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[1] Knowledge of the raindrop size distribution (DSD) is
essential for understanding the physics of precipitation and
for interpreting remotely sensed observations of rain.
Disdrometer measurements of DSDs are affected by
uncertainties due to the limited sampling volumes or areas
of the sensors. Determining this sampling error directly
from disdrometer observations is of primary importance for
the practical application of DSD analyses. Gage et al.
(2004) proposed an estimator of the sampling error affecting
the radar reflectivity estimates based on pairs of collocated
disdrometers. We provide an interpretation of this estimator
and assess its accuracy through controlled experiments
using a Monte Carlo framework. Our simulation model of
the disdrometer sampling process closely mimics the
observations reported by Gage et al. (2004). Using this
model, we demonstrate that the estimator proposed by Gage
et al. (2004) provides a reliable quantification of the
reflectivity sampling error. However, we also show that its
accuracy depends on the ratio between the length of the
disdrometer time series involved and the characteristic time
scale of the rainfall. Citation: Berne, A., and R. Uijlenhoet

(2005), Quantification of the radar reflectivity sampling error in

non-stationary rain using paired disdrometers, Geophys. Res. Lett.,

32, L19813, doi:10.1029/2005GL024030.

1. Introduction

[2] The space-time variability of the raindrop size distri-
bution (DSD) is of primary importance for both the under-
standing of the physical processes involved in precipitation
formation and the interpretation of ground-based and space-
borne radar estimates of rain [Robertson et al., 2003;
L’Ecuyer et al., 2004]. Different types of sensors can
provide DSD measurements, e.g. the Joss-Waldvogel (JW)
impact disdrometer, the optical spectropluviometer, and
the video-disdrometer. As they generally have a limited
sampling volume or sampling area (for instance, 50 cm2 for
the JW disdrometer), the derived experimental DSDs are
strongly affected by sampling errors. It is essential to
quantify these sampling errors in order to assess the result-
ing uncertainties on analyses employing measured DSDs.
Analytical expressions [e.g., Joss and Waldvogel, 1969;
Gertzman and Atlas, 1977; Uijlenhoet et al., 2005] and
numerical simulations [Smith et al., 1993] have been used to
quantify the sampling error affecting different bulk rain
variables for purely Poissonian fluctuations. However, rain
events rarely exhibit purely Poissonian fluctuations
[Jameson and Kostinski, 1997; Uijlenhoet et al., 1999]. In

general the sampling fluctuations are combined with the
natural variability of rainfall. Recently, Gage et al. [2004,
hereinafter referred to as GCWT] used paired disdrometers
to estimate the radar reflectivity sampling error and suggest
to apply this setup for the calibration of radar profilers. They
propose the standard deviation of the differences between
the reflectivity values derived from the two collocated
disdrometers as an estimator of the uncertainty of the
reflectivity measurement due to sampling errors. In their
preliminary analysis however, GCWT did not provide for
this estimator (i) an explicit link with the disdrometer
sampling effects, or (ii) any information regarding its
statistical quality (robustness and accuracy). The objective
of this paper is to investigate these two issues within a
simulation framework. An extended version of the stochas-
tic model of DSD profiles (i.e. time series in this paper)
proposed by Berne and Uijlenhoet [2005] is used to
simulate the sampling process of a JW disdrometer in
non-stationary rain. Subsequently an explicit link between
the estimator proposed by GCWT and the disdrometer
sampling error is established in order to provide a physical
interpretation. Finally, a Monte Carlo technique is applied to
validate this link and to derive the probability distribution of
the estimator to quantify its accuracy.

