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Abstract: Stroke is a main cause of long-term disability worldwide, placing a large burden on indi-
viduals and health care systems. Wearable technology can potentially objectively assess and monitor
patients outside clinical environments, enabling a more detailed evaluation of their impairment
and allowing individualization of rehabilitation therapies. The aim of this review is to provide an
overview of setups used in literature to measure movement of stroke patients under free living condi-
tions using wearable sensors, and to evaluate the relation between such sensor-based outcomes and
the level of functioning as assessed by existing clinical evaluation methods. After a systematic search
we included 32 articles, totaling 1076 stroke patients from acute to chronic phases and 236 healthy
controls. We summarized the results by type and location of sensors, and by sensor-based outcome
measures and their relation with existing clinical evaluation tools. We conclude that sensor-based
measures of movement provide additional information in relation to clinical evaluation tools assess-
ing motor functioning and both are needed to gain better insight in patient behavior and recovery.
However, there is a strong need for standardization and consensus, regarding clinical assessments,
but also regarding the use of specific algorithms and metrics for unsupervised measurements during
daily life.

Keywords: stroke; activities of daily living; continuous monitoring; wearables; movement
quantification

1. Introduction

Stroke is classically characterized as a neurological deficit attributed to an acute focal
injury of the central nervous system by a vascular cause and is a major cause of disability
and death worldwide [1]. Around 80% of stroke victims survive [2], but their quality of
life can be severely impacted in both physical and physical-emotional domains [3]. The
physical effects of a stroke in the brain mainly manifest on the contralateral side of the body
and can be extremely persistent: research shows that 3–6 months after stroke, 55–75% of
stroke survivors still experience problems in functioning of the affected body side [4].

Motor functioning of stroke patients is typically assessed in the controlled environment
of a clinic, hospital or research laboratory, usually by asking the patient to perform standard
clinical assessment tests which include repetitive tasks or isolated movements. However,
this functional assessment is not representative of individual free-living behavior [5].
Because daily life functioning is severely affected by stroke [3], monitoring patients during
their activities of daily living (ADL) could provide more valid information about patients’
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functioning in their home environment. This knowledge enhances evaluation of the effects
of rehabilitation interventions, which could help to improve the interventions and quality
of care and thus eventually stroke patients’ quality of life.

Recent technological developments in wearable technology have led to a steady
increase in the number of studies monitoring movements related to activities of daily
living of stroke patients. These wearable systems benefit from a high acceptance rate
and simplicity and can be used independently from a base station, which makes them
easy to use outside controlled environments. However, most studies that use wearable
measurement systems in stroke patients are using them to measure repetition of a task or
routine in clinical or simulated ADL conditions in well controlled settings. Measurements in
these controlled conditions may result in performance bias and are thus not representative
of the actual patients’ functioning in their home environment [6]. Additionally, those
measurement systems used in simulated ADL environments might not be reliable for
examining daily life functioning in free-living environments: movements in the latter less
organized environment are self-initiated, usually task oriented, less predictable and have a
higher variation [7].

Lately, an increasing number of studies have tried to gain better insight into the
real-life behavior of patients by evaluating them in their free-living environment [8–11].
Using wearable sensors quantitative aspects of movement, such as the amount of activ-
ity, the number of steps or repetitions or the intensity of movement can be determined.
However, for functioning in daily life qualitative aspects of movement are also important,
since they provide information about how movements are performed, and insight into
those movement aspects that need to be tailored during rehabilitation. Since continuous
monitoring of stroke patients’ functioning in daily life has inherent challenges that are not
present in the clinic or lab, a clear overview of the possibilities for capturing quantitative
and qualitative aspects of movement through sensor-based assessment would be of great
interest. Furthermore, an overview of relations between such sensor-based measures and
existing clinical evaluation tools would provide insight in the validity and added value of
continuous movement monitoring in stroke patients.

A few prior studies executed reviews that are related to this topic. The study of
Noorkõiv et al. [12] is most comparable in scope to ours: with the aim of assessing the
additional clinical value of accelerometry after stroke they selected eight studies that in-
vestigated upper extremity activity after stroke, in free-living environments and discussed
correlations between accelerometry and clinical measures. However, many developments
in this area of research have happened in the last decade. Another interesting review for
our purposes is the one by Johansson et al. [13] who studied the use of wearable sensors
for clinical applications in stroke, as well as epilepsy and Parkinson’s disease. Their aim
was to synthesize knowledge from quantitative and qualitative clinical studies, executed
in laboratory, hospital as well free living environments, including studies of movement
as well as physical activity. They included 24 studies in stroke but did not provide an
overview of measurement set-ups. Gebruers et al. [14] systematically reviewed clinimetric
properties and clinical applicability of different accelerometry-based measurement tech-
niques in stroke patients. With that aim in mind, they also discussed correlations between
accelerometry and common stroke scales when reported in included studies. They did not
specifically focus on activity in free living conditions, however, nor did they discuss or
summarize the measurement setups used. Fini et al. [15] described how physical activity is
monitored following stroke, summarising methods and devices used across the stroke path-
way and documenting their psychometric properties. They did not study quantification of
movement nor did they focus on free living conditions, however. The most recent related
review [16] focused on how wearable technologies have been used over the past decade
to assess gait and mobility, but not other types of movement, in stroke patients. They did
not focus on free living conditions, either. In summary, there is no recent overview of
how quantitative and qualitative aspects of movement are captured through sensor-based
assessment in stroke patients, during free-living conditions. Furthermore, a recent overview
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of relations between such sensor-based measures and existing clinical evaluation tools in
this context is also missing.

The aim of this review is therefore: (1) to provide an overview of setups used in
literature to measure the quantitative and qualitative aspects of movements of stroke
patients under free living conditions using wearable sensors, and (2) to evaluate the
relation between the sensor-based outcomes that are obtained from moving in a free
living environment and the level of functioning as assessed by existing clinical evaluation
methods.

2. Materials and Methods

This review was performed according to the preferred reporting items for systematic
reviews and meta-analysis statement (PRISMA) [17] and registered in the international
prospective register of systematic reviews (PROSPERO registration ID: CRD42020207226).

2.1. Search Method

A literature search was conducted on the 30 December 2021, using the PubMed, Scopus
and Web of Science databases.

The search term was composed by four extensive parts separated by the AND
operators:

(1) Terms for stroke
(2) Terms for movement and motor symptoms
(3) Terms for wearable sensors and devices
(4) Terms for activities of daily living and continuous monitoring

This resulted in the following detailed search term (in PubMed format):

(“Stroke”[Mesh] OR Cerebrovascular Accident*[tiab] OR Stroke*[tiab] OR CVA[tiab])
AND
(“Movement”[Mesh] OR “Motor Disorders”[Mesh] OR Move*[tiab] OR Motor Symp-
tom*[tiab] OR Motor Disorder*[tiab])
AND
(Accelerometer*[tiab] OR “IMU”[tiab] OR Inertial Unit*[tiab] OR Gyroscope*[tiab] OR
“Electrical Equipment and Supplies”[Mesh] OR Sensor*[tiab] OR Wearable*[tiab] OR
Tracker*[tiab] OR Emg[tiab] OR Electromyograph*[tiab] OR Pressure Sens*[tiab] OR Strain
Gauges Based Sens*[tiab] OR Strain Sens*[tiab] OR Strain Gauge*[tiab])
AND
(“Activities of Daily Living”[Mesh] OR Activities of Daily Living[tiab] OR ADL[tiab]
OR Daily life*[tiab] OR “Continuous Monitoring”[tiab] OR “Remote Monitoring”[tiab]
OR “Monitoring, Physiologic”[Mesh] OR “Monitoring, Ambulatory”[Mesh] OR Home-
Based[tiab] OR “Environment”[Mesh] OR “Environment*”[tiab] OR “Communal*”[tiab] OR
“Commune*”[tiab] OR “Community*”[tiab] OR “Communities”[tiab] OR “Free-Living”[tiab]
OR “Free Living”[tiab] OR “Long Term”[tiab] OR “Real World”[tiab])

After combining the results of these searches, three steps were taken to identify eligible
studies. First, one author (MB) removed duplicates. Second, two authors (MB, HD) screened
the remaining papers independently by titles and abstracts, using the inclusion/exclusion
criteria specified below. Third, remaining full-text versions were assessed independently
by two authors (MB, HD). Any disagreements in the results were resolved in a consensus
meeting with a third assessor (CL).

2.2. Eligibility Criteria

Included studies involved patients after a stroke episode, used wearable sensor tech-
nology for movement assessment and quantifying patient movement. Articles in other
languages than English as well as abstracts, case reports, reviews, study protocols, non-
original research or theses were excluded. Furthermore, as we aim to only include studies
under free living conditions, by which we mean that participants carried out their nor-
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mal routine at the clinic or at home without any behavioral constraints or instructions,
studies were excluded if they used only standardized assessments or tests, if participants
performed a list of scripted activities, or if they used non-passive setups, such as robotic
assistance, electrical stimulation or feedback systems. Studies were also excluded if the
main topic was activity recognition or measurement of the amount of physical activity, e.g.,
by energy expenditure. Finally, studies taking place during the hyper-acute phase of stroke
(less than one day after stroke) were also excluded on the rationale that patients in such an
early phase—in most cases bedridden and clinically monitored—can hardly perform any
kind of activities of daily living.

2.3. Assessment of Methodological Quality

Each of the selected articles was assessed on methodological quality by two authors
(MB, HD) using the tool developed by Downs and Black [18] (Supplementary Materials).
For items 3–5, 10, 19, 25 and 27, we added an explanation to the table in Supplementary
Materials on how the items were interpreted in the context of our review. In case of incon-
sistencies regarding the scores on the items, disagreements were resolved by consensus or
by discussion with a third assessor (CL). The study quality was classified as high (score
≥14, 75% of the maximum score of 19), moderate (9 ≤ score < 14, 50–74% of the maximum
score) or low (score < 9, 50% of the maximum score). Low-quality studies were excluded
from further data extraction and synthesis.

2.4. Data Extraction and Synthesis

The data were extracted by two authors (MB, HD) using pre-formatted forms that
included authors and year of publication, experimental design, sensor technology and
placement, measurement task, population, outcomes extracted (clinical measures, sensor-
based measures) and results.

Note that the aim of the review was not to provide a meta-analysis of results; due to
the wide variety in the design of studies and outcome measures used it was not possible to
pool outcome measures together. Therefore, a narrative synthesis was created, covering
the main descriptive themes from the selected articles relevant for our research questions,
such as characteristics of the sensor setups and relations between sensor-based movement
characteristics and the patient’s clinical state. The latter were expressed in correlation
strength.

