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Abstract: This article describes the use of chemometric
methods for prediction of biological parameters of cell
suspensions on the basis of their light scattering profiles.
Laser light is directed into a vial or flow cell containing
media from the suspension. The intensity of the scat-
tered light is recorded at 18 angles. Supervised learning
methods are then used to calibrate a model relating the
parameter of interest to the intensity values. Using such
models opens up the possibility of estimating the bio-
logical properties of fermentor broths extremely rapidly
(typically every 4 sec), and, using the flow cell, without
user interaction. Our work has demonstrated the useful-
ness of this approach for estimation of yeast cell counts
over a wide range of values (105–109 cells mL−1), al-
though it was less successful in predicting cell viability in
such suspensions. © 1998 John Wiley & Sons, Inc. Biotechnol
Bioeng 59: 131–143, 1998.
Keywords: chemometrics; light scattering; microbial pro-
ductivity

Background

‘‘On-line measurement of the biomass concentration is no longer
a matter of comfort, it is essential for a functional controller.’’
(Sonnleitner et al., 1992, P. 5)

There is a continuing need for more and better methods
for estimating the biologically related properties of fermen-
tor broths and of other cell suspensions (e.g., Clarke et al.,
1985; Clarke et al., 1982; Junker et al., 1994; Kell, 1980;
Kell et al., 1990; Kell and Sonnleitner, 1995; Konstantinov
et al., 1994; Locher et al., 1992b; Singh et al., 1994; Sonn-
leitner et al., 1992). For its rapidity, convenience, and sim-
plicity, the routine assessment of the biomass content of a
cell suspension in almost every microbiological laboratory

is normally carried out by determining its turbidity or op-
tical density (Harris and Kell, 1985; Mallette, 1969). This is
typically performed by taking a sample, placing it in a con-
ventional spectrophotometer, illuminating with visible light
(whose wavelength is normally chosen for arbitrary or his-
torical reasons), and taking an absorbance reading, which
(in the absence of true chromophores) is numerically equal
to, and properly referred to, as the optical density. Calibra-
tion curves typically indicate that the OD (in a cuvette with
a 1 cm path length) is linear with the concentration of a
given type of biomass below an OD of 0.6 or so, whereupon
multiple scattering results in a breakdown of the Beer-
Lambert law, leading eventually to a complete indepen-
dence of OD from cell concentration. Because an OD (1 cm)
of 1 typically corresponds to cell concentrations of ca. 0.5
mg dry wt/mL, it is almost always necessary to dilute the
sample when it comes from a fermentation of biotechno-
logical interest.

The scattering of light by microbial and similarly sized
particles depends (nonlinearly) on a number of factors, in-
cluding the illuminating wavelength, the relative size of the
scatterer, and the difference in refractive index (RI) between
the scatterer and the medium (e.g., Bohren and Huffman,
1983; Carr et al., 1987; Davey and Kell, 1996; Harding,
1986; Kerker, 1983; Koch, 1968; Koch, 1984; Koch, 1986;
Latimer, 1982; Salzman, 1982; Sharpless et al., 1977; Van
der Hulst, 1957; Wyatt, 1968; Wyatt, 1973). In brief, Ray-
leigh scattering occurs when the particle sizes are signifi-
cantly less than the wavelength of the light, while a modi-
fied form of Rayleigh scattering, usually referred to as Ray-
leigh-Debye-Gans scattering, occurs when, as in the case of
many bacteria, the particle size and wavelength of light are
of the same order (Koch, 1968; Koch, 1984; Wyatt, 1968).
One result of these considerations is that at lower cell con-
centrationsdirect measurement of the scattered light (neph-
elometry), typically at right angles to the illuminating beam,
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provides a much more accurate measure of particle density
than does the OD (Harding, 1986; Harris and Kell, 1985;
Keilmann et al., 1980; Mallette, 1969; Wyatt, 1973). How-
ever, given the dependence on the above factors of the
scattering at different angles, it would appear that even more
accurate and informative analyses could be obtained by
measuring light scattering at many angles simultaneously.

An excellent example of the potential of multiangle light
scattering measurements is provided by the study of indi-
vidual spores ofBacillus sphaericusby Ulanowski et al.
(1987), using a scanning laser diffractometer in which the
scattering was logged serially at every 1° between 4 and
176°, although in practice this was too often (Miller, 1990)
and caused problems of collinearity when using multivariate
calibration techniques. Despite the morphological simplic-
ity of the target biological system, and the lack of compli-
cations from studying heterogeneous suspensions contain-
ing many different cells, the light-scattering data obtained
(see Fig. 1 of Miller, 1990) were not at all well fitted by
theoretical (Lorenz-Mie) scattering curves containing four
free parameters (two radii, two refractive indices). Carr and
colleagues also pursued the differential light-scattering ap-
proach (Jepras et al., 1991), and obtained very reproducible
data from a variety of fermentations usingEscherichia coli,
Saccharomyces cerevisiaeand Pseudomonas aeruginosa,
but while the same group successfully exploited a variety of
other modern optical methods for the extraction of very
useful information from microbial fermentations (e.g., Carr,
1990; Carr et al., 1987; Chow et al., 1988; Clarke et al.,
1986; Clarke et al., 1985; Jepras et al., 1991; Perkins et al.,
1993), they were unable to account for the differential light
scattering data on the basis of theoretical scattering models.