2. The DSD Simulator

[3] The DSD simulator used in the following has been
proposed by Berne and Uijlenhoet [2005]. It enables to
generate DSD profiles corresponding to non-stationary
rainfall. It is based on the exponential DSD, which two
parameters Nt and l are considered to be random variables

N DjNt;lð Þ ¼ Nt l e�lD; ð1Þ

where N(DjNt, l)dD denotes the drop concentration in the
diameter interval [D, D + dD] given Nt and l. The latter are
assumed to be jointly lognormally distributed and their
logarithms are assumed to follow a bivariate first order
vector auto-regressive process. This introduces temporal
structure in the generated profiles, with the exponential
auto-correlation function r(t) = exp (�2t/q), where t is the
time lag and q is the characteristic time scale of the process
(related to the decorrelation time). From DSD measure-
ments for a 4-hour rain event, collected during the HIRE’98
experiment in Marseille, France, it appears reasonable to
assume the auto-correlation functions of ln Nt and ln l to be
the same and their cross-correlation to be negligible [see
Berne and Uijlenhoet, 2005], although in principle the
model is able to cope with non-zero correlations. The
number of parameters now reduces to five: the means and
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the standard deviations of ln Nt and ln l, and the
characteristic time scale q. Their values are derived from
the HIRE’98 rain event mentioned above (see Table 1). The
simulator provides profiles of Nt and l, with a given
resolution, from which the bulk rain variables can be
derived. The backscattering cross-sections are calculated
using the Mie theory and the drop fall velocities using
Beard’s simplified model [Beard, 1977]. Following GCWT,
we focus in this paper on the radar reflectivity Z for a 10 cm
wavelength weather radar (i.e. S-band, so attenuation effects
due to precipitation are negligible).
[4] To study disdrometer sampling effects, the simulator

has been extended. First, to be consistent with actual
disdrometers, a truncated exponential DSD model is used

N DjNt;lð Þ ¼ Nt p Djlð Þ ¼ Nt

l
e�lD1 � e�lD2

e�lD; ð2Þ

where p is the probability density function of the raindrop
diameter, D1 denotes the minimum drop diameter (D1 =
0.1 mm) and D2 the maximum drop diameter (D2 = 5 mm).
Second, Poissonian fluctuations are added to every time
interval of the profile to simulate the sampling process of a
JW disdrometer. The simulator is used here to generate 100
sampled profiles corresponding to the same reference profile.
This is equivalent to having 100 collocated disdrometers
sampling the same rain event. To illustrate the ability of the
simulator to mimic the disdrometer measurements presented
by GCWT, a reference profile corresponding to 8 hours of
rain has been generated with a resolution of 60 s. The average
rain intensity is about 5 mm h�1 and the maximum is about
50 mm h�1. Figure 1 reproduces Figure 2 of GCWTwith two
simulated sampled time series. The three plots in these two
figures appear very similar and hence give confidence in the
simulation of the sampling process. The main advantage of a
simulation approach is the possibility to generate a large
number of sampled time series, and therefore the possibility
to use a Monte Carlo approach to derive robust statistics on
the sampling effects.

3. Variability Due to Sampling Effects

[5] As mentioned in the Introduction, the quantification
of the sampling error is essential for analyses based on
measured DSDs (e.g. the derivation of Z-R power laws to
interpret radar measurements). In this paper, we focus on
the variability of the measured radar reflectivity due to the
sampling effect.

3.1. Poissonian Fluctuations

[6] For a surface-sampling sensor like the JW disdrom-
eter, the estimator of Z is defined as

Z ¼ CZ

ADt

Xn
i¼1

sB Dið Þ
V Dið Þ ; ð3Þ

where CZ is a factor depending on the wavelength and on
the employed units, A is the sensor area (50 cm2), Dt is the
time interval (60 s), n is the number of sampled drops, sB
denotes the backscattering cross-section, V denotes the
terminal fall velocity, and Di is the equivalent spherical
diameter of the ith drop. We assume that during the time
interval Dt, rainfall behaves as a homogeneous marked
Poisson process, such that n follows a Poisson distribution
and the Di’s are independent of n and of each other and
identically distributed according to equation (2). In this
case, it is possible to derive the analytical expression for any
moment of a bulk rain variable [Uijlenhoet et al., 2005].
The mean sampled Z is then given by

