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The interaction of two isolated vortices having uniform vorticity is examined in detailed 
contour dynamics calculations, and quantified using a diagnostic that measures the coherence 
of the final state. The two vortices have identical vorticity, leaving two basic parameters 
that determine the evolution: the radius ratio and separation distance. It is found that the term 
“vortex merger” inadequately describes the general interaction that takes place. Five 
regimes are found: ( 1) elastic interaction, (2) partial straining-out, (3) complete straining- 
out, (4) partial merger, and (5) complete merger. Regime 5 is what used to be called 
“merger,” but occurs in less than one-quarter of the parameter space. Contrary to popular 
belief, inelastic vortex interactions (IVI’s) do not always lead to vortex growth. In 
fact, in over half of the parameter space, smaller vortices are produced. These results bring 
into question commonly accepted ideas about nearly inviscid two-dimensional 
turbulence. 

I. INTRODUCTION 

Over the past 20 years, interest has rapidly grown in 
the study of two-dimensional (2-D) vortex dynamics, in 
part because of its direct relevance to the basic, vortex- 
dominated processes in real, ultrahigh Reynolds number 
(Re) geophysical fl~ws,t-~ and in part because 2-D turbu- 
lence, itself a fundamental paradigm for basic processes in 
geophysical flows, has been repeatedly shown to be char- 
acterized by well-defined, coherent vortex interactions 
within a sea of essentially passive filamentary debris.“15 
The traditional theories of turbulence’6”7 ignore the now 
recognized dominant role played by coherent vortices in 
shaping turbulence, do not take advantage of the sharp 
distinction at high Re between the coherent vortices and 
the background sea of filamentary debris’s’19 as seen so 
directly in p/z~~icuZ space, and are inconsistent with recent 
results for ultrahigh Re turbulence.20 

How vortices interact in turbulence is the central ques- 
tion. Despite more than a decade of research, this question 
remains largely unanswered. It is also a question on which 
a theory of turbulence hinges. 

In fact, the variety of possible vortex interactions ap- 
pears enormous. A number of studies have considered just 
the simplest possible one, and almost all of these have con- 
centrated on the case of equal vortices (for a review, see 
the preceding paper in this issue2’). In the few foregoing 
studies of unequal vortices, 22-24 the emphasis has been to 
determine the conditions for merger. 

Knowing when two vortices will merge is not enough 
to answer the basic question of how they do it. Quantitative 

‘)Present address: Center for Meteorology and Physical Oceanography, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139. 

information is needed also. To date, only one previous 
study2’ has quantified vortex merger, and this was done for 
the case of equal vortices. In Ref. 21 a procedure was 
developed to identify and calculate the coherent circulation 
after vortex merger. The same procedure will be used in 
this paper to quantify the interaction of unequal vortices. 

We consider the interaction of two vortex patches, of 
equal uniform vorticity, in an unbounded, inviscid, incom- 
pressible fluid. This is the simplest possible problem to 
quantify. It depends on two parameters: the radius ratio of 
the smaller to larger vortex, and the initial separation of 
the vortex centers. 

One may question the restriction to vortex patches and 
to equal vorticity, though there are in fact more serious 
deficiencies of the basic problem, as discussed in Sec. IV. In 
fact, uniform, equal vorticity may not be as bad an assump- 
tion as it appears. The process of vortex stripping,18.19 in 
which background strain (due generally to surrounding 
vortices) strips away low-lying vorticity from a vortex 
edge, and the process of vortex merging21,22,25 both leave 
vortices with exceedingly steep edge gradients if the Rey- 
nolds number permits. One can argue that, in nearly invis- 
cid, decaying turbulence, after many close range interac- 
tions, surviving coherent vortices will be all nearly 
patchlike and consist of the peak levels of positive and 
negative vorticity.20 This is simply because stronger vortic- 
ity is more resilient to strain than weaker vorticity, and 
given enough time, the peak levels of vorticity have the 
highest probability of being within the coherent vortices. 

