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ABSTRACT

The brain’s spontaneous fluctuations measured by functional

magnetic resonance imaging during rest cluster into recurrent

activity patterns known as resting-state networks (RSNs).

The spatial organization of RSNs in health and disease has

been immensely investigated by conventional correlational

analyses of fMRI time series. Recent findings of time-

resolved analyses have provided evidence of reoccurring

activation patterns that are accessible at instantaneous time

points enabling the dynamic characterization of RSNs. We

have proposed a method to recover spatially and tempo-

rally overlapping RSNs, which we named innovation-driven

co-activation patterns (iCAPs), to study the dynamic en-

gagement of RSNs unconstrained by the slow hemodynamic

response. The iCAPs are extracted by temporal clustering

of sparse innovation signals recovered from Total Activa-

tion (TA) framework, which is cast as a variational problem

with sparsity-promoting spatial and temporal priors for fMRI

data deconvolution. The temporal prior uses the inverse of

the hemodynamic response function as a general differential

operator and exploits sparsity of the innovation signals. In

this work, we perform a quantitative analysis to assess the

stability of iCAPs recovered from a group of patients with

mood disorders and healthy volunteers.

Index Terms— resting-state fMRI, deconvolution, mood

disorders, total activation, innovation-driven co-activation

patterns

1. INTRODUCTION

The blood-oxygen-level-dependent (BOLD) functional mag-

netic resonance imaging (fMRI) enables to measure the brain
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activity non-invasively by using the (de)oxygen concentration

in the brain as an endogenous contrast agent [1]. As a result

of neurovascular coupling, which accounts for the changes

in blood volume, blood flow, and oxygen consumption in the

vessels, the BOLD signal can be used to infer neuronal ac-

tivity. A temporal model for neurovascular coupling, which

relates neuronal activity to measured BOLD signal, was pro-

posed by Buxton et al. through a non-linear differential sys-

tem [2], whose simplified form, hemodynamic response func-

tion (HRF), allows for linear, time-invariant analysis [3–5].

During task fMRI, the conventional analyses rely on the

timing information of the experimental paradigm, which is

known a priori to the experiment. However, during resting-

state fMRI, building a temporal fMRI model is challenging

since there is no explicit task. Several static and dynamic

methods have been proposed to extract information from the

rs-fMRI data [6, 7]. The recent findings of dynamic fMRI

analyses suggested recurring activation patterns; i.e., resting-

state networks (RSNs), could be accessible at instantaneous

time points in fMRI [8, 9]. We have proposed Total Activa-

tion (TA) framework based on a generative temporal fMRI

model that represents activity-related signals as convolution

of block-like activity-inducing signals and hemodynamic re-

sponse function. TA is cast as an optimization problem with

fMRI-tailored temporal and spatial regularization terms to de-

noise the fMRI signal and recover the underlying activity-

inducing signals even in the absence of a task [10]. The

deconvolved signal; i.e., block-like activity-inducing signals

whose derivatives are sparse innovation signals, mimic neu-

ronal activity. Furthermore, temporal clustering of the sparse

innovation signals led to spatially and temporally overlap-

ping resting-state networks, innovation-driven co-activation

patterns (iCAPs) [11]. These activation patterns constitute the

building blocks of rs-fMRI, where the activation of pattern at

each time instance is represented as specific combination of

iCAPs.

In this work, we evaluate the stability and inter-subject
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spatial variability of iCAPs in a group of participants with

mood disorders and healthy individuals.

2. METHODS

2.1. fMRI signal model

The forward model for the measured BOLD signal, x(i, t), of

ith voxel can be expressed as convolution of system response;

i.e., hemodynamic response function (HRF), and a block-like

signal representing the neuronal activity

y(i, t) = x(i, t) + ǫ(i, t) = u(i, t) ∗ h(t) + ǫ(i, t), (1)

where h(t) is the HRF, ǫ ∼ N (0, σ2
i ) is Gaussian noise,

u(i, t) =
∑

k ck(i)b(t/ak − tk), is the block-like activity-

inducing signal with weights c and step function b(t).