The generalized approach of multi-angle light scattering
was developed within microbiology under the term, ‘‘dif-
ferential light scattering’’ by Wyatt (Wyatt, 1968, 1973,
Wyatt and Jackson, 1989) and has been embodied in a com-
mercial instrument, the DAWN (Wyatt, 1993a,b). This in-
strument has the singular ability to acquire data through the
simultaneous action of 18 separate detectors. However, it
has been reported (Wyatt, 1993a,b) that the general ap-
proach has not been promoted, probably because of its in-
ability, contingent on the complexity of biological systems
involved, to adequately account for the differential light
scattering in terms of the physical theories alluded to above
(Wyatt et al., 1972).

Over the last decade there have emerged many powerful
chemometricmethods forsupervised learning(see e.g.,
Brereton, 1990, 1992; Mark, 1991; Martens and Næs, 1989;
Massart et al., 1988). These can be exploited to form cali-
bration models which accurately relate the rather featureless
multivariatemultiangle light-scattering data to the biologi-
cal, chemical, or physical properties of interest. In this
sense, a very suitable analogy is that of near-infrared spec-
troscopy, which also produces broad and featureless multi-
variate data that without chemometrics, are analytically use-
less, however,with chemometrics it is an outstandingly

powerful, convenient, and noninvasive analytical technique
of very wide applicability (see e.g., Corti and Dreassi, 1993;
Drennen et al., 1991; Hildrum et al., 1992; Martens and
Næs, 1989; Martin, 1992; McClure, 1994; Murray and
Cowe, 1992; Næs et al., 1993; Osborne et al., 1993).

In this article, we report on an experimental study in
which we have used multiangle light scattering measure-
ments and multivariate calibration techniques to produce
robust predictive models for the monitoring of cell suspen-
sions over a wide concentration range in which the optical
density attains values grossly in excess of those measurable
by conventional means.

MATERIALS AND METHODS

Equipment

A DAWN DSP-F laser photometer (supplied by Optokem
Instruments Limited, Pistyll Farm, Nercwys, Clwyd CH7
4EW, UK) was used to acquire the multiangle responses.
This instrument passes light from a 5mW Helium-Neon
laser source into a chamber which may contain either a
scintillation vial or a flow cell. The flow cell is arranged so
that the biological suspension may be passed through the
cell continuously and without interrupting data acquisition.
Most of the experiments reported here were carried out
using scintillation vials. Figure 1 shows the basic layout of
the DAWN DSP-F photometer. Eighteen detectors are ar-
ranged asymmetrically around the sample chamber to rec-
ord light intensities at angles in the range 22.5°–147.0°
relative to the laser input.

To remove the effects of variation in detector sensitivity,
the DAWN must be calibrated prior to experimentation.
This is achieved by first measuring the voltages registered

Figure 1. Basic layout of the DAWN DSP-F laser photometer. Light
from the helium-neon laser source is passed through the sample chamber.
The scattering intensity at 18 angles is recorded by sensors placed asym-
metrically around the chamber.
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by the photodiodes in the absence of any light, then mea-
suring the voltages registered in the presence of light from
an isotropic scattering agent (colloidal gold suspension,
RMS radius 7.36nm). These voltages determine a zero-
offset and gain value for each detector which are then ap-
plied as corrections via the instrument’s software. The de-
tectors are normalized automatically to have the same char-
acteristics as the 90° detector, which is calibrated using a
light standard with a known Rayleigh ratio (e.g., toluene).
Using this methodology, the DAWN DSP-F photometer can
be calibrated in an instrument-independent manner. The
supplied DAWN data acquisition software performs all of
the necessary transforms to the measured voltages, so that
once calibration of the instrument has been performed, the
final voltages recorded to disk are in a normalized form.

The DAWN DSP-F is connected to an IBM compatible
PC via an RS423 serial link, and controlled using the sup-
plied software. A digital signal processor, internal to the
DAWN instrument, is responsible for acquiring the light
sensor outputs and passing them through the link to the PC.
The DAWN software provides a number of sophisticated
data management and analysis methods. However, these
methods are more suited to the analysis of light scattered by
largemolecules,and are of little use in the analysis of the
largeparticlesof interest in our study. In general, the data
acquired from the DAWN were saved directly to disk in a
textual form, and all data management was performed using
our purpose-built database and chemometric software.

The DAWN DSP instrument was designed primarily for
the analysis of macromolecules such as proteins (Wyatt,
1993a,b), and is exceptionally sensitive because the scatter-
ing by proteins is far less than that by cells. Our early
experiments using suspensions of mixtures of latex beads of
known concentration, and similarly characterized suspen-
sion of yeast, revealed that saturation of detectors was a
significant problem. Although the DAWN permits external
monitoring of the individual detector voltages, rather sur-
prisingly it has no provision for generating a warning in the
event of detector saturation. To overcome the problem of
saturation, we placed a neutral density filter (Kodak N.D.
1.00, measured optical density 0.94) in the incident laser
beam to provide the optical attenuation necessary to prevent
detector saturation. The consequent loss of instrument sen-
sitivity did not prove to be a problem in our subsequent
experiments.

