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* Corresponding authors. T Maier or L Serrano, EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, Barcelona
08003, Spain. Tel.: þ 34 93 316 0186; Fax: þ 34 93 316 0099; E-mail: tobias.maier@crg.es or Tel.: þ 34 93 316 0247; Fax: þ 34 93 316 0099; E-mail: luis.serrano@crg.es

Received 5.5.11; accepted 20.5.11

Biological function and cellular responses to environmental perturbations are regulated by a complex

interplay of DNA, RNA, proteins and metabolites inside cells. To understand these central processes

in living systems at the molecular level, we integrated experimentally determined abundance data

for mRNA, proteins, as well as individual protein half-lives from the genome-reduced bacterium

Mycoplasma pneumoniae. We provide a fine-grained, quantitative analysis of basic intracellular

processes under various external conditions. Proteome composition changes in response to cellular

perturbations reveal specific stress response strategies. The regulation of gene expression is largely

decoupled from protein dynamics and translation efficiency has a higher regulatory impact on protein

abundance than protein turnover. Stochastic simulations using in vivo data show how low trans-

lation efficiency and long protein half-lives effectively reduce biological noise in gene expression.

Protein abundances are regulated in functional units, such as complexes or pathways, and reflect

cellular lifestyles. Our study provides a detailed integrative analysis of average cellular protein

abundances and the dynamic interplay of mRNA and proteins, the central biomolecules of a cell.
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Introduction

Acquiring and integrating large-scale, quantitative biological

data is a common feature of Systems Biology studies (Joyce

and Palsson, 2006; Sauer et al, 2007). Following enormous

technological and methodological advances over the last

years, abundance differences of both mRNA (‘t Hoen et al,

2008) and proteins (Ong and Mann, 2005) can be reproducibly

measured for complex biological samples. High-throughput

approaches determining unbiased average protein copy numbers

on a large scale (Jaffe et al, 2004; Lu et al, 2007; Ishihama et al,

2008; Malmström et al, 2009; Tolonen et al, 2011) as well as

individual protein turnover rates (Beynon and Pratt, 2005)

have been reported recently. However, integrating these diverse

data and providing additional functional understanding of cells

remain an important challenge for the field of Systems Biology

(Joyce and Palsson, 2006). A plausible approach to gaining novel

biological insights from large-scale data sets lies in the combined

application of these independently developed methodologies

in a suitable model organism to the same biological sample,

but under different growth and stress conditions.

We report a detailed, integrative analysis of genome-wide

experimental data of mRNA levels, average cellular protein

abundances and half-lives generated under various rele-

vant perturbation conditions (Box 1). We use Mycoplasma

pneumoniae, a human pathogenic bacterium causing atypical

pneumonia as model system for our study. Containing a

reduced genome with only 690 ORFs, this bacterium is an

ideal organism for exhaustive quantitative and systems-wide

studies, avoiding technical limitations due to exceeding

sample complexity, constrained by limitations in dynamic

range and resolution of current generation mass spectro-

meters. Available data on the transcriptome (Güell et al,

2009), on protein complexes (Kühner et al, 2009), as well as

on metabolic pathways (Yus et al, 2009) facilitate the integra-

tion of the data generated for this study into an organism-wide

context. Additionally, M. pneumoniae represents a relevant

organism to study stochastic noise in living systems. The

cells are significantly smaller than other bacteria, such as

Escherichia coli (0.05 and 1 mm3, respectively), resulting in

principle in an increased susceptibility to abundance fluctua-

tions of cellular molecules.

Results

Average cellular protein abundances and

dynamics

We determined average cellular protein abundances for 413

different proteins in M. pneumoniae, covering 60% of all
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predicted open reading frames, 83% of the proteome obser-

vable by extensive mass spectrometric mapping (Jaffe et al,

2004; Kühner et al, 2009), 75% of all proteins with annotated

function and 83% of all proteins predicted as essential (Glass

et al, 2006), respectively (Box 1; Supplementary Table S1). We

measured individual protein levels in average copies per cell

under control conditions (growth for 96 h), along a 4-day time

course, in response to heat shock, DNA damage and osmotic

stress (Supplementary Table S2). The reported numbers are

averages from cells grown in batch culture. Cellular protein

abundances span three orders of magnitude ranging from

about 2300 copies (Ef-Tu) to two copies (uncharacterized

protein MPN554; Supplementary Figure S1; Supplementary

Table S2) with an average abundance of 167 copies per cell.

The 20most prominent proteins inM. pneumoniae account for

nearly 44%of the total proteinmass. Highly abundant proteins

are involved in glucose metabolism (24% of total protein

mass), compensating by enzyme abundance for the inefficient

generation of two to four ATPmolecules per consumed glucose

molecule (Yus et al, 2009). Proteins involved in cell adherence

used for attachment to lung cells of the host in situ and to the

culture dish in vitro account for 8% of the total protein mass.