3. Results

The database search yielded 2561 studies. After removal of duplicates, 1671 remained.
Application of the eligibility criteria excluded 1610 articles during title and abstract screen-
ing and 28 articles during full-text screening. The remaining 33 articles were assessed for
methodological quality. One study was excluded due to poor methodological quality, scor-
ing only four points (Supplementary Materials). Out of the remaining 32 studies that were
included for data synthesis, 29 (91%) were of high quality [5,8–11,19–42] and three (9%) of
moderate quality [43–45]. This inclusion process is described in Figure 1. A summary of
all included studies is presented in Appendix A in Table A1 (continuous recording in the
clinic or during rehabilitation) and Table A2 (continuous recording during ADL).
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Figure 1. PRISMA graph.

3.1. Study Design, Sample Size and Participant Characteristics

All 32 included studies were observational, of which 17 were cross-sectional and
15 were prospective cohort studies. Sixteen studies assessed activities in the hospital or
rehabilitation center (Appendix A; Table A1), and sixteen studies activities of daily living in
the home environment (Appendix A; Table A2). Eleven studies compared results between
stroke patients and healthy controls and five studies had their stroke patients divided
into two groups for comparison between fallers and not-fallers [11], walking patients and
wheelchair users [5], inpatients and outpatients [25] or controls and patients following
Constraint Induced Movement Therapy (CIMT) [26,27] or other interventions [41].

In total 1076 stroke patients were included in the 32 studies, ranging from four to
169 stroke patients per study. Ten studies included data of in total 236 healthy controls
in their analysis [5,8,20,23,29,33,35,36,40,44,45]. The reported average age of the stroke
participants was 61 years while healthy participants were usually younger with a reported
average of 55.8 years.
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Reported Time After Stroke (TAS) was highly different between studies: five studies
took place during the acute phase of stroke [33,38,40,42,43]—less than a week, as defined
by Bernhardt et al. [46]—another eight included patients during the early sub-acute phase
[5,10,21,22,25,30,34,39] and eleven focused on chronic stroke patients [8,9,11,20,26–29,36,41,44].
The remaining articles included patients which were in different phases after stroke onset:
acute and early sub-acute [23,24], early-subacute and late subacute [19], late sub-acute and
chronic [35] or early, late and chronic phase [31,32,37,45]. See Appendix A for details.

3.2. Protocol

All studies consisted of at least one hour of continuous measurement. In 16 of the
included studies measurements were performed in pure ecological conditions at the home
of the participants (Appendix A; Table A2). In the other 16 studies participants were
measured or started being measured in the hospital or rehabilitation center (Appendix A,
Table A1). The clinical motor assessment instruments differed between studies, however,
the free-living part of their protocols was in essence the same: it started with the instrumen-
tation of the participant by the researcher, after which they could move freely during the
length of the assessment. In five studies participants were measured in both clinical and
home environments (Appendix A, Tables A1 and A2). The time patients were measured
ranged from 2 to 168 h. In the home environment the mean measurement duration was
73 ± 66.5 h while it was 54.5 ± 69.5 h in the hospital/rehabilitation environment. The
longest measurements were 24 h a day for at least 7 consecutive days in the home and
hospital environments [11,39,43]. In total 7936 h of healthy participant and 100,815 h of
patient data were gathered, the latter divided into 72,463 h in home environments and
28,352 h at hospitals and rehabilitation centers.

3.3. Sensor Placement and Technology

Accelerometers and activity monitors—with embedded accelerometer sensors—were used
in all studies (Figure 2). Five studies used inertial measurement units (IMUs) [19,31,32,34,45]
that combine tri-axial accelerometers, gyroscopes and magnetometers, although three of
them [19,34,45] did not include the data from the magnetometer in their analysis. The
other two studies [31,32] used IMUs as part of a full body motion measuring system. Two
studies of the same research group [29,44] used an activity monitor combined with an
electrohydraulic activity sensor that, by means of a fluid-filled tube laid over the arm from
shoulder to wrist, was able to measure the elevation of the arm with respect to the body.
Finally, de Lucena et al. [36] used a setup made from an accelerometer, four magnetometers
and a magnetic ring to measure the amount of hand activity.

Most of the studies—26 of 32—focused their research exclusively on upper limb func-
tioning and placed the sensors on the wrists or forearms, while twelve of these studies
also placed sensors on other parts of the body [10,19,20,26,29,31,32,35,36,39,43,44]. Except
for the studies [29,44], in which the (electrohydraulic) sensors were placed along the arm,
from shoulder to wrist, and [36] in which a magnetic ring was used as part of the setup,
the information of the additional sensors was used to derive parameters for full body kine-
matic models [31,32], activity recognition or gait detection [10,19,20,26,35,39]. Four studies
combined upper and lower body data [5,34,37,43], and three focused on walking only,
in particular on the amount, number of walking bouts and gait characteristics [11,21,23].
While the wrists were clearly the preferred location of upper body studies, gait and lower
body performance were evaluated by using single or a combination of sensors on the
sternum, lower back, hips, thighs and ankles [11,21,23].
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Figure 2. Sensor technology and locations. Overview of the locations of the sensors and type of
sensors used in the included studies, separated by the focus of the study. Note that several upper
limb studies include sensors on other parts of the body, but these are not used in the analysis or are
used for secondary purposes, such as activity recognition or development of a kinematic model of
the body [5,8–11,19–45].

3.4. Movement Measures Derived from Sensors

In total 110 different variables were reported that were calculated from the sensor sig-
nals, to examine quantitative (amount of movement) and qualitative (symmetry, variability,
kinematics) aspects of upper limb activity and gait performance.

3.4.1. Upper Limb Activity-Related Movement Measures

Most of the upper limb activity related movement measures were based on the magni-
tude of the 3D accelerometer vector

√
x2 + y2 + z2. Several studies [5,8–10,19,20,22,24,25,

28,30,35,36,39–43] integrated this value over a time window -ranging from a few seconds [8]
to several hours [10]- to quantify the amount and intensity of upper limb movement. Stud-
ies that reported their findings using similar values, like the signal magnitude area [34], or
‘counts’ are also included in this category. Counts represent filtered and summed accelera-
tion signals, created by the software of manufacturers of several commercially available
activity trackers. While counts also employ the magnitude of the acceleration, the algo-
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rithms used in creating them are not always available, which limits comparability between
activity trackers. A simplification of the movement magnitude is the use time, which is
calculated by applying a threshold to the amount of movement over a period of time, to
determine what is movement and what is noise. Use time is usually calculated using the
norm of the acceleration, except in the study by Flury et al. [37], that uses an algorithm
based on the information from triaxial gyroscopes. From these two values—magnitude
of movement and use time—measures of quantitative as well as qualitative aspects of
movement can be calculated.

Additionally, six studies [19,29,31,32,44,45], analyzed the quality of movement by
calculating kinematic measures from IMUs and electrohydraulic sensors, and one study [36]
focused on the number of hand movements using a custom setup and algorithm.

3.4.2. Measures of Quantitative Aspects of Upper Limb Movement

Unilateral and bilateral magnitude. Unilateral magnitude refers to the amount of move-
ment of either the affected upper limb (AUL) or the unaffected upper limb (UUL) of stroke
patients. When comparing unilateral magnitude of stroke patients with controls the AUL is
usually compared to the non-dominant upper limb (NDUL) of controls, and the UUL to
the dominant upper limb (DUL) of controls. In eleven studies [5,8–10,19,20,22,28,34,39,43]
these measures were used. Bilateral magnitude refers to the amount of simultaneous upper
limb movement (AUL + UUL), calculated per time window [8,28,30].

Unilateral, bilateral and total use time. Six studies [8,19,20,24,27,37] reported about the
total time spent over a magnitude threshold for individual AUL and UUL (DUL and NDUL
in controls) movements. Bilateral use time was reported by four studies [8,20,29,44] and
is defined as the total time of performing simultaneous upper limb movements. Finally,
by adding up the unilateral use time and simultaneous bilateral use time Total use time is
obtained [8,29].

3.4.3. Measures of Qualitative Aspects of Upper Limb Movement

Symmetry of arm movement, usually expressed as a ratio, is one of the main qualitative
outcomes evaluated in the literature. Magnitude ratio was reported in ten
studies [8,10,19,24,25,28,30,34,35,39] and refers to the magnitude of AUL acceleration rela-
tive to the magnitude of the UUL acceleration (AUL/UUL), per time window. It represents
the relative contribution of each arm to the activity, and is an indicator of symmetry in
use intensity. Similarly, the Use Ratio [25–27,29,30,37,44] refers to the use time of the AUL
relative to the use time of the UUL and is an indicator of symmetry of upper arm use. For
both magnitude and use ratio values near 1 indicate more symmetric movement.

Variability of arm movement as reported in three studies [25,33,38] is also used to
asses the quality of upper limb movement. Acceleration variability is usually calculated
as the standard deviation of the acceleration norm σ, per 1 min epoch [33] or over the
entire monitoring period [25]. Additionally, the norm of the standard deviation of the

acceleration vector components
√

σ2
x + σ2

y + σ2
z , is used as another measure of acceleration

variability that may be more sensitive to rotation movements [33,38]. Variation Ratio, both
a variability and a symmetry outcome, is calculated over the total recording period [25],
or for every 24 h [33] as the magnitude of AUL acceleration variability relative to the
magnitude of UUL acceleration variability. We include in this category the score proposed
by Le Heron et al. [40], because it is both a measure of variability and symmetry between
AUL and UUL.

Finally, arm kinematic measures provide several metrics of movement quality. Average
joint range of motion was reported in one study [31], describing the degree of motion of elbow
and shoulder. Additionally, several reaching related measures of movement were identified.
Reaching area [31] is defined as the encircled trajectory of the hand position relative to the
pelvis in the horizontal plane and describes the degree of motion of elbow and shoulder.
The maximum distance of the hand relative to the pelvis defines reaching distance [31].
Reaching counts refers to the number of times the hand showed a displacement of more
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than 10 cm away from the preferred hand position [31,32] and reaching ratio is calculated
as the ratio of reaching counts of the AUL relative to the UUL [31]. Distribution of forearm
elevation, reported in three studies [19,29,44], is based on the distribution of the forearm
elevation relative to the body over time. It is reported as a probability distribution [19] or
as movement time spent in separated vertical regions relative to the body [29,44]. Gross
arm movement time is the duration, during the recording period, of movements in which the
sum of a change of forearm orientation in yaw and elevation is more than 30◦ within a time
period of 2 s, but only if the movement occurs within a range of forearm elevation between
−30◦ and +30◦ [19,45].