To form models that may be used to predict parameters of
biological samples from their light scattering measure-
ments, it is necessary to obtain data objects that contain the
detector voltages and the corresponding biological param-
eters. For recording cell counts, our ‘‘gold standard’’
method was a Coulter Z1 counter (Coulter Electronics Lim-
ited, Northwell Drive, Luton, Bedfordshire LU3 3RH, En-
gland). This method is based on detecting the changes of
conductivity observed when a cell suspended in a conduc-
tive liquid passes through a small aperture. Each cell pro-
duces a ‘‘spike’’ in resistance as it passes through the ap-
erture, with the number and size of such spikes providing

information on cell count and size distribution (Harris and
Kell, 1985). The Z1 cell counter is specified as having an
accuracy of ±1% of a ‘‘reference Coulter system’’ (Coulter
Electronics Ltd., 1994) and a precision of better than 1% at
metered volumes of 0.5 mL and 1 mL. This specification
suggests that the Coulter Z1 would be ideal for cell count
determination, and that using the DAWN DSP-F is unnec-
essary. However, there is the issue of sample preparation
and measurement time. The Coulter system requires that the
cells be diluted in an electrolyte solution and, to meet the
above specification, the average of at least 20 replicate mea-
surements must be taken. In addition, care must be taken to
ensure that the aperture does not become blocked, and that
the range of sizes counted is calibrated correctly (otherwise,
cell fragments and other small particles may be included in
the reported count).

In contrast, once suitably calibrated, the DAWN system
should be capable of taking undiluted suspension samples
and, by using a flow cell, a number of replicate measure-
ments taken automatically. In fact, for our experiments, the
DAWN integrated sampled light scattering profiles over a
period of 20 sec for each recorded sample. The minimum
sampling duration is 0.125 sec, but samples recorded at this
rate would show a correspondingly higher noise level.

Chemometric Methods

One may perform a simplistic analysis of, for example, the
cell concentration of a suspension merely by examining the
light scattered by the cells (e.g., Fig. 2). While such an
examination does not provide any quantitative information,
it is easy to reason that the scattering profile provided at low
cell concentrations will show higher intensities at the for-
ward scattering angles than that at higher cell concentrations
(Davey and Kell, 1996). The use of multivariate calibration
methods to calibrate light scattering against cell count thus
seems a reasonable approach to the problem of forming
quantitative models.

Figure 2. Example light scattering profiles for yeast cells (average di-
ameter 6.5 mm) at high (7.4 × 107 cells mL−1) and low (2.8 × 107 cells
mL−1) concentrations. Simple inferences may be made using these profiles
(e.g., more light is scattered in the forward direction at low concentrations).
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Multivariate calibration software was written in-house to
provide portability between a number of machine architec-
tures and operating systems and a flexible interface to other
locally used software. It also allowed for the easy incorpo-
ration of many calibration methods into a single, coherent
framework. The software was written in C++ (Stroustrup,
1994), and is based around a single ‘‘modeling’’ class, from
which all the calibration methods are derived using the ‘‘in-
heritance’’ mechanism of C++. This allows new methods to
be implemented and slotted into the framework supplied by
the client software with little or no change to that client
software. In particular, such general methods as model vali-
dation can be written without reference to the calibration
method in use, and each new calibration method imple-
mented inherits all validation methods from the top-level
modeling class.

The client software consists of the set of simple ‘‘wrap-
per’’ programs which read matrices from file and invoke the
model operations appropriate to their operation. The modu-
lar nature of the class structure means that, in general, ex-
actly the same sequence of C++ statements is used to build
models for each modeling type. Therefore, the modeling
type can be specified by the user at program startup, and the
model-specific code is isolated to one or two lines of C++.
At present, the software can form and use models of the
following types: MLR, PCA, PCR, PLS1, PLS2, (e.g.,
Brereton, 1990, 1992; Martens and Næs, 1989) and a variety
of standard back-propagation artificial neural network types
(Bishop, 1995; Chauvin and Rumelhart, 1995; Ripley,
1994; Rumelhart et al., 1986; Werbos, 1994).

To ensure portability, at this level the software is com-
mand-line driven. The input and output data, along with the
generated model, are stored in text files. These are labeled
by specifying their names on the command line, along with
the modeling type used and any model-specific parameters.
However, it is easy for other programs to generate such
command lines and thus invoke the C++ software. Such
programs can also ask the C++ software for details of
model-specific operations, thus allowing dynamic alteration
of the internal defaults of the models. This is particularly
important in the case of back-propagation neural networks,
where one may wish to adjust the learning rate, momentum,
etc. The mechanism for such user-defined parameters is
standardized, so that any modeling method added to the
class hierarchy may supply its own parameters.

The DAWN specific application of this software is based
around the Microsoft Access II Database system, running
under Windows NT. The textual data files recorded by the
DAWN software may be read into Access and stored using
the experiment name and sample number as keys. Any sub-
set of the stored data may be extracted and passed to the
modeling methods. In addition, the Y data corresponding
with any given sample can be retrieved, and samples can be
retrieved on the basis of their Y values only. This gives the
basis for a flexible chemometric modeling system. Models
generated by the C++ software can be stored in the data-

base, along with a description and the list of Y variables for
which they generate data. Hence, a model, once formed, can
be retrieved and used on any X data in the database. The
predicted Y values generated by the model will be stored
with their correct identification, both in terms of variable
name and sample identity.

When a modeling method is selected by the user, the
Access Basic code asks the C++ software whether there are
any user-defined parameters applicable to that method. If
so, the user is able to accept the default values or supply
new parameters. This provides a user-friendly method for
gaining access, where necessary, to the internals of model-
ing methods without having to build too much intelligence
into the Access Basic code; this is an important factor, as it
allows the addition of modeling methods to C++ with no
changes to the database software.

