ± 0.02 0.04 ± 0.03 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(11.6 ± 2.5) x 10-9 (3.4 ± 2.1) x 10-12 (6.4 ± 11.1) x 10-12 (1.6 ± 3.7) x 10-12 



Table S3. Characteristics of mobile ions in device #3 with a short-circuit current density of 3.6 mA/cm2, an 
open-circuit voltage of 0.74 V, a fill factor of 37%, and a power-conversion efficiency of 1.0%. 

 A1 C1 C2 

Migrating ion species I- MA+  MA+  

Charge negative positive positive 

Concentration (cm
-3

) (2.1 ± 0.1) x 1015 (3.4 ± 0.1) x 1015 (1.7 ± 0.1) x 1015 

Phase structure tetragonal tetragonal cubic cubic 

Activation energy (eV) 0.23 ± 0.01 0.26 ± 0.01 0.62 ± 0.01 0.71 ± 0.01 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(2.2 ± 0.8) x 10-9 (11.5 ± 2.1) x 10-12 (20.1 ± 16.6) x 10-12 (2.8 ± 2.7) x 10-12 

 

Table S4. Characteristics of mobile ions in device #5 with a short-circuit current density of 14.9 mA/cm2, an 

open-circuit voltage of 0.96 V, a fill factor of 62%, and a power-conversion efficiency of 8.8%. 

 A1 C1 

Migrating ion species I- MA+  

Charge negative positive 

Concentration (cm
-3

) (4.3 ± 0.3) x 1012 (1.6 ± 0.1) x 1016 

Phase structure tetragonal tetragonal cubic 

Activation energy (eV) 0.28 ± 0.09 1.91 ± 0.06 0.94 ± 0.06 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(0.2 ± 1.8) x 10-9 (5.3 ± 23.2) x 10-15 (1.7 ± 7.1) x 10-13 

 

Table S5. Characteristics of mobile ions in device #6 with a short-circuit current density of 16.1 mA/cm2, an 

open-circuit voltage of 0.97 V, a fill factor of 66%, and a power-conversion efficiency of 10.2%. 

 A1 C1 

Migrating ion species I- MA+  

Charge negative positive 

Concentration (cm
-3

) (7.0 ± 1.4) x 1013 (1.8 ± 0.2) x 1016 

Phase structure tetragonal tetragonal cubic 

Activation energy (eV) 0.16 ± 0.05 0.96 ± 0.07 0.25 ± 0.03 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(0.06 ± 0.26) x 10-9 (2.0 ± 11.3) x 10-13 (2.5 ± 5.9) x 10-12 

 

 



Table S6. Characteristics of mobile ions in device #7 with a short-circuit current density of 17.2 mA/cm2, an 

open-circuit voltage of 1.02 V, a fill factor of 70%, and a power-conversion efficiency of 12.1%. 

 A1 

Migrating ion species I- 

Charge negative 

Concentration (cm
-3

) (6.9 ± 0.8) x 1014 

Phase structure tetragonal 

Activation energy (eV) 0.32 ± 0.05 

Diffusion coefficient  

at 300 K (cm
2 

s
-1

) 
(1.2 ± 5.7) x 10-9 

 

 

Figure S10. (a) Current-voltage characteristic curve and (b) external quantum efficiency (EQE) spectrum of an 

inverted perovskite solar cell fabricated in Konstanz with a short-circuit current density of 19.9 mA/cm2, an 

open-circuit voltage of 1.04 V, a fill factor of 63%, and a power-conversion efficiency of 13.0%. The integrated 

current density of the EQE spectrum with the AM1.5G solar spectrum is 21.1 mA/cm2, very close to the value 

obtained from the current-voltage measurements. 

 



 

Figure S11. Ion-drift-induced capacitance transient measured at (a) 320 and at (b) 340 K in addition to an initial 

capacitance decrease related to the redistribution of ions inside the depletion layer.15 Grey points are 

experimentally measured data and blue lines are obtained fits. 

 

S10 DIODE FABRICATION 

Device #1, device #2, and #3 were fabricated as described in the main text, with the 

exception of device #2 which was fabricated using a NiOx precursor solution of 0.3M that was 

spun on the cleaned ITO glass at 4000 rpm for 15 seconds. 

Device #4, device #5, and #6 were fabricated as described hereafter: Indium tin oxide (ITO) 

glass substrates were cleaned by ultrasonication for 20 minutes subsequently in detergent in 

deionized water, deionized water, acetone, and isopropanol, followed by UV ozone 

treatment for 15 minutes. Nickel oxide (NiOx) precursor solution (0.5 M nickel(II) 

Acetylacetonate (Aldrich) in ethanol and Conc. HCl) filtered with PTFE 0.45 µm was spun on 

the cleaned ITO glass at 5000 rpm for 30 seconds, dried at 100°C for 1 minute and annealed 

at 320 °C for 45 minutes with a slow cooling rate.  

The MAPbI3 perovskite precursor solution was prepared by mixing of total 1.5 M of 

methylammonium iodide (MAI, Solaronix) and lead(II) iodide (PbI2, TCI) with 1:1 molar ratio 

dissolved in N, N-dimethylformamide (anhydrous, Aldrich) and DMSO for 3 hours at 60 °C. 

50 μL of the MAPbI3 precursor solution filtered through a 0.45 μm sized PTFE membrane 

was spun onto NiOx coated substrates at 4000 rpm for 50 seconds in a nitrogen-filled glove 



box. 10 seconds after the beginning of the rotation, 300 μL of Diethyl ether anti-solvent 

(anhydrous, Aldrich) was quickly dropped onto the substrate. After the MAPbI3 spinning 

process, the substrates were annealed at 100 °C for 3 minutes. 45 nm of C60 (0.2 Å/s rate) 

was deposited on top of the MAPbI3 layer by thermal sublimation at pressures below  

8 × 10-6 mbar. A thin layer of bathocuproine (99.99%, Aldrich) dissolved in ethanol 

(0.5 mg/ml) was then spun on top of the C60 layer with 6000 rpm for 15 seconds. Finally, 

100 nm of silver (1 Å/s) was deposited by thermal evaporation at pressures below 

8 × 10-6 mbar. 
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