E ZjNt ;l½ � ¼ CZ Nt

ZD2

D1

sB Dð Þ p Djlð Þ dD ð4Þ

and the variance of the sampled Z is given by

Var ZjNt;l½ � ¼ C2
Z

Nt

ADt

ZD2

D1

s2B Dð Þ
V Dð Þ p Djlð Þ dD: ð5Þ

In the Rayleigh approximation (CZ � sB(D) = D6), if V(D)
is assumed to follow a power law, and in addition the
diameter integration limits D1 and D2 in equation (2) are
assumed to be 0 and 1, these expressions reduce to those
given by Joss and Waldvogel [1969].
[7] Equation (4) shows that the product of sensor area

and time interval (ADt) has no influence on the mean
sampled Z value (i.e. there is no bias), which only depends
on the shape of the DSD. On the other hand, equation (5)
shows that the variance of the sampled Z is inversely
proportional to ADt. That is, the smaller ADt, the larger
the sampling effects.

Table 1. Mean, Standard Deviation and Characteristic Time of

N0 = ln Nt and l0 = ln l Deduced From HIRE098 Data at a 60 s

Time Step

Mean Std q (s)

N0 7.30 0.54 436
l0 0.97 0.24 436

Figure 1. Radar reflectivity measured by two simulated
collocated JW disdrometers. Top panel: time series of Z1, Z2

and their difference DZ, expressed in dBZ. Bottom left
panel: corresponding DZ histogram. Bottom right panel:
auto-correlation function of DZ. These graphs closely
resemble those of Gage et al. [2004, Figure 2].
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3.2. Mixed Fluctuations

[8] The quantification of the sampling error for a non-
stationary rain event is more complex due to the mixing of
sampling fluctuations and natural variability. In this context,
equation (4) (respectively 5) provides an expression for the
conditional expectation (respectively variance) of Z given Nt

and l. The variance of Z over the population of Nt and l can
be written as

Var Z½ � ¼ Var E ZjNt;l½ �½ � þ E Var ZjNt;l½ �½ �; ð6Þ

where E denotes the expectation and Var the variance.
Equation (6) shows that the total variability, Var[Z], is the
sum of a first term, Var[E[ZjNt, l]], which represents the
natural variability, and a second term, E[Var[ZjNt, l]],
which represents the variability due to the sampling effect.
Considered separately, two sampled Z profiles from two
collocated disdrometers do not allow to separate the natural
from the sampling variability. Nevertheless, assuming the
two sensors are close enough to sample the same DSD
population, the two sampled values Z1 and Z2 are
independent and identically distributed for given values of
Nt and l, which implies

E �ZjNt; �½ � ¼ 0

Var �ZjNt; �½ � ¼ 2Var ZjNt; �½ �;

8<
: ð7Þ

where DZ = Z1 � Z2. Writing equation (6) with DZ instead
of Z and using equation (7) yields

Var DZ½ � ¼ E Var DZjNt;l½ �½ � ¼ 2E Var ZjNt;l½ �½ �: ð8Þ

Equation (8) shows that taking the difference of the two
sampled Z values, as proposed by GCWT, removes the
natural variability and allows to quantify the sampling
variability alone. These expressions are valid no matter if Z
is expressed in linear (mm6 m�3) or in logarithmic (dBZ)
units. In the sequel, Z will be expressed in dBZ, consistent
with GCWT.