Several methods are supplied to allow the user to validate
the models produced. Validation is essential, because it is
possible to generate a model which takes into account allall
variations in the X data. In the real world, some parts of the
X variation are noise. Therefore, it is important to know
whether the model fits the random variations within the
data. A model that fits the noisy part of its training set is
unlikely to produce good predictions on unseen data.

Most chemometric methods are based around an iterative
process which improves the fit of the model to thetraining
data. At some point, the fit isoptimal, and subsequent it-
erations start to fit the noise effects rather than the under-
lying effects of relevance. The validation methods supplied
by the software allow the fitting process to be monitored, so
that it can be terminated at the optimal training point. The
following model validation methods are included:

1. Cross-validation (Geisser, 1975; Stone, 1974) splits the
training data set into a number of subsets and repeatedly
forms and evaluates models using disjoint collections of
these subsets. The average error recorded by this process
is assumed to be an estimate of the error generated by a
model based on the entire training set.

2. Training/test set validation is based on an explicit state-
ment of which points are to be used for forming the
model and which are to be used for evaluating its per-
formance. The software provides a number of methods
for deciding which samples are to be used for training
and testing. The first, and simplest, is user-selection.
Responsibility lies with the user for deciding which
points are for training and which are for testing. The
danger of this approach lies in choosing an invalid test
set for the training data. If the training data were to
encompass a different range of values from that covered
by the test set, then the results of model evaluation would
most likely be entirely spurious. The user must ensure
that such a situation does not occur. A method based on
the Duplex algorithm (Snee, 1977) has been incorporated
into the software, so that the computer itself can partition
the set of candidate samples into training and test sets.
This method ensures that no significant extrapolation of
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the training data set takes place in the test set, and that
the test and training points are distributed evenly
throughout the data space. By using this method, one can
be more confident that the model evaluation results are
representative of future datawithin the same region of
data space.The proviso that future data lie within the
same region of space is important. When a model is
formed, its performance is only determined over the
range of values used for training the calibration method.
We can say nothing about its performance for any other
range of values without testing it for such values. If this
problem is ignored, then one cannot be certain that the
predictions made for new, unseen X data are correct.

A number of methods have been considered for the ex-
amination of new X data, to give a warning when the model
is likely to produce invalid results (e.g., Euclidean, Penrose,
and Mahalanobis distance measures (Manly, 1994), and the
BEAST method (Lodder and Hieftje, 1988). Typically,
these methods are based on evaluating the distance from the
new points to the centroid of the set of training X data. As
such, all are subject to problems when the cluster structure
of the training data does not conform to certain assumptions.
For example, Euclidean and Penrose distance metrics do not
take into account correlations between the X variables, and
the BEAST method fails when the X training data contain
multiple clusters or curvature. As yet, we are not aware of
a satisfactory solution to this problem. For the experiments
presented in this article, we have had the luxury of being
able to ensure that extrapolation does not occur. In an in-
dustrial context, one would strive to ensure that the models
used encompass all expected data points so that significant
faults can be identified.

We have also used artificial neural networks using the
standard back-propagation algorithm (Rumelhart et al.,
1986); these were found essential in forming calibration
models over large ranges of cell concentration, where the
variations in detector outputs are strongly nonlinear.

Genetic programming has been introduced as a compara-
tive nonlinear approach to calibration model formation.

In addition, we have added the capability to pre-process
the calibration Y data. This allows us, for example, to take
the logarithms of the measured cell counts before forming
the model, and has provided significant improvements in
model performance over large ranges of cell concentration.

MATERIALS AND METHODS (BIOLOGICAL)

Here we consider measurements relating to a fermentation
of commercial significance:S. cerevisiae(Davey et al.,
1996; Locher et al., 1992a; Markx et al., 1991). To form
models of cell count, we needed to record the light scatter-
ing data for a range of known cell counts. Suspensions of
‘‘Mauri’’ yeast were grown aseptically overnight at 25°C in
‘‘YEP’’ medium, consisting of 10 g/L yeast extract, 20 g/L
peptone, 20 g/L glucose. The suspension was then spun
down and resuspended in a buffer containing 10 mM citric

acid, 50 mM KCl, 2.5 mM MgCl2 at a pH of 5.0 and ad-
justed to the starting concentration of interest, as measured
using the Coulter counter. Such suspensions were used
within 2 d ofgrowth. A serial dilution was then performed,
diluting the suspension by 5% at each step using more of the
buffer solution. The light scattering data were measured
using the DAWN software, and recorded on disk. The cor-
responding cell counts were measured using the Coulter
counter using a minimum size threshold of 3.5mm, the
mode cell size having been measured at 6.5mm, using a
Skatron Argus 100 flow cytometer (Davey et al., 1990;
Davey and Kell, 1996; Kaprelyants and Kell, 1992).

For our experiments on cell viability, we required sus-
pensions with a wide variety of viabilities. Because gener-
ating such suspensions by ‘‘natural wastage’’ was liable to
take a long time, we worked with mixtures of live and dead
cells. Yeast suspensions were grown as reported above. Half
of each suspension was heated to 70°C for 60 min to kill the
yeast. Mixtures of live and dead cells in differing propor-
tions were then formed to give a range of viabilities. The
cell counts and light scattering data were recorded as before.