Cellular chaperones GroEL/ES, DnaK/DnaJ/GrpE and trigger

factor make up over 9% of the total cellular protein mass.

Ribosomal proteins account for 5.6–12.3% of the total protein

mass, depending on stationary or exponential growth.

Grouping all quantified proteins in COG functional classes

(Supplementary Table S1) revealed a specific increase in

cellular proteome mass attributed to metabolic functions

(classes G, C, E, F, I, P and H) concomitant with an increase

in cellular doubling time during the late stages of 4 days batch

culture growth (Figure 1A). We additionally observed a

decrease in abundance of proteins involved in information

storage and processing (classes J, K and L; Figure 1A), and

more specifically a decrease in ribosomal proteins and in FtsZ,

a bacterial cell division protein (from 77 to 16 copies per cell,

Figure 1B). These data agreewell with the slowing down of cell

growth and division rate at later stages of the growth curve as
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previously reported (Yus et al, 2009) and reflects an increased

energy requirement for intracellular pH maintenance at later

growth stages due to the acidification of the growth medium.

Furthermore, the determined protein abundances mirror the

described growth stage-related partitioning between acetate

and lactate production (Yus et al, 2009): lactate dehydrogenase

is upregulated 500% to over 1000 molecules per cell, while

acetate kinase shows a 50% reduction in abundance. Addi-

tional protein abundance profiles along the growth curve were

confirmed by western blotting (Figure 1B). In total, o40% of

all quantified proteins show a variation coefficient o33%

along the growth curve, indicating global reorganization.

However, summing up protein copy numbers and considering

their respective molecular weights, the total protein mass per

cell stayed constant (3.2 gigadalton, 2.9% standard deviation),

indicating a tightly controlled global cellular protein concen-

tration (Supplementary information).

We quantitatively analysed the change in proteome compo-

sition in response to osmotic stress, mitomycin-induced DNA

damage and heat shock (Supplementary Figure S2). Applying

stringent cutoff criteria (the observed fold change must be

at least 0.5 and larger than the standard deviation of all

conditions analysed), we find 54, 75 and 101 proteins with

significantly changed abundances following these pertur-

bations, respectively (Figure 1C; Supplementary Table S3).

Proteins upregulated in response to heat shock include

the chaperons DnaK (þ 18%), GroES (þ 29%) and the

proteases ClpB (þ 65%) and Lon (þ 28%), indicating a

concerted response involving re-folding and degradation of

heat-damaged proteins. Following mitomycin-induced DNA

damage; we observed a doubling of Hit1, an important

signalling molecule involved in regulation of DNA replication

and repair (Szurmak et al, 2008). Osmotic stress led to only

moderate abundance changes in the proteome, including 16

proteins with abundance changes unique to this stress

(Figure 1C; Supplementary Table S3). We find a set of 21

proteins with changed abundances in response to all tested

perturbations. Some proteins previously unknown for their

involvement in general stress response, such as the octameric

cell division protein MraZ (Chen et al, 2004) (804 copies per

cell), protein p200 (156 copies per cell) involved in cytadher-

ence and gliding motility (Jordan et al, 2007), as well as

initiation factor IF1 (25 copies per cell), previously associated

with changes in translational control in cold stress (Giuliodori

et al, 2007) were among the most upregulated general stress

proteins (Supplementary Table S3). Several E. coli stress pro-

teins (Han and Lee, 2006) with orthologues inM. pneumoniae

were identified (Supplementary Table S3).

We additionally quantified the M. pneumoniae proteome

from cells grown in minimal medium (Yus et al, 2009).

Determined protein abundances correlated well with those

from cells grown in standard Hayflick medium (rp¼0.78). We

observed growth rate and nutrient availability related changes

in protein abundances, such as a downregulation of ribosomal

proteins and oligopeptide transporters in minimal medium

(Supplementary information).

In connection with its reduced genome, M. pneumoniae

cells contain only a very limited set of proteins involved in

transcriptional control. We quantified six out of eight proteins

proposed to be transcription factors (Yus et al, 2009) lacking

the two proposed sigma-like factors MPN626 (SigD) and

MPN424 (XylM), possibly due to their presumed low cellular
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abundance. Determined abundances for transcription factors

range from 4 copies per cell for MPN241 (WhiA) and MPN329

(Fur) to over 300 copies per cell for MPN239 (GntR), which

was found to be specifically induced more than four-fold at

early stages of the growth curve (Supplementary Table S2).