In the following section, we discuss the results from an 
extensive series of high-resolution contour surgery26*27 cal- 
culations. The evolution of the vortices is characterized 
into five different flow regimes depending on the ratio of 
the vortex radii and the initial separation. New regimes, 
not present in symmetric merger, are found where the in- 
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FIG. 1. Initial configuration of two circular vortices with radii R, and R? 
(R,<R, = l), and intercentroid separation d. 

teraction forms two resultant vortices differing in circula- 
tion from either of the original vortices. In these regimes 
part of the smaller vortex is torn away and is either incor- 
porated into the larger vortex or “lost” to filamentary vor- 
ticity. In certain cases it is possible for the smaller vortex to 
be destroyed with no extra vorticity being incorporated 
into the larger vortex. In Sec. III the loss of coherent cir- 
culation during inelastic vortex interactions (IVI’s) is 
quantified. Using the surgical section of the contour sur- 
gery algorithm, fine-scale filamentary structures are re- 
moved from the resultant velocity distribution and the cir- 
culation of the remaining “coherent” vortices is calculated. 
The accuracy and number of calculations enable the 
boundaries of the above regimes to be determined with 
some precision. Finally, in Sec. IV we discuss the param- 
etrization of the results and its applicability to nonconser- 
vative point vortex models of turbulence. 

II. FLOW REGIMES 

In this section, we investigate the evolution of two ini- 
tially circular vortices with differing radii but with the 
same uniform vorticity. An extensive series of high- 
resolution contour surgery simulations have been per- 
formed in which the initial ratio of vortex radii and inter- 
centroid separation were varied. The initial conditions are 
illustrated in Fig. 1; the larger vortex has unit radius 
(R, = 1) and the radius of the smaller vortex is picked 
from the range 0.1 <R,< 1.0. For each ratio of vortex radii, 
the evolution is calculated for numerous initial intercen- 
troid separations d. In all calculations the vortices have 
vorticity 27~ (corresponding to an eddy turnaround time of 
2), and the spatial resolution is either ,u=O.O5 or 0.06 
(with surgical scale S =,LJ’/S) .26,27 

The evolution of two identical vortices (R,= 1) was 
investigated in detail in the preceding paper.‘l For large 
initial separation (d> 3.45) the circular vortices do not 
make contact and they rotate about their center of vorticity 
at approximately the same rate as point vortices with the 
same circulation, whereas initially close vortices (d < 3.3 1) 
merge together to form a single elliptical vortex with sur- 
rounding filamentary vorticity. In the intermediate regime 
(3.3 1 < d < 3.45) the vortices make contact but break apart 
to form two vortices with the same circulation as the orig- 
inal vortices. 

We now consider the evolution of unequal vortices, 
and describe the flow regimes that occur varying R, and d. 
The boundaries between these regimes are determined in 
the next section, where the circulation of the resultant co- 
herent vortices is also calculated. 

For all values of R,, the vortices rotate about their 
center of vorticity, at approximately the same rate as two 
point vortices with the corresponding circulations, without 
losing vorticity if their initial separation is greater than 
some critical separation d, (which varies with R2). As with 
identical vortices, the vortices pulsate through several 
states as they rotate around each other.” As d decreases 
the distortion to the vortices increases, and for separations 
below d, filamentary vorticity is ejected from one vortex 
and wrapped around the other. 