For flow cell-based measurements, the suspensions were
prepared as before, and injected into the cell. At least 1 mL
of suspension was passed through the cell before each read-
ing was taken, to ensure that no significant mixing of
samples occurred in the sampled data.

EXPERIMENTS AND RESULTS

We investigated the relationship between light scattering
and cell counts over a wide range of cell concentrations
using yeast suspensions. Figure 3 shows a selection of nor-
malized detector outputs for cell counts over four orders of
magnitude. The outputs are strongly nonlinear. However,
for each individual experiment, encompassing a small range
of cell count values, a subset of the detector outputs can be
found which shows a nearly linear relationship. For such
small ranges then, multivariate linear calibration methods
like PCR and PLS1 may be applicable. To cover the entire
range, however, we had to resort to nonlinear calibration
methods such as artificial neural networks, or to the use of
piecewise linear approximation. We consider the latter
method first.

The Piecewise Linear Approach

The aim of this approach is to form a number of quantitative
linear models of cell concentration, each permitting predic-
tion of counts over a small range of values. A classification
model is then formed to choose which of the quantitative
models should be used for a given sample. In this manner,
we effectively handle the curvature in the light scattering
profile by approximating it using a number of straight lines.

First, however, we need to ensure that linear models are
sufficient to approximate the curves over reasonable ranges
of cell concentration. Figure 3 suggests that this is the case.
For each serial dilution experiment, a number of detector
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outputs can be seen which are approximately linear over the
range of the experiment. Therefore, a linear method should
be reliable over such ranges. We now demonstrate this with
an example from experiments in the 107 decade.

Three serial dilution experiments were used in this ex-
ample, two for training and testing the model, the third for
demonstration of the model performance. Each experiment
recorded 20 samples at cell counts in the range 2.8 × 107–
7.5 × 107 cells mL−1. The data from the first two experi-
ments were amalgamated to form a single data set, then
partitioned using the Duplex method to give training and
test sets in which the problems of extrapolation and uneven
data spread are minimized. PLS1 regression was used to
form models with up to 18 factors using the training set
data. For each number of factors, the corresponding model
was validated using the test set data.

Figure 4 shows the Root Mean Square Error of Prediction
(RMSEP) for predicting the test set data for each PLS1
model. To obtain accurate predictions, we need to choose a
number of factors which gives rise to a low RMSEP. Con-
versely, we need to choose a model in which each factor
represents a relevant effect. Ideally, both of these require-
ments amount to the same thing. However, with these par-
ticular data, one could use anything from 2–5 factors with
approximately the same performance from each. The ‘‘sim-
plicity’’ requirement (Seasholtz and Kowalski, 1993) sug-
gests that we use the 2-factor model. A useful check is to
examine the weightings applied to the detector outputs in
order to generate each factor. Figure 5 shows such weight-
ings. We can see a strong degree of structure in the weight-

ings for factors 1 and 2, while those for subsequent factors
appear much more random.

Another check of this effect is to examine the degree of
variation of the weightings across different data sets. If a
factor encodes a relevant effect, then we would expect it to
be stable across (equivalent) training data sets. However, if
the factor encodes noise effects, then it is likely to be
strongly data dependent. Two 5-factor PLS1 models were
formed using our previous ‘‘training’’ and ‘‘test’’ sets (note,
there is no extrapolation consideration in forming models on

Figure 5. PLS ‘‘W’’ loadings for the first five factors in the cell count
model. These encode the importance of each detector in the determination
of each factor. For a continuous effect like light scattering angle, one would
expect that the loadings should show a structured profile. This is true for
the first two factors, but subsequent ones show disorder, which suggests
that they are encoding noise effects.

Figure 3. Normalized detector outputs for a range of cell concentrations.
Each curve segment represents a detector output for a single serial dilution
experiment. Over the whole range of cell count values, any given detector
response is highly nonlinear.

Figure 4. Prediction error vs. number of PLS1 factors used in model
formation, test/training set validation on Duplex partitioned cell count data
with cell counts in the range 2.8 × 107–7.5 × 107 cells mL−1.
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the test set in this case, because we are not evaluating model
error, merely looking at the structure of the model). The
correlation coefficient between corresponding ‘‘W’’ load-
ing vectors in each model was then calculated, giving values
of 1.00, 1.00, 0.55, 0.87, and 0.51 for the first five factors.
By using the RMSEP data from Figure 4 and these corre-
lation coefficients, we can again assume that a 2-factor
PLS1 model is optimal for this cell concentration range.

The results of applying the 2-factor PLS1 model to the
training, test, and external validation data are show in Fig-
ure 6. The training set points are shown for reference only.
The performance of the model for such points could be
arbitrarily improved by including factors which are irrel-
evant to the cell count effect, and thereby modeling the
noise. Such an action would remove the generality of the
model and make it useless for predicting cell counts from
future samples. The test set points are predicted more reli-
ably than the external validation points. This is probably due
to the fact that, while we use 20 points to represent cell
counts in the training set, these points are taken from only
two experiments. So, inter-experiment noise is poorly char-
acterized by the model. In addition, we note that the per-
formance for low concentrations is worse than that at the
high concentration range. This could be an indication that
the range of values used is close to the limit that can be used
to approximate the nonlinear nature of the problem.