Additionally, the DNA-binding proteins IHF-HU (MPN529,

possibly affecting DNA topology; Mouw and Rice, 2007), MraZ

(MPN314, octameric cell division protein; Chen et al, 2004)

and the transcriptional repressor HrcA are following the same

trend (decrease from exponential to stationary phase), making

them candidates for global gene expression regulation during

M. pneumoniae growth. Aside from these changes along the

growth curve, we found no clear induction of either proposed

transcription factor in response to the cellular stresses tested

for this study.

mRNA–protein integration and dynamics

We used mRNA data from tiling array and deep sequencing

experiments (Güell et al, 2009) to analyse the organism-wide

correlation between cellular mRNA levels and protein abun-

dances in M. pneumoniae under steady-state and perturbed

conditions. In agreement with the published literature on

mRNA–protein correlations for large samples (de Sousa Abreu

et al, 2009; Maier et al, 2009), we found a modest correlation

between quantified mRNA and protein abundances with

Pearson’s correlation coefficients between 0.41 and 0.51 for

different available data sets (average value for all con-

dition¼0.52; Supplementary Figure S3). Diverse post-tran-

scriptional factors and individual differences in translation

efficiency and protein turnover could contribute to the

observed variability of mRNA–protein ratios (Vogel et al,

2010). Certain functional classes (transcription and energy

production) appear to be mildly enriched in proteins with

biased protein/mRNA ratios under steady-state conditions

(Supplementary Figure S4).

A focused analysis of mRNA–protein abundance correla-

tions on the level of consecutive genes organized in transcrip-

tional units (operons) revealed distinct correlation patterns.

We observed similar mRNA–protein profiles in operons, as

well as directly anti-correlated patterns (Figure 2A), suggest-

ing operon-specific and selective post-transcriptional regula-

tory mechanisms. On average, the observed operon polarity

of consecutive transcripts (‘staircase-behaviour’) (Güell et al,

2009) tends to be compensated for on the protein level

(Supplementary Figure S5).

To analyse mRNA–protein abundance dynamics during

growth in batch culture over 4 days, we established seven

clusters to classify 239 proteins with significant abundance

changes (Figure 2C; Supplementary Table S2). Individual

mRNA expression patterns correlated moderately with protein

abundance profiles; only 24 mRNA and protein profiles fell

into identical clusters, suggesting that the regulation of gene

expression is largely decoupled from protein dynamics in

M. pneumoniae and pointing towards extensive translational

regulation. We observed a significant (Po0.05) enrichment of

functional classes in some of the clusters and mRNA–protein

profiles correlated better for certain metabolic pathways

(Supplementary Figure S6). Proteins involved in transcrip-

tion/translation show a concerted decrease in mRNA–protein

abundancewhen comparing early exponential and late growth

(Supplementary Figure S7). Additionally, the mRNA–protein

correlation coefficients along 4 days growth are related to gene

topology. We observed a higher correlation of mRNA and

protein abundances for genes organized in short operons.

Additionally, mRNA and protein abundances for genes located

at the 30-end in longer transcriptional units appear to correlate

less (Supplementary Figure S7).
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Analogously, only part of the proteins significantly changing

in response to cellular stress (heat shock, osmotic stress and

DNAdamage) reflected expression changes on themRNA level

(Supplementary Table S3). However, for classical heat-shock

proteins Lon, ClpB and DnaK, we confirm expected mRNA–

protein expression dynamics, such as an immediate induction

of mRNA and a subsequent increase of corresponding protein

abundances (Figure 2B), as well as a consecutive decline of

mRNA and protein after the initial heat-shock response. We

additionally find corresponding patterns for two proteins

lacking a defined heat-shock promotor: the protein translocase

subunit SecA and a member of the partitioning protein family,

ParA (Supplementary Table S2), suggesting a possible reg-

ulatory mechanism on mRNA stability.

Protein turnover, modelling and simulations

We measured genome-wide individual protein turnover rates

using a label-chase approach involving stable isotope-labelled

amino acids (Beynon and Pratt, 2005). Compared with other

organisms (Belle et al, 2006; Doherty et al, 2009; Jayapal et al,

2010), we obtained longer protein half-lives, averaging 23 h.

Most of the determined protein half-lives span from 12h (10th

percentile) to 42 h (90th percentile) (Figure 3A). For a subset of

proteins with high degradation rates, only a maximal half-life

could be estimated (Supplementary Table S4). We additionally

observed very fast degradation of stress-induced proteins

during recovery from heat shock, indicating specific proteo-

lytic regulatory mechanisms. For example, for Lon protease,

cellular concentration increases by 158% upon shock, but

levels turn back to pre-stress values in the time scale of

minutes (Figure 2B). The N-end rule (Tobias et al, 1991),

predicting protein half-life based on the N-terminal amino-acid

context, did not apply in M. pneumoniae (Supplementary

Figure S8). We found that proteins involved in transcription,

trafficking and secretion are disproportionally more stable

under standard growth conditions and proteins involved in

energy production and lipid transport have shorter half-lives

(Supplementary Figure S9).