= 

When R,=0.7, for example, the two vortices rotate 
about their center of vorticity without touching if 
d)d,-3.05. For an initial separation just below this criti- 
cal value, a thin filament of vorticity is drawn from the 
smaller vortex [Fig. 2(a); d=3.0]. This filamentary vortic- 
ity breaks away from the smaller vortex and is wrapped 
around the larger vortex (note that if there was no “sur- 
gery,” the filament would still be connected to the smaller 
vortex but it would be extremely thin and it would require 
only a small amount of dissipation in a real flow to break 
the filament). As the filamentary vorticity wraps around 
the large vortex, the straining flow (largely in the form of 
differential rotation) stretches, thins, and renders passive 
the filamentary vorticity (see Refs. 12-14 for discussions of 
the stabilizing effect of strain and shear). The smaller vor- 
tex soon stops losing vorticity and regains a less distorted 
state (though there is some weak filamentation** after the 
initial large filament is ejected). The resultant state consists 
of two coherent vortices which rotate about their center of 
vorticity, plus filamentary vorticity. The largest resultant 
vortex is the same size as the largest original vortex (no 
vorticity from the smaller vortex is incorporated into the 
larger vortex-this is quantified in the next section), while 
the smaller resultant vortex is smaller than the smallest- 
initial vortex. This regime, where part of the smaller vortex 
is removed and “lost” to filamentary vorticity with no in- 
corporation by the larger vortex, is referred to as partial 
straining-out and never occurs between two equal vortices. 

As the initial separation d is decreased, the amount of 
vorticity removed from the smaller vortex increases, and 
some of this vorticity is now incorporated into the larger 
vortex [Figs. 2(b) and 2(c); d=2.8 and 2.41. As in the 
above regime, the smaller vortex loses vorticity then re- 
gains a robust form, and the resultant state consists of two 
corotating vortices plus filamentary vorticity. In this re- 
gime the larger vortex contains fluid from both original 
vortices and is larger than the largest original vortex. Also, 
the surrounding filamentary vorticity has come from both 
original vortices (the larger vortex ejects a thin filament as 
it incorporates vorticity from the smaller vortex). This re- 
gime, where part of the smaller vortex is removed and 
some of it is incorporated into the larger vortex, is referred 
to as partial merger. Again this regime never occurs be- 
tween two equal vortices. 
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FIG. 2. Contour surgery calculations of the coalescence of two unequal circular vortices with uniform vorticity 2n. The initial radii of the circles are 
RI=1 and Rz=0.7, and the initial intercentroid separation is (a) d=3.0, (b) d=2.8, (c) d=2.4, and (d) d=2.2. 

For even smaller d the smaller vortex is destroyed and 
the resultant configuration consists of a single central vor- 
tex, containing fluid from both original vortices, plus sur- 
rounding filaments [Fig. 2(d); d=2.2]. The evolution of 
the vortices in this regime is similar to the merger regime 
for symmetric vortices.21 To distinguish it from the above 
regime we call this regime complete merger, even though 
vorticity is lost to filaments and the merger is not complete 
in the sense of transfer of circulation. 

We now consider vortices with disparate sizes. In this 
case, the vortices have to be closer together for an inelastic 
interaction to take place (the variation of dc with R, is 
examined in the next section). When Rz=0.3, for example, 
the critical separation is d,z2.7 compared to d,z3.05 for 
R,=0.7 and d,s 3.45 for R,= 1. For d just smaller than d, 
the vortices are again in the partial straining-out regime 
[Fig. 3(a); d=2.5]. As in the case when R,=0.7, the 
amount of vorticity removed from the smaller vortex in- 
creases as the separation decreases. Now, however, the vor- 
ticity taken from the smaller vortex is always strained-out 
by the flow due to the larger vortex and is not incorporated 
into the larger vortex. If the smaller vortex is close enough 
to the larger vortex it is destroyed and the resultant con- 
figuration consists of only the largest original vortex [Fig. 
3(b); d=2.0]. This regime is referred to as complete 
straining-out. It also never occurs for two equal vortices. 

The above calculations have shown that close interac- 
tion of two unequal vortices is quite different from that of 
equal vortices. Whereas the merger of two equal vortices 
produces a single larger central vortex (plus occasionally 
two very small satellite vortices from the roll-up of the 
filamentary vorticity”‘), such complete merger for unequal 
vortices occurs for only a quarter of the range of initial 
conditions (and the filamentary vorticity shows no sign of 
rolling up into small satellites). Furthermore, for vortices 
with a large difference in size, there can be destruction of 
the smaller vortex with no growth of the larger vortex. To 
investigate further the difference between equal and un- 
equal vortex merger, we examine next the interaction of 
vortices which are very nearly the same size. 