To implement the ‘‘piecewise’’ or hierarchical approach
to fitting the nonlinearity with linear models, we need a
controling quantification model to select the appropriate lin-

ear PLS1 model to use for any given X data. The method
used for generating this model was PLS2. Light scattering
data for a wide range of X values were classified into de-
cades, 105, 106, etc. Each decade was represented by a
single Y variable, having the value ‘‘1’’ if a value lay within
that decade, ‘‘0’’ otherwise.

By using five Y variables in this manner, rather than a
single linear variable, we can reduce the effect of nonlin-
earity. If we modeled a value in the range 5–9, we would
require that the modeling process encompasses nonlinearity.
Representing the ranges in this manner means that the mod-
eling process needs only to identify an area of space using
some form of threshold, something that does not necessarily
require a nonlinear approach.

PLS2 uses an iterative method to form a model which can
predict more than one Y variable. Using the Y variables
described above, we can form a PLS2 model that outputs a
value close to 1 for the Y variable number which corre-
sponds to the appropriate decade for each light scattering
sample. All other Y variables should be close to 0 for such
a sample. By placing a simple threshold at 0.5, we should be
able to decide in which decade a sample lies and hence,
apply the appropriate linear model to form an accurate pre-
diction of cell count. Figure 7 shows the learning curve for
the PLS model based on a Duplex partitioned amalgamation
of 12 experiments, containing 208 sample points. Using five
factors, the classification error is optimal at 11.5%. Check-
ing the W correlations shows that all five factors are stable.

Figure 8 shows the results of applying the classification
model to the test data. The values plotted on gridlines in-
dicate the decade in which the classification places each
point. The remaining points show the value of log10(cell
count), and are coded to indicate which points were mis-
classified by the model. Most such points are close to the
border between classes, a problem which will be inherent in
this arbitrary partitioning of the data. However, this form of
misclassification will tend to push points from one model-

Figure 6. Predicted vs. measured cell counts using the two factor PLS1
model. The training set predictions are shown for comparison only. By
adjusting the modeling method, one can make the training set self-
prediction arbitrarily good (fitting the noise in the training set). Such an
overfit model will have no practical use due to its dependence on the noise
present.

Figure 7. Learning curve for the classification PLS2 model used for
determining which PLS1 model should be used to form predictions of cell
count. The PLS2 model outputs a value close to 1 for the Y variable
corresponding to a given modeling range, and close to 0 for other Y
variables.
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ing region into the nearest adjacent one, so the linear models
are likely to remain reasonably applicable, subject to the
strength of the nonlinearity. A solution to this problem,
given enough data, would be to ensure that the training set
for each linear model contains a range of values which
overlaps that of adjacent linear models by a few percent,
thus ensuring that boundary points are well represented no
matter which side of the boundary the classification process
places them.

Having demonstrated that linear models can handle the
nonlinearity in the light scattering data for small ranges of
cell counts, and that a classification model is capable of
partitioning the data into such small ranges, we can now
demonstrate that the combination of such methods allows
the prediction of cell count over a wide range of values.
Figure 9 shows the results of applying such an arrangement
to unseen test data.

This method provides an adequate method for predicting
cell counts on the basis of the light scattering data. How-
ever, selecting suitable ranges of values for the PLS1 mod-
els is very much a rule of thumb. In addition, for each range,
a large number of points must be recorded to form a reliable
model. The prediction process is cumbersome, because five
models must be stored, and their use requires two steps.
While the effects of these problems could be reduced by
writing dedicated software and sampling many more points,
a better method would be to apply a nonlinear modeling
method to the problem. The next section describes this ap-
proach.

The Nonlinear Approach

Artificial Neural Networks (ANNs) are, in many ways,
similar to PLS, in terms of structure. While PLS forms a
linear regression of the X variables onto a (usually smaller)
set of factors, or underlying effects, then forms a linear
regression from these onto the Y variables, ANNs form
nonlinear relationships between the X variables (supplied to
‘‘input nodes’’) and the factors (‘‘hidden nodes’’), and be-
tween the hidden nodes and output nodes. While the PLS1
algorithm is simple, and can be calculated using a simple
regression formula for each factor, ANN training methods
typically use an iterative approach, ‘‘training’’ the network,
evaluating how it performs, then adjusting its internal
weightings to reduce the error. By repeating this training/
evaluation/adjustment process many times, the internal
weightings can be optimized. Because the internal relation-
ships are nonlinear, the network can be trained to approxi-
mate an arbitrary nonlinear mapping.

We have used three layer back-propagation ANNs to
form models of cell count over the entire range, with dif-
fering degrees of success. We now discuss the methods used
and their results.

Modeling Total Cell Counts

This is our first, simplistic approach: Train the network
using the cell concentration data, and use RMSE as the error

Figure 8. Performance of the classification model for test data over a
wide range of cell counts. For those samples where the model selects the
wrong decade, it selects an adjacent one.

Figure 9. Predicted vs. measured cell counts for test data over a wide
range of cell counts. Each decade of counts was modeled using a two-factor
PLS1 model. For each light scattering sample, the appropriate PLS1 model
was chosen using the output of the PLS2 classification model. This PLS1
model was then applied to the X data to form the cell count prediction.
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metric. Figure 10 shows the results of applying a two hid-
den-node network, previously trained in this manner, to the
training data. The performance is very poor for the training
data, and for all test-sets, except at high cell counts. The test
set RMSEP of the optimally trained network is 8.76 × 107.