We quantified individual averagemRNA amounts per cell by

spiking known amounts of reference RNAs into mRNA

samples analysed by tiling arrays (Supplementary Figure

S10). In agreement with findings in E. coli (Taniguchi et al,

2010) and previous estimates for M. pneumoniae (Weiner,

2003) measured mRNA abundances were on average below

one copy per cell (mean abundance: 0.04). We determined a

cellular average of 9.8 mRNA molecules at any given time.

Based on these data, we established an ordinary differential

equations model for the estimation of individual in vivo

protein degradation (k2) and translation efficiency rates (k1)

(Supplementary Table S4). Correlating protein abundance

with logk1 (rs¼0.5) and logk2 (rs¼0.3), respectively, allowed

quantifying the relative contribution of k1 and k2 to protein

homeostasis: the influence of translation efficiency on protein

abundance is 40% higher than the influence of protein

turnover (Figure 3B). Interestingly, a subset of previously

identified cellular phosphoproteins (Su et al, 2007; Schmidl

et al, 2010; Supplementary Table S4) shows significantly higher

than average turnover rates under steady-state conditions

(k2all¼0.94 k2phosphoproteins¼1.20, P¼0.008).

Stochasticity in gene expression has been studied theoreti-

cally, as well as experimentally with model proteins (Ozbudak

et al, 2002; Kaern et al, 2005). These studies describe the

propagation of transcription bursts and the importance of

small molecule numbers as well as high translation efficiency

in biological noise. To evaluate the physiological importance of

stochastic noise, we performed simulations of transcription–

translation with the software SmartCell (Dublanche et al,

2006; Figure 3C). We observed robust gene expression when

simulating with representative mRNA and protein amounts as

well as average translation efficiencies and experimentally

determined turnover rates in M. pneumoniae. As previously

suggested, key parameters for compensating noise in gene

expression are low translation efficiencies in conjunction with

long protein half-lives (Ozbudak et al, 2002; Pedraza and

Paulsson, 2008; Figure 3C). Reducing the protein half-life

artificially to 2.5 h resulted in a significant increase of

gene expression noise, amplified by low mRNA numbers

(Figure 3C). Our simulations additionally suggest that

high cellular protein amounts represent an effective buffer

against spikes in gene expression. In agreement with this

finding, essential proteins are on average more abundant

in M. pneumoniae (top quartile: 18% non-essential, bottom

quartile: 37% non-essential; Supplementary Figure S11), also

confirming findings in E. coli (Taniguchi et al, 2010) and

S. cerevisiae (Ghaemmaghami et al, 2003). Simulating a

reduction of ribosome number as seen for cells grown in

minimal medium does not significantly change those results

(Supplementary Figure S12).

Protein complex abundances and stoichiometries

The organizational principle of proteins in macromolecular

assemblies is conserved in eukaryotic cells (Gavin et al,

2002; Ho et al, 2002) as well as in bacteria (Kühner et al,

2009). Often, protein complexes, such as the ribosome, RNA

polymerase or the GroEL/ES chaperonin system carry out

essential biological functions. We used our quantitative data

sets to assign cellular abundances and stoichiometries to

known protein complexes (Figure 4; Supplementary Figure

S13). In total, 51% of all cellular proteins by mass in

M. pneumoniae have interaction partners, considering only

the literature-curated homomultimeric and heteromultimeric

protein complexes (Figure 4A). Extending this analysis to a

proteome-wide screen by tandem affinity purification coupled

withmass spectrometry (TAP-MS; Kühner et al, 2009) revealed

that up to 81% of the cellular proteome by mass may be

following this organizational principle.

For several well-characterized protein complexes, such as

the GroEL/ES chaperonin (160 multimeric complexes per

cell), DNA gyrase (50 A2B2 tetramers per cell) or ribonucleo-

side-diphosphate reductase (300 copies per cell), cellular

abundances of the subunits reflect the expected complex

stoichiometries closely (Figure 4B; Supplementary Figure S13).

As expected, for dynamic protein complexes characterized

by the transient interaction of specific subunits, such as the

sigma factor RpoD with RNA polymerase or the nucleotide

exchange factor GrpE with the chaperone DnaK, cellular

protein abundances did not mirror their functional stoichio-

metries (Figure 4B; Supplementary information). For pyruvate
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dehydrogenase, the expected overall complex composition is

reflected in the respective protein abundances, but the stoi-

chiometries of the heteromultimeric E1 subunits are altered

(Figure 4B), suggesting intra-complex subunit rearrangements.

Strikingly, the variance of measured half-lives for proteins

involved in complexes with stable subunit stoichiometries,

such as GroEL/ES (9.9�10�5), pyruvate dehydrogenase

(9.8�10�5) or phenylalanine-tRNA synthase (0.02), was

significantly lower than the total variance for all proteins

with determined half-life (0.44, Supplementary Table S4).

For several protein complexes, the observed subunit stoichio-

metries are conserved in the bacterium Leptospira interrogans

(see below and Supplementary Table S5), additionally confirm-

ing the mapped abundances for M. pneumoniae.