Figures 4(a) and 4(b) show the evolution when 
R,=0.95 and (a) d=3.2 and (b) d=2.6. For these sepa- 
rations the vortices are in the partial and complete merger 
regimes, respectively, and the evolution’is very similar to 
that for R,=0.7 [see Figs. 2(b)-2(d)], though signifi- 
cantly more vorticity is incorporated by the larger vortex. 
The evolution for d=3.2, however, is quite unlike what 
occurs in the purely symmetric case R, = 1 [cf. Fig. 3 (b) of 
Ref. 211. After the compound elliptical core forms around 
t=3, the evolution resembles that of an asymmetric distur- 
bance to an elliptical vortex [cf. Fig. 12(b) of Ref. 291. 
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FIG. 3. As in Fig. 2, except R,=0.3 and (a) d=2.5, (b) d=2.0. 

III. QUANTIFICATION 

In this section, the circulation carried by the resultant 
vortices is quantified and the boundaries of the above flow 
regimes are determined. 

For all contour surgery calculations performed, we 
have calculated the circulations of the resultant coherent 
vortices, lYlf and lY2,-. The coherent part of the vorticity 
distribution was obtained using the “coarse-graining” pro- 
cedure introduced in the preceding paper.21 In this proce- 
dure, the surgical part of the contour surgery algorithm is 
applied repeatedly in successive increases in the surgical 
cutoff scale S, stopping at 6=0.05R ,. This procedure effi- 
ciently removes filamentary structures and isolates coher- 
ent vortices. Because of the often sharp distinction in scale 
between the filaments and the vortices, the quantitative 
results are essentially independent of the maximum cutoff 
scale used.‘l This was verified again here by quantifying a 
subset of the results using a smaller maximum cutoff scale, 
S=O.OIR1. 

Here we quantify the “efficiency” of the IVI’s by com- 
puting the ratio o:the final to initiaicirculation for each of 
the two vortices, rl = I’,f/l?li and r2= rZf/rzi, where the 
subscripts i and f represent the initial and final states, 
respectively. These circulation ratios enable precise classi- 
fication of the flow into five regimes: 
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FIG. 4. As in Fig. 2, except R,=0.95 and (a) d=3.2, (b) d=2.6. 

(i) elastic interactions (EI) : &=I, &=l; 
(ii) partial straining-out (PSO) : &I, &< 1; 
(iii) complete straining-out (CSO) : .?, = 1, p2=O; 
(iv) partial merger (PM): ^r,> 1, f;,< 1; 
(v) complete merger (CM): f;, > 1, P,=o. 

Figure 5 shows the flow regime boundaries as determined 
by all 126 contour surgery calculations on a plot of initial 
ratio of vortex radii R,/R, versus dimensionless gap be- 
tween vortices A/R1 (Azd--RI -R2 is the distance be- 
tween the edges of the vortices). This figure shows that the 
variation of the flow regimes with initial vortex radii and 
separation is complicated, and in particular that the inter- 
action of vortices with significantly different sizes is very 
different from that of two more evenly matched vortices. 
The interaction of a vortex with a much smaller vortex 
only results in vortex growth if the gap between them is 
very small. In general the interaction of vortices with sig- 
nificantly different sizes leads to reduction in size, or de- 
struction, of the smaller vortex with no change to the 
larger vortex. For vortices of more similar size, the close 
interaction generally leads to a larger largest vortex, al- 
though the interaction may also produce a smaller smallest 
vortex (PM regime). Figure 5 also shows clearly the 
uniqueness of symmetric vortex merger. For only slightly 
unequal vortices the interaction can result in two vortices 
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PIG. 5. Plow regimes for all contour surgery calculations. The regime for each calculation is plotted on a graph of initial ratio of vortex radii Rz/R1 and 
dimensionless gap A/R,. Elastic interactions are represented by a dot; partial straining-out by a cross over a circle; complete straining-out by a circle; 
oartial merger by a asterisk; and complete merger bv a cross. The solid curves represent the boundaries between the regimes and have been drawn by 
hand. The dashed line is the separation A, discussed in Sec. III. 

and produce both a smaller as well as a larger vortex. 
Hence, the historical perception that the close interaction 
of like-signed vortices generally produces larger scales is 
not correct-it is equally likely for the interaction to pro- 
duce smaller vortices. 