The problem with this training method becomes apparent
when we consider the error value that is being minimized.
At the top end of the cell count range (ca. 109 cells mL−1),
an RMSE of 8.76 × 107 cells mL−1 is under 10%. At the
bottom end (ca. 105 cells mL−1), this is nearly a 100,000%
error. Conversely, to reduce the RMSE value to 104 cells
mL−1 (i.e., 10% at the bottom end), for instance, the net
would have to fit the top-end values to within 0.001%, a
clearly unattainable goal, given the stated accuracy of the
Coulter counter. So, when we minimize RMSE, the net is
very likely to form a model which predicts the top-end
values more effectively than the low-end ones. What we
need is a different error metric to optimize.

Total Cell Counts, Proportional Error

Our second class of networks uses the back-propagation
algorithm to minimize the mean squared proportional error,

l

n(i=l

n Syi − ŷi

yi
D2

rather than mean squared error. Scaling by the measuredy
allows errors at all cell count ranges to contribute to the
training process equally. Again, a number of models were
formed, using between 2 and 8 hidden nodes. The propor-
tional errors reported by these methods were in the region of
6. In other words, the average error on the predictions for

models produced using this method was of the order of 6
times the magnitude of the measurements themselves.
Clearly this approach is also insufficient, possibly because
the ‘‘sharpness’’ of the detector output vs. cell count curve
is making the global error minimum very difficult to find.
Given enough time and effort, it may be possible to form a
reliable network for these data. However, our approach has
been to apply a transformation in order to ‘‘smooth out’’ the
relationship.

Transformed Cell Counts, Proportional Error

Our final approach was to transform the cell count data and
to train a neural network to predict the transformed num-
bers. A simple inverse transformation is then used to obtain
the cell count predictions. The transformation used was to
take the logarithm (base 10) of the cell counts. Using a five
hidden node neural network using squared proportional er-
ror as the error metric, and a linear output node, we have
generated a reliable model of log10(cell count).

Figure 11 shows the resulting predictions of log10(cell
count) for unseen test data. The average absolute error for
this range is 0.32%. Of course, what we are aiming to pre-
dict are the absolute cell counts, rather than their trans-
formed values. A small percentage error in log10(cell count)
will translate into a rather larger percentage error in the
predicted cell count. The spread of errors shown in Figure
11 translates to an average absolute error in predicted cell
count of 5.6%, with a maximum error of 25.5%. In 82% of
test set cases, the error in predicted cell count is less than
10%.

Genetic Programming

The nonlinear nature of the data obtained from light scat-
tering has been represented successfully by neural networks.
One disadvantage in using this technique is that the internal

Figure 10. Self-prediction for an optimally trained two hidden-node neu-
ral network for yeast cell count prediction. The network performs very
poorly at all except the highest cell counts. This result is seen for networks
with a variety of different hidden-node counts, and also for networks with
a linear output node.

Figure 11. Predicted vs. measured transformed cell counts for validation
cell data using a five hidden-node neural network.
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representation of the relationship between X and Y vari-
ables is not easily interpreted. Genetic programming is a
technique of software evolution developed by Koza (1992).
The method attempts to provide problem solutions using
automatically generated computer programs that require no
explicit coding. The method effectively performs a directed
search through the abstract space of possible computer pro-
grams from random starting points to find an optimal pro-
gram. Genetic Programming follows the Darwinian theory
of evolution and survival of the fittest to attain its goal. The
fundamental principle of genetic programming is the cre-
ation of a population of computer programs, generated by
the random selection of operators (such as +, −, log, etc.)
and variables. These computer programs are then tested via
a fitness function. Programs having a high ‘‘fitness’’ are
preferentially selected to ‘‘breed’’ genetically, thus forming
a second generation. This procedure is repeated until a pro-
gram with a suitable fitness score has been evolved.

Before initiating an evolution process, several factors
must be taken into consideration to control the development
of suitable programs such as the population size, functions,
and operators to be included in the instructions, the diversity
of the training examples, and the size of the programs
evolved. A larger, more complex function is less able to
generalize, introducing the danger of overfitting.

Application of Genetic Programming to Light
Scattering Data

It was hoped that by using genetic programming a simple
function would be derived from the evolved program to
provide an insight into the relationship between the input
and output data. This experiment was carried out using a
commercial GP package from SDI Products Ltd. (Fenton,
MO) The software was installed and run on a 486DX66 PC
under Windows NT 4.0. The evolution process was config-
ured using the following parameters:
Number of ecosystems = 5.Each ecosystem begins its re-
production process as a distinct population following its
own evolution course. The initial individuals are randomly
generated to provide diverse populations. During the course
of evolution however, migration may occur between popu-
lations at a probability of 0.1. This allows populations that
have a low fitness to increase their diversity.

Ecology size = 20.This is the maximum number of indi-
viduals that make up a population.

The following operators were included as candidates in
program formation: +, −, *, /, SQR (squaring), MIN(x, y),
MAX(x, y), HI1 (Detector output having the greatest value
for this sample), LO1 (Detector output having the smallest
value for this sample), AVG (Average of all detector out-
puts for this sample).

In fact, a set of additional operators is used by the genetic
programs internally, but these are never produced in the
output programs.

Selection of individuals was fitness proportionate, i.e.,

each individual was weighted according to its fitness rank,
increasing its probability of being chosen. The fitness func-
tion was the difference between the predicted Y value cal-
culated by the individual, and the measured Y value of the
training data.