The principle of protein abundances closely following the

stoichiometries of stable molecular machines is not main-

tained for the largest protein complex in the cell, the ribosome.

We identified 46 of 51 annotated ribosomal proteins (Supple-

mentary Table S1) and 43 were directly quantified with a

corresponding labelled peptide (Supplementary Table S6).

Their cellular abundances span two orders of magnitude and

range from 24 (RL22) to over 1000 (RS3) copies per cell

(median 190 and standard deviation: 238; Supplementary

Figure S14). This number agrees well with the 140 ribosomes

per cell previously determined for M. pneumoniae by electron

tomography (Yus et al, 2009) and is reflected in the determined

cellular rRNA abundance (Supplementary Figure S10). A simi-

lar abundance range has been reported for L. interrogans

(Malmström et al, 2009). We excluded that protein extraction

introduced a bias in protein resolubilization of ribosomal

proteins (Supplementary Figure S15) and validated the mea-

sured abundances by quantitativewestern blotting for proteins

RL1, RL7, RL29, RS2 and RS4 (Figure 4C; Supplementary

Figure S16). Size exclusion chromatography experiments

revealed that high abundant ribosomal proteins (L7 and S2)

are not exclusively associated with the ribosome, but are also
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found in fractions corresponding to the size of free monomers

(Figure 4D; Supplementary Figure S17). This, together with

the finding that several ribosomal proteins of M. pneumoniae

are found associated with different protein complexes (Kühner

et al, 2009), suggests their multi-functionality. We additionally

showed by western blotting that ribosomal proteins in high

molecular weight fractions, corresponding to intact ribosomes

and separate 30S and 50S subunits, fall into a closer abundance

range (Supplementary Figure S17). We find several ribosomal

proteins with abundances significantly below the median

value (190), both by mass spectrometry and by quantitative

western blotting. We speculate that those proteins might

be dispensable for ribosome function, indicating a degree

of plasticity in ribosome composition. A detailed analysis

of mRNA–protein ratios in the main ribosomal operons

(MPN164–MPN183; Supplementary Figure S18) indicated that

a relative increase in ribosomal protein abundance is related to

the degree of overlap of the ribosomal binding site of those

geneswith the consensus Shine-Dalgarno sequence, indicating

post-transcriptional regulation of protein abundance.

Comparative analysis with L. interrogans

We investigated how genome reduction, cell size and the

specific growth environment ofM. pneumoniae are reflected in

the proteome composition by interspecies comparison with

the spirochaete bacterium and human pathogen L. interrogans,

the only other organism to date where average cellular protein

quantities have been measured on a large scale following a

similar methodology (Malmström et al, 2009). L. interrogans

cells are considerably larger than M. pneumoniae (0.22 and

0.05mm3, respectively) (Beck et al, 2009) and have a more

complex genome containing 3658 annotated ORFs in the

analysed serotype. This is reflected by a 14.5 times higher

absolute protein number in L. interrogans while the average

protein abundance is only 3.2 times higher. A reciprocal

protein BLAST search and a gene name comparison of

M. pneumoniae and L. interrogans identified 443 orthologous

protein pairs (Supplementary Table S5). For matched pairs

under both criteria, determined protein abundances corre-

lated with a Pearson’s coefficient of rp¼0.67 (Supplementary

Table S5). Subdividing this set of proteins into functional

categories revealed distinct groups of high correlation,

however, with very different abundance ratios. For example,

proteins involved in replication, recombination and repair

as well as proteins involved in carbohydrate transport and

metabolism correlate highly, but show very different relative

cellular expression levels (Figure 5A).

Protein abundances reflect the respective lifestyles of

L. interrogans and M. pneumoniae. Even though both bacte-

ria have similar doubling times under exponential growth

(Saengjaruk et al, 2002; Yus et al, 2009), their catabolic

metabolism routes differ fundamentally. L. interrogans utilizes

predominantly fatty acid b-oxidation as carbon source and

oxidative phosphorylation coupled with an electron transport

chain for energy production (Ren et al, 2003; Figure 5B).

M. pneumoniae on the other hand relies mainly on glycolysis

for ATP generation (Yus et al, 2009). Hence, even though

most glycolytic enzymes are present in L. interrogans, their

cumulative abundance only accounts for 1.3%of all quantified

proteins. Contrarily, 19.7% of the all quantified proteins in

M. pneumoniae (24% of the total protein mass) are involved

in glucose metabolism. Strikingly, the relative abundance

ratios of glycolytic enzymes are conserved in both bacteria,

suggesting that the adaption to different carbon and energy

sources involves global abundance regulation of metabolic

pathways, rather than the alteration of individual enzymatic

activities.