2.2. Total activation

Total activation (TA) is cast as a spatiotemporal regulariza-

tion problem to recover the underlying block-like activity-

inducing signals by promoting the sparsity of their temporal

derivatives; i.e, innovation signals, while ensuring spatially

coherent activation. The general form of TA can be formu-

lated with temporal and spatial regularization terms specifi-

cally tailored for fMRI signal model as

x̃ = argmin
x

1

2
‖y − x‖2F +RT (x) +RS(x). (2)

The temporal regularization term, RT , uses a generalized to-

tal variation framework [12] and can be expressed as

RT (x) =

V
∑

i=1

λ1(i) ||∆L {x(i, ·)}||1 , (3)

where ∆L = ∆∆HRF is the generalized derivative opera-

tor representing the inverse of HRF obtained through Balloon

model, ∆HRF , combined with a first-order derivative opera-

tor ∆, and V is the number of voxels.

A possible spatial regularization term exploits a prede-

fined brain parcellation with �(2,1)-norm

RS(x) =
N
∑

t=1

λ2(t) ||∆Lap {x(·, t)}||(2,1) . (4)

where ∆Lap is the Laplacian operator, N is the number of

time points [10, 13].

The regularization formulation in equation (2) induces

sparsity of the innovation signals; i.e., derivative of activtiy-

inducing signals ∆ {u} in the temporal domain, and pro-

motes coherent activation within the regions of a predefined

structural atlas through �(2,1)-norm. Generalized forward-

backward splitting algorithm can be used to solve the regu-

larization problem in temporal and space domains [14].

cluster index
1 2 3 4 5 6 7 8 9 10111213141516171819

c
o

s
in

e
 d

is
ta

n
c

e

0

0.25

0.5

0.75

1

Patients
Controls

cosine similarity between  

cluster centroids

Fig. 1: The spatial stability of iCAPs. We performed 10 folds

k-means clustering and computed the average similarity using

cosine distance metric and standard deviation between each

matching pair of cluster centroids; i.e., there are in total 45

pairs for 10 folds.

2.3. Innovation-driven co-activation patterns

The innovations represent brief moments of transient acti-

vations and carries the same information as the block-like

activity-inducing signals. In order to recover coherent acti-

vation patterns that share the same innovation signals across

subjects, the innovation signals were temporally concatenated

and fed into temporal k-means clustering [11].

2.4. Spatial variability of iCAPs

First, we ran the k-means algorithm (k=20) using cosine dis-

tance as the similarity measure for 10 folds. We used 50 ran-

dom k-means initializations where the minimum cost solu-

tion was picked as the most stable solution. We matched the

group centroids between 10 solutions using Hungarian algo-

rithm, and evaluated the similarity across folds. Then, instead

of using cluster centroids, we evaluated the inter-subject sim-

ilarity of iCAPs. We picked the best k-means solution and

computed the subject-specific iCAPs, and measured the co-

sine similarity between each subject iCAP and group iCAP.

Further, we drove a summary score per iCAP. We thresholded

and created a binary mask for each subject-specific iCAP (z-

score≥1), and calculated the average percent overlap within

the group iCAP divided by the average percent overlap out-

side of the group iCAP. This measure is expected to be higher

(>> 1) when inter-subject spatial variability of that iCAP is

low.
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Fig. 2: The inter-subject variability. Using the best k-means

solution performed on the whole dataset, we computed the

cosine distance between subject-specific iCAPs and group

iCAP. A subcortical network (iCAP 12, amygdala network)

provided lowest score, however, there were no significant dif-

ferences between the groups.

3. RESULTS

3.1. Data Acquisition and Preprocessing

The study was conducted at the Geneva University Hospi-

tal. All participants gave informed written consent in ac-

cordance with procedures approved by the Ethics Committee

of the Geneva University Hospital. The MRI data was ac-

quired with Siemens 3T Trio scanner using 32 channel head

coil. The resting-state fMRI data were collected using 2D

gradient-echo echo-planar (EPI) sequence with the following

protocol parameters: 36 transverse slices covering the whole

brain, voxel size = 3.2×3.2×3.2 mm3, acquisition matrix =

64×64, FOV = 205 mm, TR/TE/FA = 2100 ms/30 ms/90o,

250 volumes). The total acquisition took around 8.5 mins.