The acceptable training set error threshold was set at 0.1
log units. When the score reached this level, or the training
time had reached 99 h the evolutionary process halted. If the
training time reaching 99 h without an acceptable training
set error threshold, the population was deemed not to have
solved the problem. The training data used were identical to
the log-transformed training set used in the neural network
analysis.

Ecology 0

RMSEP4 1.9% after 153,983 generations.

log(Cell Count) =

8.45033−

MIN ~1 − d2 − d4 − 3 * d18 − AVG, d14! +
2 * d1 + d2 + d4 − 2 * d5 − d18

HI1
+ d6

Ecology 1

RMSEP4 2.4% after 2,393,177 generations.

log~Cell Count! = MAX S1 − MIN ~HI1 − d1 − d2 * ~1

+ 2 * d8! − d5, LO1! −
~d3 − d11!

d9
, d4D

+ 6.2743

Of the five ecologies, one failed to converge to a satisfac-
tory solution in the given time. The remaining ecologies
break down into pairs having very similar structures, i.e.,
ecologies 0 and 2; and ecologies 1 and 4. This similarity
could be due to ‘‘parallel evolution,’’ where the same so-
lution has been arrived at independently, or to the migration
between ecologies of members of the populations. We,
therefore, only present the results of applying ecologies 0
and 1.

As can be seen from Figures 12 and 13, the programs
perform comparably well, despite their radically different
structure. We attribute this fact to the structure within the
data. All of the variables show a strong relationship to the
cell concentration, and hence, anyreasonably sizedsubset
of the variables can be expected to form a model. Here, the
model for ecology 0 has based its predictions on detectors 1,
2, 4, 5, 6, 14, and 18, while ecology 1 has used detectors 1,
2, 3, 4, 5, 8, 9, and 11.

Despite our assertion that the formulae resulting from
genetic programs are more easily interpreted than those re-
sulting from neural networks, in this case the strong struc-
ture seen means that any interpretation is more likely to be
dependent on the particular ecology examined than on any
information underlying the data.
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Using the DAWN ‘‘Flow Cell’’ Attachment

The DAWN ‘‘flow cell’’ attachment allows the instrument
to record light scattering dynamically. It consists of a trans-
parent cylinder with a fine-bored hole through it. The laser
shines along the axis of this hole, through which media may
be pumped. The DAWN software allows computer control
of the pump, so that dynamic monitoring of light scattering
in a bulk medium may be achieved without user interaction.
It is, therefore, of interest to demonstrate the use of the flow
cell in our application.

Figure 14 shows the detector outputs for a range of cell
count values when the flow cell is used. The response is
more nonlinear than the corresponding response when scin-
tillation vials are used. For this reason, we would expect
PLS to perform less well and this is, indeed, the case.

Using a neural network, the nonlinearity is fitted more
closely, as shown in Figure 15. Over the range of values
tested, the neural network model based on flow cell
(RMSEP4 1.63 × 106) data performs comparably with that
based on scintillation vial data (RMSEP4 1.62 × 106). The
strong nonlinearity is highlighted once again at sample 19.

This sample is outside the range of the training data, and the
neural network fails to predict its value adequately.

Viability

We have spent much time trying to use light scattering data
for prediction of the percentage of cells which are ‘‘viable’’

Figure 13. Validation set prediction for ecology 1.

Figure 15. Using a two hidden-node neural network for prediction of cell
counts from flow cell-generated light scattering data. The neural network
performs comparably to one based on the scintillation vial data.

Figure 12. Validation set prediction for ecology 0 using a genetic pro-
gram.

Figure 14. Detector outputs for a narrow range of cell counts using the
flow cell and the scintillation vial. The nonlinearity in the light scattering
profile is much more pronounced when the flow cell is used.
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(as judged by the methods described above). We have, how-
ever, failed to form any reliable models. We feel that this is
due to the gross effect of changes in concentration ‘‘swamp-
ing’’ the small effect due to viability. When the cell con-
centrations were allowed to vary over only a small range,
trends could be seen in the predictions of viability during a
‘‘dilution’’ experiment, but these were accompanied by a
significant offset, sometimes giving rise to large negative
predicted viabilities! Of course, there are many possible
changes which can lead to cell death (Davey and Kell,
1996), and we have investigated only a small number of
methods. It is possible that further work may discover situ-
ations in which viability prediction by light scattering may
become feasible.

CONCLUSIONS

We have demonstrated that the combination of multiangle
light scattering and multivariate calibration techniques has
proved a powerful means of determining the cell concen-
tration in yeast suspensions over an exceptionally wide
range of cell concentrations. Genetic programming may be
used to form models of similar utility, but for this applica-
tion, they do not provide any increased interpretability over
neural networks. By using the flow cell for data acquisition,
in conjunction with a neural network for prediction, we may
acquire reliable estimates of cell count over an extremely
wide range of values without user intervention. We also
note that there are distinct qualitative differences between
the light scattering profiles from suspensions ofE. coli and
yeast (unpublished data) of similar optical densities. There
is, therefore, scope for future work on the determination of
cell size, morphology, and/or species. It is important to note
that our experiments have worked for a very well defined
set of experimental conditions, and that they may not be so
successful for biomass measurements of other biological
particles of industrial importance. However, on the basis of
our preliminary investigations of the scattering profiles of
other suspensions, we would expect that this general meth-
odology should have wide ranging use in a variety of in-
dustrial processes of biotechnological interest.
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