The observed 150-fold relative enrichment of thioredoxin

in M. pneumoniae (1265 copies per cell) further highlights

their distinct metabolic routes. While organisms with an

electron transport chain, such as L. interrogans utilizes NADH
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as electron donors during end oxidation, thioredoxin could

have an active role in balancing the cellular redox-state

during acetate production in M. pneumoniae by serving

as electron acceptor for reduced coenzymes NADH and

NADPH (Zeller and Klug, 2006). Owing to its drastic genome

reduction, M. pneumoniae relies on the import of precursors

for proteins, RNA and DNA rather than synthesizing them.

Correspondingly, peptide importers, proteases, as well as RNA

degradation enzymes are found to be of higher concentration

in M. pneumoniae. Reflecting similar doubling times during

exponential growth (Saengjaruk et al, 2002; Yus et al, 2009),

we find in both cases a similar proportion of ribosomal mass of

the total proteome (8% in L. interrogans and 5.6–12.3% in

M. pneumoniae). This contrasts with values up to 21% in the

fast dividing bacterium E. coli (Arnold and Reilly, 1999).

Conclusions and novel insights

We integrated large-scale average abundance data for mRNA

and proteins with turnover rates in the bacteriumM. pneumo-

niae, an ideal model organism for systems-wide studies.

Measured protein abundance changes in response to several

perturbation conditions revealed a highly dynamic proteome

including specific sets of stress response proteins. In addi-

tion to sequence signatures, mRNA abundance (Vogel et al,

2010) and measurement variation (Nie et al, 2006), we found

that predominantly post-transcriptional rather than post-

translational regulatory mechanisms control cellular mRNA

to protein abundance ratios. These findings are confirmed for

mammalian cells using a complementary approach (M Selbach,

personal communication).

Quantitative simulations of mRNA and protein homeostasis

showed how long protein half-life and poor translational

efficiency buffers gene expression noise propagating from low

cellular mRNA levels in vivo. Integration of our data with

previous work (Kühner et al, 2009) revealed that unusual

subunit stoichiometries indicate protein complex dynamics

and suggested possible moonlighting for several ribosomal

proteins. Finally, a quantitative comparison with the patho-

genic bacterium L. interrogans revealed metabolic adaption

involving regulation of entire pathways and highlighted

how protein abundances reflect different cellular lifestyles.

We expect our data to serve as a reference point for future

integrative large-scale quantitative studies in other organisms,

aswell as a valuable resource for further functional studies and

for refined, organism-wide mathematical models.

Materials and methods

Cell culturing and protein extraction

M. pneumoniae cell cultures were grown in Hayflick rich medium as
previously described (Yus et al, 2009) and samples were taken at 24 h
intervals. For cellular perturbations, cells grown for 96 h (control
conditions) were treated for 20min with 5 mg/ml mitomycin C (DNA
damage) or with 0.5M NaCl (osmotic stress) before lysis. For heat-
shock treatment, cell culture dishes were placed in a 421C water bath
for 45min and samples were taken in 15min intervals starting 30min
after heat shock start. Attached cells were washed twice with ice-cold
PBS, harvested by scraping and centrifuged at 4000 g for 10min. Cell
pelletswere resuspended in lysis buffer (8Murea, 150mMammonium
bicarbonate) and lysed by a 5-min treatment in an ice-cold sonification

bath. The cell lysate was centrifuged in a cooled desktop centrifuge at
16 000 g for 5min and the supernatant further processed for mass
spectrometry or western blotting. The protein concentration of the
supernatant was determined with the Pierce BCA protein assay kit
(Thermo Scientific). A comparison with SDS-based cell lysis and
extraction of proteins showed no significant differences in lysis and
protein resolubilization efficiency (Supplementary Figure S15). In total,
2.4% of all proteins in SDS-treated samples and 1.8% in urea-treated
samples remained insoluble after the extraction procedure.

Mass spectrometry

Protein abundances were determined using an LC-MS based approach
involving 30 stable isotope-labelled reference peptides spanning the
full abundance range of theM. pneumoniae proteome (Supplementary
Table S6) and extracting ion currents of the three most dominant
precursor ions per protein (Silva et al, 2006; Malmström et al, 2009).
We used an additional set of 47 reference peptides to accurately
determine the abundances of ribosomal proteins, since they proved
intrinsically difficult to quantify (Supplementary Tables S6 and S7).
The setup of the mRPLC-MS system was as described previously
(Schmidt et al, 2008). Each survey scan acquired in the ICR-cell at
100 000 FWHM was followed by MS/MS scans of the three most
intense precursor ions in the linear ion trap with enabled dynamic
exclusion for 60 s. After converting the acquired raw files to the
centroid mzXML format (readW, http://tools.proteomecenter.org),
MS/MS spectra were searched using the SEQUEST algorithm (Yates
et al, 1995). The database search results were further validated using
the PeptideProphet (Keller et al, 2002) and ProteinProphet (Nesvizhs-
kii et al, 2003) program and the peptide false discovery rate was fixed
to 1% in both cases by adjusting the probability and spectrum counts
thresholds.