3.4.4. Hand Movement Related Measures

Only one study focused on the study of hand movements during ADL [36]. This study
proposes the quantitative measure ‘HAND counts’ measuring the amount of movement of
the fingers with respect to the wrist, where the sensors are located.

3.4.5. Lower Body and Gait Related Measures

One study [34] studied lower limb activity using sensor measures equivalent to the
ones used for the upper limb, namely unilateral magnitude of the affected lower limb
(ALL) and unaffected lower limb (ULL) and magnitude ratio (ALL/ULL). Six included
studies [5,11,21,23,37,43] reported gait related measures obtained from walking bouts
during ADL. The extracted gait related measures were both quantitative and qualitative
and are widely used throughout gait studies. Quantitative gait measures were duration
of walking, number of steps and number of walking bouts [5,21,23,37] while the measures
of qualitative aspects of movement were gait symmetry, walking speed, stride time, stride
(step) regularity, standard deviation of accelerations, harmonic ratio, index of harmonicity, fre-
quency, amplitude and width of the dominant power peak, local divergence exponent and step-time
ratio [5,11,21,23,43].

3.4.6. General Measures of Quantitative Aspects of Movement

By applying human activity recognition (HAR) algorithms, four of the included studies
evaluated the duration of patient activities during the day, providing quantitative measures
of movement. The main measures of this type were percentage of activity time during the
day, i.e., how long patients engage in dynamic activities or passive activities expressed as a
percentage of the day [20,23,35,37].

3.4.7. Comparison of Movement Measures with Clinical Assessment Tools

Sixteen studies compared sensor-based movement measures with clinical assessment
tools [9,10,19,22,24–28,33–36,38,40,42]. All studies used Pearson or Spearman correlation
tests to determine the relationships between sensor-based measures and clinical assessment
scale scores, assuming a significance level of α = 0.05. Correlation values were interpreted
as follows: 0.00–0.30 = weak; 0.31–0.50 = low; 0.51–0.70 = moderate; 0.71–0.90 = strong;
0.91–1.00 = very strong. An overview of the correlations between the different sensor-
based movement measures and clinical assessment tools, in relation to sample size and
grouped by unilateral and bilateral magnitude, use time, magnitude ratio, time of use ratio,
movement variability, kinematic and hand movement outcomes is presented in Figure 3.
Here, the results are discussed per clinical assessment tool.
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Figure 3. Correlation Between outcomes and Clinical Scales. Outcomes have been grouped by unilateral and bilateral magnitude, use time, magnitude ratio,
time of use ratio, movement variability and kinematic outcomes. Color represents correlation value with the clinical scales, with hot colors expressing positive
correlation and cold colors negative correlation. Size of the circles represents the size of the sample of the related study. The name of the outcomes remains as close
as possible as in the original study. List of abbreviations: AC = activity counts, Acc = Acceleration, AR2-24 h = Asymmetry Rate Index (see ref.), ALL = Affected
Lower Limb, AUL = Affected Upper Limb, GAM = Gross Arm Movement, ULL = Unaffected Lower Limb, UUL = Unaffected Upper Limb. Clinical Scales:
AAUT = Actual Amount of Use Test, ARAT = Action Research Arm Test, BBT = Box and Blocks Test, BRS(-UE, -H) = Brunnstrom Recovery Stage (Upper Extremity,
Hand), CMSA = Chedoke McMaster Stroke Assessment Scale, FIM (-M, -C) = Functional Independence Measure (Motor, Cognitive), FMA(-UE)(-LE) = Fugl-Meyer
Assessment (Upper Extremity)(Lower Extremity), MAL(-AOU, -QOM) = Motor Activity Log (Amount of Activity, Quality of Movement), MRS = Modified Rankin
Scale, NEADL = Nottingham Extended Activities of Daily Living, (SMS-)NIHSS = (Supplementary Motor Scale) National Institute of Health Stroke scale, SIS = Stroke
Impact Scale, STEF = Simple Test for Evaluating Hand Function, TL = Thumb Localization Test [9,10,19,22,24–28,33–36,38,40,42].
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The Motor Activity Log (MAL) is a semi-structured questionnaire that assesses the
patient’s perception of how much the affected arm is used and the quality of movement of
its use during normal daily activities at home. These two aspects of upper limb functioning
are captured by the MAL’s two subscales: Amount of Use (AOU) and Quality of Movement
(QOM). The MAL uses a 5-point Likert scale, where a higher score reflects a better ability
to use the affected arm [47]. The MAL-AOU was assessed in four studies [9,10,22,28]
and the MAL-QOM in five studies [9,10,26–28]. Unilateral upper limb magnitude had a
low-to-moderate correlation with both MAL-AOU (r = 0.37–0.58) and MAL-QOM (r = 0.43–
0.65) [9,10,22,28]. The correlation between MAL-AOU and MAL-QOM and magnitude
ratio ranged from strong [10] (r = 0.84, r = 0.79, respectively) to moderate (r = 0.6, r = 0.66
respectively) [28]. Use ratio had a moderate-to-strong correlation with MAL-QOM (r = 0.52–
0.71) [26,27]. These findings imply a positive relation between a more balanced use of UUL
and AUL and both a better perception of use of the AUL and a higher quality of movement
of that limb, as captured by the MAL.

The Stroke Impairment Scale (SIS) for clinical assessment, is a self-reported index
of overall physical activity. Participants rate their ability to function in their daily envi-
ronment on a 5-point Likert scale, where a higher score reflects the experience of fewer
difficulties [48]. One of the articles used the total SIS score [27], one used the Physical
Function subscale [9] and one used the Hand Function and Mobility subscales [28]. Uni-
lateral and bilateral magnitude of upper limb function had a low to moderate correlation
with the Physical Function (unilateral: r = 0.42) [9], Hand Function (unilateral: r = 0.61,
bilateral: 0.43) and Mobility (unilateral: r = 0.41, bilateral: r = 0.39) subscale scores [28].
Magnitude ratio had a low correlation with the Mobility subscale score (r = 0.23) and a
moderate correlation with the Hand Function subscale score (r = 0.58) [28]. However, the
use ratio was only weakly correlated (r = 0.16) with the total SIS score [27], indicating that
overall self-reported ability of physical functioning is low to moderately correlated to the
aforementioned sensor-based metrics.

The National Institute of Health Stroke Scale (NIHSS) is an impairment scale consisting
of 15 items and has been widely used in clinical trials and as initial assessment tool after
stroke, with a higher score reflecting more severe stroke symptoms [48]. The NIHSS was
used in two studies [10,33], and the Supplementary Motor Scale of the NIHSS (SMS-NIHSS)
was assessed by two studies [33,40]. In this supplementary scale, motor function of the
shoulder, wrist, hip and ankle is assessed, while the NIHSS only includes proximal motor
function. The correlation of unilateral magnitude and magnitude ratio with NIHSS was
moderately negative (r = −0.69, r = −0.60, respectively), implying that more severe stroke
symptoms are characterized by low absolute AUL use and low AUL use compared to UUL
use [10]. Le Heron et al. (2014) found a moderate correlation with their index—similar
to variation ratio—and SMS-NIHSS (r = −0.53) and Iacovelli et al. (2019) found that the
correlation between the asymmetry index of the acceleration variability and both NIHSS
and SMS-NIHSS was moderate (r = 0.41, r = 0.51) but strong (r = 0.71, r = 0.81, respectively)
for the second index proposed, which is more sensitive to rotational movements. These
results imply that more severe stroke symptoms are characterized by a larger difference in
variability in acceleration between upper limbs, especially during rotational movements.

The Box and Blocks Test (BBT) can be considered a fast screening tool for assessing
gross manual dexterity, with a higher score reflecting better gross manual dexterity. The
BBT provides information about the speed of performance but qualitative information on
movement performance is not fully captured [49]. The correlation between several metrics,
computed with and without periods of walking, and the BBT ranged from moderate to
very strong [19]. Unilateral magnitude in- and excluding walking was moderately and
very strongly correlated with the BBT score (r = 0.69, r = 0.93, respectively). Similarly,
the correlation of the magnitude ratio AUL/UUL with the BTT increased from r = 0.49
to r = 0.84 when excluding walking implying that removal of walking periods from the
data positively affects the correlation between these metrics and the BBT score. BBT score
had a strong correlation with unilateral use time including walking (r = 0.77), a moderate
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correlation with distribution of forearm elevation probability excluding walking (r = 0.68),
a moderate correlation with the amount of hand use [36] and a strong correlation with
gross movement duration (r ≥ 0.90) [19]. Furthermore, Rand & Eng (2015) also found a
moderate correlation between BBT and unilateral magnitude of the affected arm (r = 0.62).
These results indicate a moderate to strong correlation of sensor-based measures and the
BBT score. It should be noted, however, that one of these studies only had 10 stroke
participants [19], making these correlations less reliable.

The Action Research Arm Test (ARAT) is a test for upper limb functioning that consists
of 19 items which are divided into 4 subscales: grasp, grip, pinch and gross movement.
A higher score on the ARAT reflects better upper limb functioning [49]. Unilateral AUL
magnitude was moderately correlated with the ARAT score in [22], while Urbin et al. [25]
found a strong correlation between the ARAT and five sensor-based metrics: AUL median
acceleration magnitude (r = 0.75), use ratio (r = 0.79), magnitude ratio (r = 0.83), acceleration
variability (r = 0.73) and variation ratio (r = 0.85). The strong correlation between these
variability and ratio metrics and the ARAT score implies that better function is characterized
by a more dynamic and symmetrical use of AUL and UUL.

Other clinical scales that were considered assessed functioning after rehabilitation
or during ADL, activity level or real-world arm use based on spontaneous behavior. The
Fugl-Meyer upper extremity motor assessment scale (FMA-UE) was found to be strongly
correlated with AUL magnitude (r = 0.82) [34] (r = 0.7) [42] and moderately to strongly
correlated with arm ratio measures, both magnitude (r = 0.82) [34] (r = 0.59) [42] and use
time (r = 0.85) [24]. A moderate correlation was also found between its lower extremity
scale (FMA-LE) and the leg magnitude ratio (r = 0.61) [34]. These results indicate that
higher sensor-based symmetry values are related to better performance. Strong correlations
were found between magnitude ratio and the Upper Extremity- and Hand-subscales of
Brunnstrom Recovery Stage (BRS), and the Simple Test for Evaluating Hand Function
(STEF)—affected side (r = 0.77, r = 0.71, r = 0.86, respectively) [10]. Furthermore, moderate
to strong correlations were found between unilateral magnitude and the STEF (r = 67 AUL,
r = 0.75 UUL) [10]. The rest of the correlations between clinical scales and sensor-based
metrics were either low or moderate [10,22,27,35,38,42].