The behavior of the boundary between the PSO and 
CSO regimes (when the smaller vortex is destroyed) as 
RJR1 -0 can be understood by considering the survivabil- 
ity of a circular vortex in a uniform straining flow. An 
initially circular vortex with uniform vorticity w will be 
indefinitely extended in adverse shear if the strain rate 
y)y,=O.O74 388~. (see Ref. 30). To leading order, the 
flow across the smaller due to the larger vortex is adverse 
shear with y=wRt/2?, where r is the distance from the 
center of the larger vortex. The shear at the outer edge of 
the smaller vortex (r=A+ RI +2R,) is then greater than 
Ye, and, hence, the entire smaller vortex is subjected to 
adverse shear which indefinitely extends it if 

A<A,=: 1.5926R,-2R,. 

The separation A, is a very good approximation of the 
separation at which the smaller vortex is actually destroyed 
when Rz 5 0.4R1 (see the dashed line in Fig. 5). For larger 
R,, this formula is no longer valid because there are other 

effects not taken into account in the above argument, e.g., 
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the variation in the straining flow across the smaller vor- 
tex, and the fact that the size of the larger vortex (and 
hence the strain it produces) increases as it incorporates 
vorticity removed from the smaller vortex. 

The variation of the sizes of the resultant vortices with 
initial separation is shown in Figs. 6 and 7, in which f;;‘” 
and pi” (the ratio of final to initial average radii of the 
vortices) are plotted against dimensionless separation 
A/RI, for different initial radius ratios R,/R,. The size of 
the smaller resultant vortex, when formed during the in- 
teraction of vortices of significantly different sizes, de- 
creases monotonically with the initial separation [Fig. 
6(a)]. But for vortices of nearly equal sizes, the size of the 
smaller resultant vortex varies nonmonotonically with de- 
creasing initial separation [Fig. 6(b)]. This is because of 
the instability of the early-formed compound elliptical 
core; 29 the symmetric instability is favored only for nearly 
symmetric initial conditions. 

The variation of the size of the larger resultant vortex 
is more complicated (Fig. 7). Although there is a general 
trend for the size of the larger resultant vortex to increase 
with decreasing separation, there are some relatively large 
fluctuations. This is because the incorporation process can 
be very complicated and generates a large amount of fila- 
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FIG. 6. Variation of the ratio of final to initial average radii of the smaller vortex pi” with dimensionless gap A/R, for (a) RJR,=O.I, 0.2,..., 0.6 and 
(b) RJR, =0.7, 0.8, 0.9, 0.95, 1.0. Adjacent data points have been joined with straight line segments. 

mentary vorticity [see, e.g., Figs. 2(b)-2(d), and 4(a) and 
4(b)], and this makes the determination of the coherent 
circulation sensitive to the stage of the evolution when the 
quantification is done. In a real flow, external strain would 
strip away a great bulk of this filamentary vorticity1*‘t9 

leaving the resultant vortices more sharply defined. 