Protein profiling and quantification

A rolling inclusion mass list was generated based on the recently
generated PeptideAtlas (Kühner et al, 2009) in combination with
the masses of the 30 spiked in reference peptides. The list was
imported as global mass lists into the mass spectrometer and the
PTPs sequenced in each sample by directed LC-MS/MS analysis
(Schmidt et al, 2009). The Progenesis LC-MS software (v2.5, Nonlinear
Dynamics Limited) was employed for label-free protein and peptide
quantification. Protein MS abundances were calculated for each
LC-MS analysis by summing up the MS intensities of its corre-
sponding PTPs, respectively. The average cellular abundances of all
identified proteins were determined as recently specified (Malmström
et al, 2009).

In total, 37 quantitative LC-MS maps for the M. pneumoniae
proteome were generated. Controls (cells after 4 days of growth) were
measured in nine replicates. Samples subjected to perturbations
(different time points after heat shock, mitomycin-induced DNA
damage, osmotic stress, cells at different days during batch culture
growth) were each measured in duplicate. The error rates of the
abundances thus determined were assessed by bootstrapping the
measured precursor ion intensities against the protein concentrations
directly determined using the labelled reference peptides (Malmström
et al, 2009; Supplementary Figure S19). The estimated average error
rate is 1.77-fold for all quantified proteins and 1.54-fold for proteins
quantified by three independent peptides (80% of all proteins).
Additionally, error estimation was carried out using a bootstrap
analysis (Supplementary Figure S19). The MS/MS data files can be
retrieved via the Tranche website (https://proteomecommons.org/
tranche/,‘Mycoplasma_MSB-11-2933’, hashcode dMFS6Of7sYZyKATd
LL3nJMYU8uVzpbZIn6IgmwCB4yHsenNoST3j5eUrF8umj7NHcRtapþ
n5ORQMlKsVLi4sphzLrbwAAAAAAAAXIA¼¼).

Analysis of protein turnover rates

Proteins were isotopically labelled for 14 days using the SILAC
approach (Ong et al, 2002) as recently specified (Jayapal et al, 2010)
by spiking labelled amino acids to a final concentration of 10mM into
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the medium of a growing M. pneumoniae culture and passaging them
every 4 days. After full labelling was achieved, cells were harvested
and a fully labelled sample was collected. Fresh cultures were
inoculated with 10mM unlabelled arginine and lysine and cells were
harvested after 1, 2, 4 and 8 days of growthwith intermittent passaging
for the latter time point. Absolute protein amount was determined for
each time point and set in relation to the starting amount, thereby
serving as a correction factor for loss of labelled signal due to cell
growth. After protein extraction and digestion, the generated peptide
samples were analysed as described above. The Xpress algorithm of
the TPP (http://tools.proteomecenter.org/TPP.php) was employed to
determine the precise ratios of the individual identified peptides over
all samples. The median of the corresponding peptide ratios for each
protein was used to calculate the final turnover rates. We identified
protein turnover profiles for 231 proteins.

RNA quantification

mRNA copy numbers have been estimated from an Affymetrix tiling
array (Supplementary Table S8; Güell et al, 2009) which was deposited
here: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSM722501.
Twelve RNA spikes in controls spanning more than the dynamic range
of theM. pneumoniae transcriptomewere used to estimate the amount
of each mRNA in 10 mg of total RNA. Assuming a 90% of rRNA in total
RNA, 150 ribosomes per cell (Kühner et al, 2009) and no free rRNA in
the cell, we estimated mRNA copy number per cell.

Data integration and analysis

Acquired data were analysed with Microsoft excel and the software R.
Dynamic changes in mRNA and protein abundancewere considered to
be significant if they were higher than a 0.5-fold change and higher
than the respective standard deviation over all conditions measured.
Only proteins having a coefficient of variation40.33 were considered
for clustering of the growth curve data. Proteins have been scaled to
equal median and equal median absolute deviation. Fuzzy c-means
algorithm has been used to derive seven clusters from the scaled data.
Protein profiles were compared with corresponding mRNA profiles for
each member of all clusters. mRNA profiles were considered to be
equivalent to the protein profiles only if: (a) standard deviation of
mRNA levels along the profile is40.4; (b) mRNA profile is correlated
against all protein cluster medoids. Only if the highest correlation
corresponds with the cluster of the protein profile and the Pearson’s
correlation coefficient is 40.5, the mRNA and protein profiles were
considered equivalent.