4. Discussion

The aim of this review was to provide an overview of the literature describing setups
used to measure the quantitative and qualitative aspects of movements of stroke patients
under free living conditions using wearable sensors. Additionally, we evaluated the
relation between the sensor-based outcomes that were obtained from moving in a free-
living environment and the level of functioning as assessed by existing clinical evaluation
methods. Based on the results of our review it appears that continuous monitoring of motor
function of stroke patients during their activities of daily living using wearable sensors is
feasible, and an overview of setups is provided. The sensor-based outcomes showed weak
to strong correlations with the scores on clinical scales assessing motor functioning.

In comparison to earlier reviews related to our topic, we considerably updated the
discussed literature and added a structured overview of setups used to measure the
quantitative and qualitative aspects of movements of stroke patients under free living
conditions using wearable sensors. Noorkõiv et al. [12] included eight studies in their
review, of which five [5,24,27,28,41], are also included in ours. Johansson et al. [13] included
24 studies in stroke, of which eight [20,23–28,40] are also included in ours. Studies that
were discussed in earlier reviews, but not in ours, mostly either didn’t focus on free-living
conditions, or discussed physical activity instead of quantitative or qualitative aspects
of movement. Some of these earlier reviews [12,14], are also explicitly limited to studies
that used accelerometry or accelerometry-based proprietary devices such as actigraphs,
actiwatches or step counters, probably because the use of gyroscopes or combinations of
sensors in IMUs is more recent.
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The studies included in the current review made use of different wearable sensors
to measure movements of stroke patients in free living conditions. All included studies
used at least 3D accelerometer sensors. Reliability of accelerometer derived movement
measures has been addressed extensively in numerous laboratory studies. Until recently,
the technology necessary for long term measurements was not available. However, due to
technological advancements, accelerometers are now easily available at low cost and with
low power consumption, making long term data collection feasible. This might explain why
all studies included in the present review, derived measures from at least accelerometers,
to quantify movements during activities of daily living. Inertial measurement units (IMUs),
combining accelerometers with other sensors, can provide more specific information about
the patient’s movements, because by integrating information from 3D accelerometers,
gyroscopes and magnetometers, body segment orientation and joint angles can be calcu-
lated [50]. Considering technological developments concerning miniaturization and power
consumption, we expect to see a further increase in the number of studies of movement in
daily life using IMUs over the next years. Custom made equipment based on newer and
improved sensor technology may also provide an alternative to the monitoring of factors
that were impossible to quantify until now, such as the ‘manumeter’ [36] which allows the
quantification of hand movements during ADL. Another type of custom system used in
one of the studies included in this review, is the electrohydraulic activity sensor [29,44].
This sensor was used to provide information about the elevation of the forearm relative
to the body. In principle, for this specific purpose IMUs can be used also [31], which has
advantages in terms of wearability, usability and compliance. However, when the aim is
to accurately measure isolated upper limb multi joint movements, and the coordination
between the joints, single-sensor systems might not be adequate. More complex sensor
configurations, with additional sensors attached to each segment of the arm, as well as to
the trunk, will definitely improve the analysis of such multi-joint movements [19].

The location of the sensors was quite similar in the studies that focused on the mea-
surement of upper body movement. All studies used accelerometers on both wrists, except
for the studies using the most extensive measurement set-ups. The studies with elec-
trohydraulic sensors [29,44] needed setups covering the whole arms and some studies
using IMUs [31,32] needed additional sensors on the whole body to create a full-body
kinematic model. While this may provide more information compared to the use of only
accelerometers on the wrist (and sometimes sternum, waist and/or lower limb), the more
complex setup needed when using multiple IMUs may reduce usability and long-term
compliance. While the more technologically advanced IMUs may eventually replace single
3D accelerometers, the use of single 3D accelerometer sensors, that require less power
consumption and processing time, on one or only a few body positions allowing for easy
use, appears to be a good alternative for long term monitoring of upper limbs during
daily living.

For the identified studies of gait during ADL, only accelerometers were used, located
on the sternum, lower back, upper leg and/or lower leg, Accelerometers at these locations
have excellent to good validity and reliability for spatiotemporal gait measures, but for
measures of quality of gait this depends on the measurement protocol, algorithms and
design [51]. With respect to sensor locations, with the appropriate correction methods,
vertical and anterio-posterior accelerations were found to be reliable for back and shank
sensor locations in osteoarthritis patients [52]. For stroke patients in a controlled setting,
a sensor on the back was found to give reliable outcomes with respect to gait asymme-
try [52–54]. However, reliability has not been assessed for stroke patients during long-term
measurements in unsupervised settings.

Our overview of the reported correlations between sensor-based measures of move-
ment and clinical scale scores suggests that the sensor-based measures represent a different
construct compared to clinical scales thus providing additional information. After all, a
perfect correlation between sensor-based measures and clinical scale scores would indi-
cate that sensors and clinical scales provide the exact same information. In the studies
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included in this review, however, the correlation is mostly weak to moderate. This thus
implies that with sensors, additional information is gained on top of the information gained
from clinical scales. With patient reported outcome measures, insight into how patients
experience their functioning and limitations is gained, while sensors provide objective
information about (ADL) functioning. Previous research has shown that these are indeed
two different constructs with patient reported outcomes being influenced by e.g., amount
of pain experienced during ADL [55]. Both, however, provide information that is valuable
and important to improve the care of this patient group.

Limitations and Future Recommendations

Quality of included studies was mostly good, with only three studies being of moder-
ate quality (9%). Lowest scores were found for items related to corrections for or assessment
of confounding variables, and participant inclusion bias. The latter is a common issue in
patient studies; usually participants are not recruited from the general population. Further-
more, only studies written in English were included. While we selected studies for this
review based on well-defined selection criteria, it was very difficult to combine results from
multiple studies. We found a disparity among studies in time measured after stroke, the
units in which the outcomes were reported (e.g., actigraph counts vs. homemade counts vs.
g/min), the length of the measurement, the lack of transparency of algorithms to calculate
parameters, differences in design and methodology as well the use of a wide variety of
clinical scales to assess upper extremity functioning in stroke patients (see Figure 3). This
underlines the need for clear protocols, guidelines and transparency of algorithms, with
respect to the use of wearable measurement systems and the extraction of metrics from
these systems when monitoring stroke patients outside the clinic. Also, studies should
avoid reporting their findings in proprietary, closed-source units. When reporting time-
based outcomes, fraction or percentage of time should be prioritized over absolute values
in hours. We also encourage future studies to report the numerical value of the measures
extracted during their experiments, even if it’s not one of the aims of their study, as it could
help with future pooling and meta-analysis of such measures.

Thanks to technological developments, in the near future, more sensors will become
available that are “wearable”, precise and fast enough for monitoring in free living condi-
tions. For example, continuous monitoring using insole pressure sensors, instead of the use
of force plates which until now have been used in controlled settings [55], could provide in-
formation about the symmetry and loading patterns of hemiparetic gait during activities of
daily living (ADL). Wearable wireless electromyography could help to understand balance
impairments, loading and compensatory activity during ADL, for walking as well as upper
extremity function, providing directions for interventions [56]. Similarly, muscle activity
patterns of walking might provide important information about compensatory abilities
and intervention strategies [57,58]. Modern barometric pressure sensors, which are fast,
low in noise and can detect height differences as little as 10 cm should also be considered.
While some studies already used them to help improve activity classification for stroke
patients [59,60], to our knowledge no current study has used these to extract measures of
movement in stroke patients. This kind of sensor has already demonstrated very good
results, combined with accelerometers, in estimating Timed-up-and-go (TUG) scores from
ADL data in hip arthroplasty patients [61].

5. Conclusions

Continuous monitoring of motor function of stroke patients during their activities of
daily living using wearable sensors is in principle feasible and provides complementary
information to clinical assessments. With recent advances in technology the options,
regarding the type of sensors that can be used, increase, as well as the accuracy and
possibilities of extracting different metrics from them. Sensor-based measures of movement
provide additional information in relation to the scores on clinical scales assessing motor
functioning and both are needed to gain better insight in patient behavior and recovery.
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However, there is a strong need for standardization and consensus, regarding clinical
assessments, but also regarding the use of specific algorithms and metrics for unsupervised
measurements during daily life. Lab protocols and metrics, cannot simply be generalized
to unsupervised settings.
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Appendix A

Table A1. Continuous recording in the hospital or during rehabilitation.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Held et al.
[31]

Observational,
prospective
cohort study

• 14 IMU’s:
triaxial ACC,
magneto-meter
and gyroscope.
(Xsens suit)

• Feet, shoulders
lower + upper
legs, lower +
upper arms,
sternum,
sacrum

Recording during clinical
assessments + 3 h
recording during ADL,
at: T1: 2 wks. before
discharge
T2: right after discharge
T3: 4 wks. after discharge

Stroke: N = 4
Age: 48–55 y
TAS: 5.25 ± 4.08 m.
Mild-to-severe UL
impairment
(FMA-UE, ARAT)

FMA-UE, ARAT

• Average joint RoM in
elbow flexion,
shoulder abduction,
and shoulder flexion
(AUL)

• Reaching area of AUL
• Reaching counts of

AUL
• Ratio of UUL-AUL

reaching counts

• Clinical assessment
score showed no sign.
improvement after
discharge.

• Wide variability among
participants. In general,
AUL motor function
improved during
inpatient rehabilitation,
but declined between
T2 and T3

• Reaching counts:
increased on avg. from
63 (T1) to 202 (T3)

• Ratio of reaching
counts: increased on
avg. 26.8% (from T1 to
T3)

Held et al.
[32]

Observational,
prospective
cohort study

See [23] See [23] See [23] See [23]

• Reaching counts of
AUL

• Maximum reaching
distance of AUL

• Reaching counts (exact
value not available):
increased in all
participants from T1 to
T2.

• Maximum reaching
distance (exact value
not available) higher
during clinical
assessment compared
to daily life **.
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Iacovelli et al.
[33]

Observational,
Cross-
sectional

• Triaxial ACC
(EZ430-
Chronos, Texas
Instruments)

• Both wrists

24 h continuous recording
in clinic

Stroke: N = 20
Age: 69.2 ± 10.1 y
TAS: 3.3 ± 1.6 d,
AcuteHealthy
control: N = 17
Age: 70.4 ± 7.3 y

(SMS-)NIHSS

• MAe1_24 h = SD of
the acc norm.