The MRI data were acquired from 31 mood disorder patients

(depression score [0-33]: 13.7 ± 9.5) and 32 healthy volun-

teers (depression score [0-33]: 1.9 ± 1.8) matched for age,

gender, laterality, and level of education.

The fMRI data were preprocessed using custom MAT-

LAB code combined with SPM8 (FIL, UCL, UK) and

IBASPM toolboxes [15]. The first 10 volumes were discarded

cluster index
1 2 3 4 5 6 7 8 9 10111213141516171819

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Controls
Patients

s
c
o

re
 =

 w
it

h
in

 g
ro

u
p

 m
a
p

 /
 o

u
ts

id
e

Fig. 3: Percent spatial overlap of iCAPs. Each subject-

specific iCAP was binarized (z-score≥1), and percent spa-

tial overlap within and outside of the group iCAP was com-

puted. All iCAPs provided high overlap (scores >>1), and

there were no differences across the groups.

for magnetization stability, and time series were detrended

for baseline, first order and low frequency drifts (cut-off:

0.008Hz). The fMRI volumes were realigned to the mean

volume and spatially smoothed with Gaussian filter (full

width half maximum=3mm). We used motion estimation to

mark the time points with excessive amount of motion (max

motion ≥ 3 mm or frame-wise displacement ≥ 0.5 mm) [16].

Marked frames were not removed as TA requires uniform

temporal sampling, therefore, we performed cubic-spline in-

terpolation to high motion frames and their one neighborhood

frames. Five healthy subjects and four patients were excluded

from further analysis, therefore, our analysis consisted twenty

seven individuals in both groups.

The structural images were coregistered to the mean func-

tional volume and segmented (NewSegment, SPM8) for the

six different MNI templates. The anatomical automatic la-

belling atlas, composed of 90 regions without the cerebellum,

was mapped onto each subject’s coregistered anatomical im-

age and further downsampled to match the functional images.

The TA analysis was run on each subject’s functional space,

and the atlas was used to guide TA’s spatial regularization.

The resulting activity-inducing and innovation signals were

normalized to MNI space using the deformation matrix in the

segmentation step.

3.2. Stability of group-level iCAPs

We have opted for 20 clusters, however, one cluster were rep-

resented only in one subject, so left out from the analysis.
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Fig. 4: The spatial localization of the dominant iCAPs. DMN and visual networks were the most dominant iCAPs with

maximum overlap across subjects within group the iCAP mask. The black circles show the outline of group iCAPs.

Fig. 1 depicts the stability of the clusters across 10 k-means

(for 10 folds we have
(

10
2

)

= 45 metrics for each cluster).

The cluster similarity measurements provide an insight on the

spatial reproducibility. Although one cluster (iCAP 13, visual

network) showed relatively low scores compared to others,

both patients and controls showed similar stability measure-

ments.

3.3. Inter-subject variability

Fig. 2 shows the average similarity between each subject’s

iCAP and the group iCAP. Again, there were no group differ-

ences in the inter-subject variability. One subcortical network

(iCAP12, amygdala network) showed lowest score compared

to others perhaps due to small amount of voxels spanned in

those networks or higher spatial variability in subcortical re-

gions.

We have further assessed the inter subject variability in

Fig. 4 using a summary score reflecting the average percent

overlap of voxels within the group iCAP and voxels outside

of the group iCAP. We have specifically found four dominant

networks of which almost all subjects contribute to the group

maps (Fig. 3, iCAPs 4–10, default-mode network (DMN), and

iCAPs 8–9, visual networks).

4. DISCUSSION

In this work, we have conducted a quantitative analysis of

the subject-specific spatial variability of iCAPs in mood dis-

order patients healthy controls. We have found reproducible

patterns in all iCAPs, of which subcortical networks showed

higher inter-subject variability. The visual networks and two

DMN showed very high spatial localization. We have not

found any differences between the groups in terms of spatial

consistency.
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