Stochastic simulations

We used SmartCell, a software designed for modelling biological
processes occurring in a cell (Ander et al, 2004; Dublanche et al, 2006).
The stochastic simulator uses the Gibson and Bruck (2000) optimiza-
tion of the Gillespie Algorithm. In the transcriptional–translational
simulations we performed, we consider competition of RNA poly-
merase binding to the promoter of our target proteinwith the rest of the
chromosomal promoters, assuming that all chromosomal promoters
have the same properties and are thus represented by a single species
(C). The number of C was assumed to be 400 based on the number
of monocistronic operons (Güell et al, 2009). Simulations are made
in a virtual M. pneumoniae cell represented by a single voxel with a
lattice length of 0.6mm. See Supplementary information for detailed
simulation parameters.

Size exclusion chromatography

M. pneumoniae cell cultures after 96 h were washed, pelleted and
resuspended in lysis buffer (50mM Tris pH 7.5, 5% glycerol, 1.5mM
MgCl2, 100mM NaCl, 0.2% NP40, 1mM DTT, 1mM AEBSF, 1mM
PMSF, 1mg/ml pepstatin A, 1mg/ml antipain, 2mg/ml aprotinin,
1mg/ml leupeptin and 16mg/ml benzamidin) and lysed mechani-
cally using a douncer. After two steps of centrifugation at 10 000 g

and 100 000 g, the supernatant was collected for gel filtration (GF)
chromatography. GF chromatography was performed at 101C on a
Pharmacia SMART system at a flow rate of 40 ml/min by using a
Superose6 PC 3.2/30 column and a Superdex 200 column, equilibrated
with lysis buffer. The chromatographic profile was monitored at
280nm by using the mPeak monitor (Pharmacia). Volumes of 50 ml of
M. pneumoniae lysates were loaded on a column and 60 ml fractions
were collected and analysed by SDS–PAGE and western blotting
(Figure 4D; Supplementary Figure S17). Polyclonal antibodies
produced in rabbits have been used to detect the ribosomal proteins.
Quantitative western blotting was carried out as previously described
(Kühner et al, 2009).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements

We thank Ben Lehner (CRG Barcelona, Spain) for comments on the
manuscript; JA Wodke (CRG Barcelona, Spain) for pBLAST and
essentiality analysis; A Leitner (ETH Zurich, Switzerland) for help
with protein turnover sample processing; I Vonkova and V Rybin
(EMBL Heidelberg, Germany) for help with size exclusion chromato-
graphy; H Molina (CRG Barcelona, Spain) for additional mass spectro-
metry experiments; E Yus (CRGBarcelona) forminimalmediummRNA
data. Thisworkwas supported by the EuropeanResearch council (ERC)
advanced grant, the Fundacion Marcelino Botin, the Spanish Ministry
of Research and Innovation to the ICREA researcher LS; by the EU
grants Prospect and Trireme, by the European Research Council (grant
#ERC-2008-AdG 233226) to RA and by SystemsX.ch.
Author contributions: TM designed the study, carried out experi-

ments, analysed the data, prepared figures and wrote the manuscript.
AS carried out the mass spectrometry analysis. MG carried out
experiments, prepared the model, analysed data and prepared figures.
SK carried out the size exclusion chromatography. LS designed the
study, performed the simulations, analysed data, discussed results
and commented on the manuscript. ACG and RA contributed to the
study design, discussed results and commented on the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M,
Kaplan A, Lemerle C, Tomás-Oliveira I, Serrano L (2004) SmartCell,
a framework to simulate cellular processes that combines
stochastic approximation with diffusion and localisation: analysis
of simple networks. Syst Biol 1: 129–138

Arnold RJ, Reilly JP (1999) Observation of Escherichia coli ribosomal
proteins and their posttranslational modifications by mass
spectrometry. Anal Biochem 269: 105–112

BeckM,Malmström JA, Lange V, Schmidt A, Deutsch EW, Aebersold R
(2009) Visual proteomics of the human pathogen Leptospira

interrogans. Nat Methods 6: 817–823
Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK (2006)

Quantification of protein half-lives in the budding yeast
proteome. Proc Natl Acad Sci USA 103: 13004–13009

Beynon RJ, Pratt JM (2005) Metabolic labeling of proteins for
proteomics. Mol Cell Proteomics 4: 857–872

Chen S, Jancrick J, Yokota H, Kim R, Kim S-H (2004) Crystal structure
of a protein associated with cell division from Mycoplasma

pneumoniae (GI: 13508053): a novel fold with a conserved
sequence motif. Proteins 55: 785–791

Quantification of mRNA and protein

T Maier et al

10 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited

http://tools.proteomecenter.org/TPP.php
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equals;GSM722501
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equals;GSM722501
www.nature.com/msb


de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global
signatures of protein and mRNA expression levels. Mol Biosyst 5:
1512–1526

Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ (2009)
Turnover of the human proteome: determination of protein
intracellular stability by dynamic SILAC. J Proteome Res 8: 104–112

Dublanche Y,Michalodimitrakis K, Kümmerer N, FoglieriniM, Serrano
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