• MAe2_24 h = norm of
the SD of the
acceleration axis.

• AR1_24 h
Asymmetry Rate
Index of MAe1_24 h

• AR2_24 h
Asymmetry Rate
Index of MAe2_24 h

• MAe1_24 h and
MAe2_24 h:
AUL < UUL ***

• AR1_24 h: Stroke
−70.5% ± 68.7%
Controls
−39.2% ± 44.6%

• AR2_24 h: Stroke
−83.2% ± 92.1%
Controls
−21.1% ± 20.2%

• Discarding passive
movements, AR2_24 h
with NIHSST1:
r = 0.714 ***, CI
95% = 0.42–0.90,
AR2_24 h with
SMS-NIHSST1:
r = 0.812 ***, CI
95% = 0.62–0.96.

• With passive
movements AR2_24 h
with NIHSST1:
r = 0.408, ns, CI
95% = 0.03–0.73)
AR2_24 h with
SMS-NIHSST1:
r = 0.546 *, CI
95% = 0.23–0.79
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Lucas et al.
[43]

Observational,
Cross-
sectional

• Triaxial ACC
(Axtivity AX3)

• Both wrists,
both ankles

>7 d continuous recording
in hospital

Stroke: N = 4
Age: 51.7 ± 13.2 y
TAS: Not reported
(Acute)

Oxford Grading
Motor Scale

• Acc norm (avg, min,
max).

• Movement
smoothness (signal
jerk).

• Power and Frequency
of the 1st and 2nd
dominant FFT
coefficient.

• Number of events per
hour.

• The SVM classified
“dependent” and
“antigravity” limbs (0–2
and 3–5 oxford grading
motor score, respectively)
with performance
significantly above
baseline in most
instances *

Narai et al.
[10]

Observational,
Cross-
sectional

• Triaxial ACC
(Air Sense) +
Uniaxial ACC
(Lifecorder EX4)

• Triaxial ACC:
both wrists

• Uniaxial ACC:
waist

24 h continuous recording
in clinic

Stroke: N = 19
Age: 77 ± 6 y
TAS: 17 ± 7 d

MAL-AOU and
-QOL NIHSS
BRS
STEF
FIM

• Movement counts (1
min integration of
band-passed acc
norm minus gravity)
of AUL, UUL

• Movement count
ratio of AUL-UUL

• Delta counts of
AUL–UUL

• AC per h during 24 h:
AUL 1332 ± 644 UUL
1734 ± 914 *

• During 12 h (daytime):
AUL 2123 ± 792, UUL
2730 ± 1069 *

• Correlation Movement
counts, Ratio of
AUL-UUL, Delta counts
AUL-UUL: MAL-AOU
r = 0.58, 0.84, 0.70
MAL-QOM r = 0.55, 0.79,
0.66 NIHSS r = −0.69,
−0.60, −0.27 BRS-UE
r = 0.64, 0.77, 0.52 BRS-H
r = 0.57, 0.71, 0.56 STEF
-AS r = 0.67, 0.86, 0.74
STEF-US r = 0.75, 0.54,
0.28 FIM-M r = 0.70, 0.50,
0.17 FIM-C r = 0.61, 0.39,
0.13 resp.
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Prajapati et al.
[21]

Observational,
Cross-
sectional

• Triaxial ACC
(Sparkfun
Electronics)

• Both Ankles

8 h continuous recording
in hospital, including
therapy

Stroke: N = 16
Age: 59.7 ± 15.3 y
TAS: 37.8 ± 24.7 d

CMSABBS

• Walking time.
• Duration of walking

bouts.
• Symmetry (swing

time ratios).

• Walking time: 47.5
min ± 26.6 min

• Number of walking
bouts: 57.7 ± 30.5,
duration: 54.4
s ± 21.5 s

• Decreased gait
symmetry during
free-living recordings
compared to clinic **
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Rand & Eng
[5]

Observational,
prospective
cohort study

• Triaxial
ACC(Actical)

• Both wrists, on
the hip

Stroke:
3 d continuous recording
at:
T1: first rehabilitation
week,
T2: 3 weeks after start
rehabilitation. Healthy
controls: 5 d continuous
recording.

Stroke ambulant:
N = 27Age:
64.3 ± 13.4 y TAS:
33.3 ± 19.2 dStroke
Wheelchair users:
N = 33Age:
58.2 ± 12.8 yTAS:
33.5 ± 22.1 d

Healthy Controls:
N = 40
Age: 71.3 ± 3.8 y

FMA-UE, ARAT
BBT
10 MWT 6 MWT
FIM

Mean daily use:

• Lower body (total
steps/3), for entire
day, during therapy,
entire day minus
therapy.

• Upper body ((AC
except walking
time)/3)

• Number of steps per
day (median, IQR):
Stroke ambulant T1 306
(82–3095) T2 1423
(178–3183) Stroke
wheelchair users T1 143
(71–386) T2 283
(80–1650) All stroke T1
176 (78–1891) T2 302
(96–2315). Controls
5202 (3548–6333)
Walking during
therapeutic sessions
accounted for 12% (T1)
and 26% (T2) of entire
day AC in ST.

• Upper limb AC
(median, IQR): Stroke:
T1 AUL 35,734
(18,167–84,238) UUL
147,500 (90,477–224,835)
T2 AUL 41,541
(19,340–105,980) UUL
164,875
(95,287–212,920)

• Controls: DUL 184,761
(131,523–241,819)
NDUL 159,698
(107,826–217,489)
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Urbin et al.
[25]

Observational,
prospective
cohort study

• Triaxial ACC
(GT3Xþ,
ActiGraph)

• Both wrists

22 h continuous recording:
T1: after pre and
T2: posttest inpatients
T3: after 24th training
session + recording during
24th training session
(outpatients).

Stroke inpatients:
N = 8
Age: 56 ± 10.4 y
TAS: <30 d
Stroke outpatients:
N = 27
Age: 62 ± 9.4 y
TAS: >6 m

ARAT
NIHSS

• AUL-UUL:

- Time use ratio
- magnitude ratio
- variation ratio

• AUL:

- median acc norm.
- variability

• Bilateral median
• Bilateral variability

• Five metrics improved
from T1 to T2, all *.
AUL-UUL use ratio:
0.54 ± 0.18 to
0.86 ± 0.28 magnitude
ratio 0.24 ± 0.32 to
0.71 ± 0.65 variation
ration 0.60 ± 0.23 to
0.80 ± 0.22 AUL
median 0.05 ± 0.09 to
0.23 ± 0.21 variability
0.53 ± 0.16 to
0.72 ± 0.19

• T3 AUL-UUL ratios
and AUL outcomes
significantly higher, all
***, during the training
session compared to
free-living environment
(exact values not
available).

• Correlation between
ARAT and Time use
ratio: rho = 0.79 ***
magnitude ratio
rho = 0.83 *** variation
ratio rho = 0.85 *** AUL
median rho = 0.75 ***
Variability rho = 0.73 ***
Bilateral median,
variability n.s.
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Sanchez et al.
[23]

Observational,
prospective
cohort study

• Uniaxial ACC
(ADXL202,
Analog Devices)

• 1 on both thighs,
3 on sternum

8 h continuous recording
at:
T1: TAS 1 w
T2: TAS 12 w
T3: TAS 48 w

Stroke: N = 23
Age: 58.13 ± 12.58 y
TAS: ~1 w
Healthy Controls:
N = 20
Age: 55.35 ± 12.70 y

–

• Amount outcomes:
percentage of time
walking, standing,
sitting, lying and
sedentary.

• Distribution
outcomes: number
and mean duration of
walking bouts,
walking coefficient of
variation, sedentary
exponent.

• Quality outcomes:
step regularity, gait
symmetry, stride
regularity, step-time
ratio
(affected/unaffected),
walking speed

• % of time

Walking

T1: 3.35% ± 2.19
T2: 12.45% ± 2.37 **

Standing

T1: 8.25% ± 3.65
T2: 27.14% ± 3.15 **

Sedentary

T1: 87.37% ± 4.27
T2: 70.07% ± 3.19 **
T2 to T3 n.s. change

• Number of walking
bouts T1: 26.29 ± 12.85,
T2: 103.87 ± 12.28 ** T2
to T3 n.s. change

• Sternum sensor
improvement of

Gait symmetry

T1: 1.12 ± 0.04
T2: 1.03 ± 0.04
T3: 1.02 ± 0.04 (T1–T3 *)

Step regularity

T1: 0.48 ± 0.06
T2: 0.59 ± 0.05
T3: 0.64 ± 0.05 (T1 -T3 *)
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Thrane et al.
[24]

Observational,
Cross-
sectional

• Uniaxial ACC
(ActiGraph
GT1M)

• Both wrists

24 h continuous recording.
Car driving, sleeping data
excluded.

Stroke: N = 31
Age: 65 ± 14 y
TAS: 10.6 ± 6 d

FM
Sunnaas
ADL-index 5STS
NIHSS

• UL use time
• Arm movement ratio

Average UUL use:
4.5 h ± 1.7
Average AUL use: 3
h ± 1.7 h
Arm movement ratio: 1.5
(1.1–2.0) (Median, IQR)
Correlations between 5STS
and
FMA rho = −0.529 **
AUL use time rho = −0.627
***
Arm movement ratio
rho = −0.643 ***
Correlations between FMA
and
AUL use time rho = 0.601 ***
Arm movement ratio
rho = −0.851 ***
Latter supported by
regression analysis:
β = −0.05 ***.
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Waddell et al.
[30]

Observational,
prospective
cohort study

• Triaxial ACC
(Actigraph
Link)

• Both wrists

24 h continuous
recording at
T1: TAS 2 w
T2: TAS 4 w
T3: TAS 6 w
T4: TAS 8 w
T5: TAS 12 w

Stroke: N = 22
Age: 68.7 ± 9.9 y
TAS: <2 w

ARAT
MoCA
SAFE

• Hours of AUL use
• AUL-UUL use ratio
• Magnitude ratio

(zero-centered,
negative values imply
greater UUL
movement)

Bilateral magnitude

• High variability in UL
performance across
participants for all
metrics. But it was
shown that
performance increased
significantly (p value
not reported) on the
first 12 weeks after
stroke.