IV. DlSCUSSlON 
The calculations presented in this paper have shown 

that the interaction of unequal vortices is much richer than 
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FIG. 7. Variation of the ratio of final to initial average radii of the larger vortex ^ri” with dimensionless gap A/R,. 

that of equal vortices. Whereas the merger of two equal 
vortices produces only a single vortex (plus occasionally 
two very small satellite vortices), the close interaction of 
unequal vortices can often produce two vortices. The type 
of evolution and resultant vorticity distribution depend on 
both the initial ratio of vortex radii and separation. For the 
close interaction of two vortices of nearly the same size, 
part of (or all of) the smaller vortex is removed and some 
of this fluid is incorporated into the larger vortex, and the 
interaction produces a vortex larger than either of the orig- 
inal vortices (it may also produce a vortex smaller than 
either). On the other hand, the interaction of two vortices 
with a large difference in size results in part of (or all of) 
the smaller vortex being torn away with no growth of the 
larger vortex. It is therefore inappropriate to talk of the 
“merger” of unequal vortices, since over a large range of 
initial conditions the two vortices do not join together to 
form a single compound vortex. 

Our results show that the interaction of like-signed 
vortices is not only an essential mechanism for vortex 
growth, it is also an important mechanism for the produc- 
tion of small vortices and for the destruction of vortices (as 
shown up in recent contour surgery calculations of 
turbulence”). Inelastic vortex interactions (IVI’s) are 
therefore important in the production of vortices at all 
scales in a turbulent flow, and the quantification of these 
interactions is necessary for the development of simple 
models of two-dimensional turbulence. 

It has been shown by Benzi et aL7,’ that the late-time 
evolution of a two-dimensional turbulent flow can, for 
short periods; be reasonably approximated by a collection 
of point vortices. This approximation neglects the effect of 
the background sea of filaments (this is a reasonable as- 
sumption considering the quasipassive nature of these 
filaments’2-‘4), as well as the effect of the vortices’ internal 
structure. A major problem with the neglect of internal 
structure is that vortices cannot merge together or be de- 
stroyed, and therefore in a point vortex model of turbu- 
lence there will not be an increase in size or separation of 
the vortices. To overcome this problem, nonconservative 
point vortex models have been developed.31’32 In these 
models each vortex is represented by a radius and a vor- 
ticity value. For large separations the vortices interact like 
point vortices, but when like-signed vortices approach 
within a critical separation distance, a nonconservation 
transformation meant to represent the merger or inelastic 
interaction of finite-area vortices occurs. 

In the models developed by Benzi et aL31 and Carnev- 
ale et a1.,32 the critical separations are 3.3 or 3.4 times the 
average radii of the two interacting vortices, respectively, 
and the transformation replaces the two vortices with a 
single vortex of radius R = (RI+ Ri) 1’4 (all vortices have 
the same vorticity). The results of the present paper show 
that this transformation has little in common with ob- 
served behavior. It does not take into account that the 
critical separation d, for IVI’s depends on the relative radii 
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of the vortices, that there can be more than one resultant 
vortex, that the size of the resultant vortices depends on 
both the ratio of vortex radii and the separation d, and that 
the close interaction of vortices does not always result in 
vortex growth. Therefore if simple point vortex models are 
to have any hope of modeling two-dimensional turbulence, 
an improved, more realistic, nonconservative transforma- 
tion must be developed. 

An improved point vortex model has been developed 
using a parametrization of the results of Sec. III as the 
nonconservative transformation, and simulations using this 
model have been compared with full contour surgery sim- 
ulations of turbulence. Even with this improved transfor- 
mation, it has not been possible to reproduce observed sta- 
tistical behavior. The deficiency is that the new 
parametrization relies only on the interaction of isoIated 
vortices. In a turbulent flow, the vortices are influenced by 
the straining of surrounding vortices, and this can signifi- 
cantly affect IVI’s. A preliminary investigation into the 
effect of forcing on the coalescence of identical vortices has 
shown that the critical separation for IVI’s varies drasti- 
cally with the nature of the forcing, and it is unlikely that 
there exists a simple criterion for predicting IVI’s in a 
general forcing flo~.~~ It is therefore evident that the press- 
ing task is to determine the most probable types of inter- 
actions (e.g., between three vortices as suggested in Ref. 
20), then quantify them, and finally, if the results are sim- 
ple enough, parametrize them in a simple model. Such a 
program appears feasible at the present time only in the 
limit of dilute turbulence.20 
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