• T1: Hours of AUL use
2.82 ± 1.8 h AUL-UUL
use ratio 0.52 ± 0.26
Magnitude ratio
−4.5 ± 2.9 Bilateral
magnitude 72.5 ± 16.9

• Estimated slope values
(estimates rate of
change per 2 weeks for
the study duration) of
the hierarchical linear
model for the entire
sample: Hours of AUL
use: 0.17 ± 0.04 *** Use
ratio 0.02 ± 0.004 ***
Magnitude ratio
0.23 ± 0.05 ***

Bilateral magnitude
1.46 ± 0.49 **
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Andersson
et al. [34]

Observational,
Cross-
sectional

• 5 triaxial ACC.
(Shimmer 3)

• Trunk, both
wrist, both
ankles

2 sessions of 48 h recording
in a rehabilitation clinic.
Only daytime activity (8
h-20 h) was used.

Stroke: N = 26
Age: 55.4 ± 11.9 y
TAS: 56 ± 24 d.
Mild-to-severe
impairment
(FMA-UE/LE)

FMA-UE,
FMA-LE,
modified
Ashworth Scale,
10 MWT,
MRS

• Arm and leg activity
(Signal magnitude
area)

• Arm and leg activity
ratio

Sensor based measures
correlated with with clinical
measures:

• AUL activity, FMA-UE
r = 0.82 ****

• AUL activity, 10 mWT
r = 0.79 ****

• Affected leg activity,
10 mWT r = 0.77 ****

• Arm activity ratio,
FMA-UE r = 0.82 ****

• Leg activity ratio,
FMA-LE r = 0.61 ****

• Leg activity ratio,
10 mWT r = 0.52 ****

Reale et al.
[38]

Observational,
prospective
cohort study

• Two triaxial acc.
(EZ430-
Chronos, Texas
Instruments)

• Both wrists

T1 (TAS 48–72 h): 24 h
continuous recording
T2 (TAS 90 d): MRS
evaluation

Stroke: N = 20
Age: 69.2 ± 10.1 y
TAS: 48–72 h

NIHSS
MRS
ASPECTS

• Asymmetry Rate
Index for the 24 h
period (AR2_24 h)

• AR2_24 h parameter
during the acute phase
value of MRS at 90 d
r = 0.69 ****

• AR2_24 h > 32% during
acute phase predicts a
poorer outcome (RS > 2
at 90 d), with
sensitivity = 100% and
specificity = 89%
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Regterschot
et al. [39]

Observational,
prospective
cohort study

• 3 triaxial acc.
(Activ8 Activity
Monitor)

• Both wrists and
the thigh of the
nonaffected leg

Continuous recording for
one week (only during
walking hours for the wrist
sensors)
At:
T1: TAS 3 w (rehabilitation
center)
T2: TAS 12 w
(rehabilitation center or
home depending on the
patient)
T3: TAS 26 w (home)

Stroke: N = 33
Age: 57.3 ± 8.5 y
TAS: 3 w
(NIHSS 5 A/B or 6
A/B 4 ≥ score > 0)

NIHSS
FMA-UE

Using the thigh sensor to
select only sitting and
standing periods, mean
daily values for:

• Total AUL AC
• Total UUL AC
• Ratio of AUL / UUL

AC
• Mean AUL AC per

sit/stand hour.
• Mean UUL AC per

sit/stand hour.

Change in time of the sensor
measures:

• Total AUL AC per day:
T1 to T2 = +30% *

• Total UUL AC per day:
T1 to T2 = −13% **** T1
to T3 = −22% ****

• Total UUL AC per day:
T1 and T2 = −13% ****
T1 and T3 = −22% ****

• AUL / UUL AC ratio
T1 to T2 = +43% **** T1
to T3 = +95% ****

• Mean AUL AC per
sit/stand hour T1 to
T2 = +31% **** T1 to
T3 = +48% *

• Mean UUL AC per
sit/stand hour. T1 to
T3 = −18% ***

Le Heron et al.
[40]

Observational,
prospective
cohort study

• Triaxial ACC
(Crossbow
Imote2)

• Both wrists

1 h minimal recording in
clinic at: T1: 54 h (median,
47–100)
T2: T1 + 24 h.

ST: N = 20
Age: Median 77 y,
IQR 59–82 y
TAS: (T1) 54 h
(median, range
47–100)
Mild-to-moderate
stroke severity
(NIHSS)
HC: N = 10
Age: Median 64 y,
IQR 48–71 y

(SMS-)NIHSS
ICC of time-matched series
of Acc. spectral power for
both arms.

Correlation between NIHSS
at T1 and the magnitude of
ICC: rho = −0.53 *.
The optimal diagnostic
threshold for ICC magnitude
was 0.7. At this threshold,
ROC curve analysis using
the ICC magnitude to
distinguish stroke patients
from controls yielded an
AUC of 0.84
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Table A1. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Gebruers et al.
[42]

Observational,
prospective
cohort study

Triaxial ACC
(ambulatory
monitoring).
Both wrists.

T1: (<1 w after stroke) At
least 24 h continuous
recording.
T2: T1 + 3 m, MRS
assessment.

Stroke: N = 129
Age: 70 ± 11.4 y
TAS: <1 w, median 1
d

NIHSS,
FMA-UE (T1, T2),
MRS (T2)

AUL AC
AUL/UUL AC ratio

Correlation between:
FMA-UE (T1):
FMA-UE (T2) r = 0.69 *
MRS: r = −0.66 *
AUL AC:
FMA-UE (T2) r = 0.70 *
MRS: r = −0.60 *
AUL/UUL AC ratio:
FMA-UE (T2) r = 0.59 *
MRS: r = −0.48 *

Statistical significance levels: n.s. not significant; * p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001. Abbreviations in alphabetical order: AC = activity counts, ACC = accelerometer,
ADL = Activities of Daily Living, AUL = affected upper limb, d = day(s), DUL = Dominant Upper Limb, h = hour(s), IMU = Inertial Measurement Unit, NDUL = Non Dominant Upper
Limb, SVM = Support Vector Machine, ST = Stroke (patient), TAS = Time After Stroke, UL = Upper Limb, UUL = Unaffected Upper Limb, y = year(s), w = week(s). Clinical assessments
in alphabetical order:: 5STS = 5 Times Sit to Stand Test, 6 MWT = 6 min walk test, 10 MWT = ten meters walk test, ARAT = Action Research Arm Test, ASPECTS = Alberta Stroke
Program Early CT Score, BBT = Box and Blocks Test, BBS = Berg Balance Scale, BRS(-UE, -H) = Brunnstrom Recovery Stage (Upper Extremity, Hand), CMSA = Chedoke McMaster
Stroke Assessment Scale, FIM (-M, -C) = Functional Independence Measure (Motor, Cognitive), FMA(-UE) = Fugl-Meyer Assessment (Upper Extremity), MAL(-AOU, -QOM) = Motor
Activity Log (Amount of Activity, Quality of Movement), MoCA = Montreal Cognitive Assessment, (SMS-), MRS = Modified Rankin Scale, NIHSS = (Supplementary Motor Scale)
National Institute of Health Stroke scale, SAFE = shoulder abduction-finger extension, STEF (-AS, -US) = Simple Test for Evaluating Hand Function (Affected Side, Unaffected Side),
Sunnaas = Sunnaas ADL-index for personal (self-care) ADL activities.
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Table A2. Continuous recording during Activities of Daily Living (ADL).

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Bailey et al.
[8]

Observational,
Cross-
sectional

• Triaxial ACC
(GT3X+
Actigraph)

• Both wrists

24 h continuous recording
during ADLHealthy vs.
Stroke

Stroke: N = 48
Age: 59.7 ± 10.9 y
TAS: >6 m
ARAT = 31.3 ± 11.9
Healthy Controls:
N = 74
Age: 54.3 ± 11.3 y

–

• Bilateral acc norm
• Magnitude ratio of

AUL-UUL
• Total duration of

unilateral activity
• Total duration of

(simultaneous)
bilateral UL activity

• Total duration of UL
activity

• Bilateral acc norm (1 s
epoch) Median IQR
Stroke: 82.4 (27.6),
Controls: 136.2 (36.6)
*** Magnitude ratio
Stroke: −2.2 (6.2) ***
Controls: −0.1 (0.3) ***
(Median, IQR)

• Duration of unilateral
activity S Stroke:
UUL = 3.4 ± 1.2 h vs.
Controls:
DUL = 1.9 ± 0.5 h ***
Stroke AUL = 0.8 ± 0.5
h vs. Controls
NDUL = 1.5 ± 0.5 h ***

• Bilateral activity Stroke
4.1 ± 1.7 h Controls:
7.2 ± 1.9 h ***

• Total UL activity Stroke
8.4 ± 2.2 h Controls
10.7 ± 2.1 h ***
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Table A2. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Chen et al. [9]
Observational,
prospective
cohort study

• ACC
(MicroMini-
Motionlogger,
Ambulatory
Monitoring)

• Both wrists

72 h continuous recording
during ADL, except when
bathing
(T1) Pre and (T2) post
4-week rehabilitation
intervention

Stroke: N = 82
N = Age:
55.3 ± 10.71 y
TAS: 20.46 ± 13.43 m
Mild-to-moderate UL
impairment

MAL-AOU
MAL-QOM
SIS (physical
function subscale)
NEADL

AUL AC (Action4
software)

• Mean AUL activity
counts (1 m epoch): T1
3701.8 ± 1447.2 T2:
4247.2 ± 1549.6

• Predictive validity of
AUL activity compared
to MAL-AOU r = 0.47,
Physical function of SIS
r = 0.42 NEADL
r = 0.34 MAL-QOM
r = 0.57; all **

• Responsiveness of AUL
T1 vs. T2: SRM = 0.72

• Minimal clinically
important difference
using anchor-based
methods and
MAL-AUM 751.58
(28%) MAL-QOM,
631.06 (28%) SIS, 574.94
(29%) NEADL 614.36
(13%)
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Table A2. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Leuenberger
et al. [19]

Observational,
Cross-
sectional

• 5 IMU: triaxial
ACC, gyroscope
and
magneto-meter
(unused) +
Barometric
pressure sensor
(unused)
(ReSense)

• Both wrists,
both shanks,
around waist.
Recordings
from waist IMU
were excluded

48 h continuous recording
during ADL

Stroke: N = 10
Age: 52.7 ± 13.6 year
TAS: 21.6 ± 10.6 w

BBT

• Mean UL ACs
(formula provided)
p/min during awake
time, including or
excluding walking

• Ratio AUL-UUL AC
• Duration of AUL use
• Normalized

probability
distribution of
forearm elevation

• Total gross arm
movements duration
during the recording
period.

Correlation between ratio of
AUL AC and BTT
incl. walking r = 0.69 *
excl. walking r = 0.93 ***

• Correlation between ratio
of AUL-UUL AC and ratio
of AUL-UUL BTT incl.
walking r = 0.49 *; excl.
walking r = 0.84 ***

• Correlation between
duration of AUL use and
BTT: incl. walking r = 0.77
**

• Correlation between AUL
BBT and difference
between forearm elevation
probability distribution’s
means UUL and AUL

• Excl. walking r = 0.68 *
• Correlation between BTT

and gross arm movement
duration: Inc. walking
r = 0.95 *** Exc. walking
r = 0.97 ***

• Correlation between ratio
of AUL-UUL BTT and ratio
AUL-UUL of gross arm
movement duration: Inc.
walking r = 0.95 *** Exc.
walking r = 0.9***
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Table A2. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Michielsen
et al. [20]

Observational,
Cross-
sectional

• Uniaxial ACC +

Biaxial ACC

• Both wrists.

Waist

24 h continuous recording
during ADL

Stroke: N = 38
Age: 56.6 ± 12.6 y
TAS: 4.5 ± 3.2 y
Healthy Control:
N = 18
Age: 48.1 ± 10.9 y

–

• Duration of activities
as % of 24 h period.

• UUL, AUL–Stroke
subjects,

• DUL, NDUL–healthy
subjects

• expressed as:

- Time
- Time while

sitting or
standing

- Mean intensity
(g/min) of the
period of uni- or
bimanual use

• Daily activities stroke vs.
healthy subjects:

• Dynamic (7% vs. 10%),
sitting (39% vs. 38%),
standing (9% vs. 15%),
lying (45% vs. 37%).

• Stroke vs. Healthy: UUL
vs. AUL use 5.3 h vs. 2.4 h
** DUL vs. NDUL use 5.1 h
vs. 5.4 h * During sitting:
AUL vs. NDUL use1.3 h
vs.2.6 h ** During standing:
Stroke used both limbs less
than healthy: AUL vs.
NDUL 1.1 h vs. 2.4 h **
UUL vs. DUL 1.8 h vs. 2.5
h *

• Both groups UL use is
highest during bimanual
activities.

• Unimanual activities
Stroke vs. Healthy
intensity AUL vs. NDUL:
0.02 g/min vs. 0.04 g/min
intensity UUL vs. DUL:
0.04 g/min vs. 0.04 g/min
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Table A2. Cont.

Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Punt et al.
[11]

Observational,
Cross-
sectional

• Triaxial ACC
(McRoberts)

• Both ankles
7 d continuous recording
during ADL

Stroke: N = 40 of
which
Fall: N = 15
Age: 64.6 ± 8.5 y
TAS: 113 ± 109 m
NFall: N = 25
Age: 58.4 ± 14.3 y
TAS: 71.8 ± 65 m

10 MWT
TUG
BBS

Gait characteristics:

• Gait speed (m/s)
• Stride time (s)
• Standard deviation of

accelerations.
• Harmonic ratio
• Index of harmonicity
• Amplitude of the

power dominant
peak

• Width of the power
dominant peak

• Local divergence
exponent

• ADL gait characteristics
predicted falls, AUC = 0.72,
better than clinical
assessments, AUC = 0.64.

• Sign *. differences between
NFall and Fall in Gait
speed NFall 0.73 ± 0.16
Fall 0.62 ± 0.12 SD of acc.
in V direction: NFall
1.63 ± 0.52 Fall 1.23 ± 0.39
SD of acc. in AP direction:
NFall: 1.38 ± 0.33 Fall:
1.16 ± 0.23 Harmonic ratio
in AP direction: NFall:
1.13 ± 0.19 Fall: 1.00 ± 0.19
Index of harmonicity in M
direction: NFall:
0.42 ± 0.20 Fall: 0.57 ± 0.26
Amplitude of the power
dominant peak in
medio-lateral direction:
NFall: 0.44 ± 0.16 Fall:
0.57 ± 0.24 Others n.s.
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Rand & Eng
[22]

Observational,
prospective
cohort study

• Triaxial ACC
(Actical)

• Both wrists

3 d continuous recording
at:
T1: 4 w
T2: 12 m

Stroke: N = 32
Age: 58.1 ± 12.4 y
TAS (T1): 29.6 ± 15.5
d

MAL-AOU
FMA-UE
ARAT
TL
BBT
Grip strength

Mean AC AUL

• Scores on all clinical
assessments except MAL,
improved significantly
from T1 to T2 ***.

• Mean AC (median, IQR) at
T1: AUL 43,030
(21,360–112,865) UUL
171,610 (106,660–228,592)
T2: AUL 53,916
(22,353–106,693) UUL
152,065 (58,921–212,435)

• Correlation between MAL
and AUL AC at T1: r = 0.65
** T2: r = 0.57 **

• AC and MAL at T2
correlated with different
factors, but are both
independent of AUL
dominance, cognition and
depressive symptoms: AC:
Age r = 0.50 *** FMA-UE
r = 0.56 *** ARAT r = 0.59
*** Grip r = 0.50 ** BBT
r = 0.62 *** TL r = −0.51 **
MAL: Gender r = 0.369 *
FMA r = 0.66 *** ARAT
r = 0.78 *** Grip r = 0.7 ***
BBT r = 0.81 *** TL
r = −0.51 **
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Uswatte et al.
[26]

Observational,
prospective
cohort study

• Biaxial ACC
(71256,
ActiGraph)

• Both wrists, less
impaired side of
the chest, more
impaired ankle.

72 h continuous recording
at:
CIMT rehabilitation group:
(T1) Pre and (T2) post
CIMT rehab (2 w).Normal
rehabilitation group:
T2 = T1 + 2 w.

Stroke CIMT: N = 10
Age: 61.4 ± 20.0 y
TAS: >1 y
Stroke normal
rehabilitation group:
N = 10
Age: 63.7 ± 13.5 y
TAS: >1 y
UL impairment:
Mild to moderate
(N = 19), moderate to
severe (N = 1)

MAL-QOM
• Mean ratio AUL-UUL

use

• Intervention group:
increase from T1 to T2
(mean change
0.08 ± 0.09*). Control
group: non-significant
change.

• Correlation between
ratio and: MAL-QOM
score at T1: r = 0.74 ***
T1 to T2: r = 0.71 ***

Uswatte et al.
[27]

Observational,
prospective
cohort study

• Biaxial ACC
• Both wrists See 24

Stroke intervention:
N = 82
Age: 63.0 ± 12.8 y
TAS: >1 y
Stroke control: N = 87
Age: 64.2 ± 12.7 y
TAS: >1 y
Mild to moderate UL
impairment

AAUT
MAL-QOM
SIS

• Mean duration of
AUL use (%)

• (2) Mean ratio
AUL-UUL use

• T1: Mean duration %
AUL use Intervention
group 21.7 ± 9.4
Control group
22.5 ± 11.2 All:
22.1 ± 10.3 Mean Ratio
AUL-UUL Intervention
group 0.56 ± 0.15
Control group 0.57±
0.17 All 0.56 ± 0.16

• N.s. from T1 to T2 (p >
0.48)

• Correlation between
ratio AUL-UUL use
and MAL-QOM
r = 0.52 * AAUT
r = 0.60 * SIS r = 0.16 ***
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

van der Pas
et al. [28]

Observational,
Cross-
sectional

• Triaxial ACC
(Actiwatch
AW7)

• Both wrists

60 h continuous recording
during ADL

Stroke: N = 45
Age: 59.4 ± 9.2 y
TAS: 2.0 ± 1.6 y

MAL-AOU
MAL-QOM
SIS-mobility
SIS-hand
function

• Unilateral arm
activity relative to
waking hours.

• Bilateral arm activity
relative to waking
hours.

• Ratio of UUL-AUL
use

• Activity Counts AUL AC
7501 ± 3370 UUL AC
16756 ± 4836 Bilateral AC
12129 ± 3782

• Ratio of UUL-AUL
0.69 ± 0.10

• Correlation between
unilateral arm activity and
MAL-AOU r = 0.58 ***
MAL-QOM r = 0.65***

• Correlation between
bilateral arm activity and
MAL-AOU r = 0.37 **
MAL-QOM r = 0.43 ***

• Correlation between ratio
of UUL-AUL and
MAL-AOU r = 0.60 ***
MAL-QOM r = 0.66 ***

• Correlation between
unilateral arm activity and
SIS-hand function r = 0.61
*** SIS-mobility r = 0.41 **

• Correlation between
bilateral arm activity and
SIS-hand function r = 0.43
*** SIS-mobility r = 0.39 **
Correlation between ratio
of UUL-AUL and SIS-hand
function r = 0.58 ***
SIS-mobility r = 0.23 n.s.
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Clinical
Measures Sensor Based Measures Results

Vega-
Gonzalez
et al. [44]

Observational,
Cross-
sectional

•
Electrohydraulic
activity sensor
(SULAM
system)

• Both upper
limbs

8 h continuous recording
during ADL

Stroke: N = 10
Age: 55–79 y
TAS: >1 y
Healthy Controls:
N = 10
Age: 23–57 y

–

• Use ratio.
• Bimanual movement

time.
• Unimanual

movement time.
• Movement time

(unimanual,
bimanual) per region:
below waist
(below-W), between
waist and chest
(W-to-C), between
chest and shoulder
(C-to-S), between
shoulder and head
(S-to-H), above head
(above-H).

• User Ratio ST’s UUL use
was “twice as much” as
AUL use *** (exact amount
not reported). Controls’s
DUL use 10% higher than
NDUL use ***.

• Bimanual movement time >
for Controls than Stroke ***
(exact values not reported).

• N.s. difference for
unimanual movement time
between HC and ST

• Stroke UUL use was >
AUL use in the ranges
W-to-C: 20 h vs. 11.7 h ****
C-to-S: 7.8 h vs. 2.2 h *

• HC’s DUL use was >
NDUL use in the ranges
C-to-S: 13 h vs. 9.2 h ****
S-to-H 1.7 h vs. 0.9 h *

n.s. difference for the other
ranges
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures

Sensor Based
Measures Results

Vega-
González &
Granat [29]

Observational,
Cross-
sectional

• Electrohydraulic
activity sensor
(SULAM system)

• Both upper limbs

8 h continuous recording
during ADL

Stroke: N = 10
Age: 56–80 y
TAS: >1 y
Healthy Controls:
N = 10
Age: 22–35 y

–

• Use ratio
• Bimanual

movement time.
• Unimanual

movement time.
• Composite

movement time
(bimanual +
unimanual).

• Movement time
per region: below
midtrunk
(below-MT),
between
midtrunk and
shoulder
(upper-T), above
shoulder
(above-S).

• Distance above
shoulder.

• User Ratio Stroke UUL vs. AUL
use: 2.55 h ± 0.74 vs. 0.91
h ± 0.54 *** Control DUL vs.
NDUL use: 2.98 h ± 0.55 vs. 3.69
h ± 0.37 ***

• Bimanual movement time Stroke
0.80 h ± 0.49 vs. Controls 2.64
h ± 0.49 ***

• Unimanual movement time
Stroke 1.85 h ± 0.68 vs. Controls
1.40 h ± 0.29 ****

• Composite movement time
Stroke 2.66 h ± 0.73 vs. Controls
4.03 h ± 0.41 ***

• Movement time per region
Below-MT Stroke UUL vs. AUL:
0.56 h ± 0.59 vs. 0.50 h ± 0.47 n.s.
Controls DUL vs. NDUL: 1.64
h ± 0.55 vs. 1.60 h ± 0.79, n.s.
Upper-T Stroke UUL vs. AUL:
1.58 h ± 0.56 vs. 0.34 h ± 0.21 ***
Control DUL vs. NDUL: 1.82
h ± 0.60 vs. 1.20 h ± 0.60 ***
Above-S Stroke UUL vs. AUL:
0.30 h ± 0.30 vs. 0.03 h ± 0.05 *
Controls DUL vs. NDUL: 0.13
h ± 0.07 vs. 0.08 h ± 0.03 *
Distance above shoulder Stroke
UUL vs. AUL: 33.30 cm ± 11.52
vs. 18.76 cm ± 14.75 *** Control
DUL vs. NDUL: 54.20 cm ± 9.32
vs. 48.80 cm ± 5.92 **
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Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Bezuidenhout
et al. [35]

Observational,
Cross-
sectional

• 3 triaxial ACC.
(ActiGraph
GT3Xþ)

• Both wrists and
unaffected
(Stroke) /
dominant (HC)
hip

Part 1: (HC, Stroke)
Simulated ADL in a
controlled environment.
Part 2: (Stroke) Free ADL
during waking hours for
three consecutive days.

Stroke: N = 37
Age: 64.5 ± 11.7 y
TAS: 3.0 ± 4.2 y (>=3
m)

HC: N = 32
Age: 70.5 ± 10.4 y

MoCA
ABILHand
Katz ADL
Index
NIHSS
CMSA

Vector Magnitude ratio
(Wrists)

• Part 1: Setting a table
Stroke = 0.42 ± 0.32;
HC = 0.95 ± 0.30 ****
Washing dishes
Stroke = 0.41 ± 0.37;
HC = 1.12 ± 0.35 ****
Walking
Stroke = 1.13 ± 1.39;
HC = 1.01 ± 0.21 n.s.

• Part 2: Sedentary
Stroke 0.45 ± 0.61;
HC = 0.88 ± 0.22 ****
Active non-ambulation
Stroke 0.54 ± 0.26;
HC = 0.92 ± 0.11 ****
Active ambulation
Stroke 0.72 ± 0.31;
HC = 1.00 ± 0.19 ****

• Correlation with VMR
during free ADL (part
2): Sedentary periods
CMSA r = 0.58 ****
ABILHand r = 0.57 ****
Active
Non-Ambulation
CMSA r = 0.57 ****
ABILHand r = 0.63 ****
Active Ambulation
CMSA r = 0.49 ***
ABILHand r = 0.43 **
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Ann et al. [45]
Observational,
Cross-
sectional

• 2 IMU (Custom
made) Only acc
and gyroscope
were used

• Both wrists

2 Parts:
Part 1: 15 scripted
activities
Part 2: Free ADL during
waking hours for 7 (ST)
and 3 (HC) days.

Part 1:
Stroke: N = 5
Age: 35.4 ± 13.21 y
TAS: 45.8 ± 79.1 m
(>=3 m)
HC: N = 10
Age: 23.2 ± 3.21 y

Part 2:
Stroke: N = 5
Age: range 30–60
TAS: 2.0 ± 2.5 y
(>=3 m)
Mild-to-moderate
impairment
(FMA-UE)
HC: N = 5
Age: not reported

FMA-UE] MAL,
AAUT Gross arm movements

• Patients show reduced
number of gross arm
movement and some
show asymmetrical
values between arms
(exact value not
reported)

• Gross arm movements
detect functional
activities with 50–60%
accuracy and eliminate
non-functional
activities with >90%
accuracy but can’t
identify functional
activities involving fine
finger movements and
object stabilization.

• Some functional
activities are identified
as several smaller gross
arm movements.
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

de Lucena
et al. [36]

Observational,
Cross-
sectional (HC,
Group 1),
prospective
(Group 2)

• ‘Manumeter’:
custom
equipment
using ACC and
magnetometers
at the wrist and
a magnetic ring
to measure
hand activity

• Affected wrist
and index finger

Group 0 (HC): scripted
hand and arm activities.
Group 1: Clinical
assessments, scripted
activities and one day
(walking hours) of free
ADL.
Group 2: Three times 1 day
(walking hours) of free
ADL.
T1: first visit
T2: T1 + 4 w
T3: T1 + 4 m

Group 0
HC: N = 8
Age: 26.1 ± 3.0 SD
Group 1
Stroke: N = 9
Age: 68 ± 9 y
TAS: 30 ± 23 m
Group 2
Stroke: N = 20
Age: 57 ± 15 y
TAS: 40 ± 33

BBT,
FMA-UE

• ‘HAND counts’ per
hour: custom
algorithm
quantifying the
amount of hand
activity.

• Arm activity intensity

• Scripted activities:
Hand activities (50
movements): HC: 0.95
accuracy Group 1: ~0.8
accuracy Arm activities
(200 arm movements):
HC: error rate of 3.4%

• Sensor based measures
during clinical
assessment (group 1)
Correlation between
BTT score and: HAND
counts per hour:
r = 0.67 ** Arm activity
intensity: r = 0.64 **
Correlation of FMA-UE
score and: HAND
counts per hour:
r = 0.68 ** Arm activity
intensity: r = 0.42 **

• Sensor based measures
during free ADL
(group 1 and 2)
Correlation between
BBT score and HAND
counts: r = 0.64
(statistical significance
not reported)
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Flury et al.
[37]

Observational,
Cross-
sectional

• 6 IMUs Only
acc. and
gyroscope data
were used.
(Physilog®4,
Gait Up Ltd.,
Lausanne, CH)

• Chest, both
wrist, both
shanks,
impaired thigh.

Several hours of free ADL.
(5.03 ± 1.1 h)

Stroke: N = 15
Age: 59.9 ± 9.8 y
TAS: 6.5 ± 7.2 y (>3
m)

NIHSS
FMA-UE
MAL
ARAT
10 MWT
TUG
BBS
MRS
Barthel Index

Activity time
Number of steps
Arm activity time
Arm activity time ratio

• Time walking (%):
12 ± 5.3 (2.9–20.2)

• Time standing (%):
19 ± 8.5 (8.7–33.2)

• Time sitting (%):
55 ± 13.5 (29.3–87.8)

• Time lying (%):
14 ± 15.6 (0.0–53.9)

• Sedentary time (sitting
or lying, %): 69

• Steps/hour (of
recording time):
579 ± 243 (226–1066)

• Steps/walking
episodes: 29 ± 13
(14–62)

• Longest walking
episodes (in steps):
410 ± 277 (62–1148)

• AUL/UUL duration
ratio during sitting (%):
74 ± 20 (52–124)

• AUL duration (in sec)
during sitting
normalized per hour
(sec/hour): 866 ± 341
(326–1570)
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Reference Experimental
Design Sensor & Placement Measurement Task Population

(Mean ± std)
Clinical
Measures Sensor Based Measures Results

Liao et al. [41]
Observational,
Cross-
sectional

Triaxial ACC
(MicroMiniMotion
logger, Ambulatory
Monitoring).
Both wrists

6 days of continuous
recording (3 before, 3 after
the intervention), except
when in contact with
large amounts of
water

Stroke:
Group 1: Robot
assisted therapy
N = 10
Age: 55.5 ± 11.1 y
TAS: 33.4 ± 13.39 m
Group 2: Control
N = 10
Age: 54.56 ± 8.20 y
TAS: 22.20 ± 17.47 m

FMA
FIM
MAL-AOU
MAL-QOM
ABILHand

Arm activity ratio

Arm activity ratio (pre /
post intervention) change:
Group 1: pre: 0.71 ± 0.99,
post 0.76 ± 0.10
Group 2: pre: 0.69 ± 0.12,
post 0.69 ± 0.11

• Significant differences
between group
improvement values
and clinical scores:
FMA ***, MAL-AOU **,
MAL-QOM ***,
ABILHAND *, but n.s.
with FIM.

Statistical significance levels: n.s. not significant; * p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001. Abbreviations in alphabetical order: AC = activity counts, ACC = accelerometer,
ADL = Activities of Daily Living, AUL = affected upper limb, CIMT = Constraint Induced Movement Therapy, d = day(s), DUL = Dominant Upper Limb, Fall = Faller, h = hour(s),
HC = Healthy controls, IMU = Inertial Measurement Unit, NDUL = Non Dominant Upper Limb, NFall = Non Faller, SRM = Standard Response Mean, ST = Stroke (patient), TAS = Time
After Stroke, UL = Upper Limb, UUL = Unaffected Upper Limb, y = year(s), w = week(s). Clinical assessments in alphabetical order: 10 MWT = ten meters walk test, AAUT = Actual
Amount of Use Test, ABILhand = measure of manual ability, ARAT = Action Research Arm Test, BBT = Box and Blocks Test, BBS = Berg Balance Scale, CMSA = Chedoke McMaster
Stroke Assessment Scale, FIM (-M, -C) = Functional Independence Measure (Motor, Cognitive), FMA(-UE) = Fugl-Meyer Assessment (Upper Extremity), MAL(-AOU, -QOM) = Motor
Activity Log (Amount of Activity, Quality of Movement), MRS = Modified Rankin Scale, NEADL = Nottingham Extended ADL, (SMS-)NIHSS = (Supplementary Motor Scale) National
Institute of Health Stroke scale, SIS = Stroke Impact Scale, TL = Thumb Localization Test, TUG = Timed Up and Go test,.
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