4. Estimation of Var[DZ]

[9] Note that equation (8) has been derived for the
expectation calculated over the population of Nt and l. In
practice, we only have access to a subset of the population
of Nt and l, through the measured Z time series. Therefore,
the validity of equation (8) over a profile (i.e. one realiza-
tion of the bivariate (Nt, l)-process) must be investigated, as
well as the accuracy of the estimation of Var[DZ] from
the measurements of two collocated disdrometers. Taking
advantage of the simulation framework, a Monte Carlo
technique is used to infer quantitative information regarding
these issues. To simplify the notations in the following, E
and Var will refer to the expectation and the variance along
a profile. To test the validity of equation (8) along a profile,
we analyze the distribution of (Var[DZ] � 2E[Var[ZjNt, l]])/
Var[DZ] for 100 simulated reference profiles (representing
100 independent rainfall time series). Recall that conditional
upon each reference profile, we simulate 100 sampled
profiles (representing 100 disdrometers). Hence, for a given
reference profile, Var[DZ] can be estimated as the average
of the variance of D Z calculated over the 4950 (100 � 99/2)
possible pairs. E[Var[ZjNt, l]] can be estimated directly as

we dispose of 100 sampled Z values for every time interval
of the reference profile. In this manner, we obtain one value
of (Var[DZ] � 2E[Var[ZjNt, l]])/Var[DZ] per reference
profile. The mean over the 100 reference profiles is found
to be about 10�5 and 80% of the values are within the
interval ±3 � 10�4. Therefore equation (8) can be consid-
ered valid along a profile (i.e. per realization) and the mean
sampling error is accurately quantified by Var[DZ]/2 (if
derived from a large number of sampled profiles).
[10] To assess the accuracy of the estimation of Var[DZ]

with only two sampled profiles (corresponding to two
disdrometers), the probability distribution of Var[DZ] is
studied. First, the distribution of Var[DZ] calculated using
the 4950 pairs of sampled profiles corresponding to one
given reference profile is plotted in the top panel of Figure 2.
The difference between an estimate from one single pair of
disdrometers and the mean value of Var[DZ] appears to be
limited (80% of the values are within an interval of ±10%
around the mean). To quantify the variability of this
distribution for different reference profiles, the distribution
of the coefficient of variation of the distribution of Var[DZ],
CVVar[DZ], for the 100 reference profiles is plotted in the
bottom panel of Figure 2. The mean is about 0.079 and the
10% and 90% quantiles are about 0.075 and 0.084, respec-
tively. This indicates that the distribution plotted in the top
panel of Figure 2 is representative for different reference
profiles. In summary, Var[DZ]/2, calculated from two col-
located disdrometers and hence closely related to the
estimator proposed by GCWT, provides a relatively accu-
rate estimate of the mean sampling error (in terms of
variance) affecting radar reflectivity time series derived
from JW disdrometers.

5. Influence of the Length of the Profile

[11] The results presented in the previous section have
been derived from simulated rain profiles of 8 hours, which
corresponds to about 66 times the characteristic time scale

Figure 2. Top panel: distribution of Var[DZ] values from
4950 simulated pairs of disdrometers for a given reference
profile. Bottom panel: distribution of the coefficient of
variation of Var[DZ] from 100 reference profiles.
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of the studied rainfall (see Table 1). This section is devoted
to the analysis of the influence of the length of the profile on
the accuracy of the sampling error estimation. Figure 3
presents the evolution of the mean and the 10% and 90%
quantiles of CVVar[DZ] as a function of the ratio of the length
of the profile and the characteristic time scale. The limited
dispersion of the quantiles indicates a limited variability of
CVVar[DZ]. Moreover, CVVar[DZ] values decrease when the
ratio increases. Therefore, Figure 3 shows that the length of
the measurement series must be significantly larger than the
characteristic time scale in order to obtain an accurate
estimation of the mean sampling error. For instance, to
achieve an accuracy corresponding to a coefficient of
variation of about 0.15 (0.10), one needs a time series
which is about 20 (40) times longer than the characteristic
time scale. In practice, these estimates provide a lower
bound, as mixing of different types of precipitation is likely
to occur more often when the time series become longer.

6. Conclusions

[12] The quantification of the uncertainty due to sampling
errors in disdrometer measurements is a crucial step in the
application of such measurements for the understanding of
the micro-physical processes involved in the precipitation
formation and the interpretation of radar measurements.
GCWT have presented an original method to estimate the
average sampling error affecting radar reflectivity estimates
from two collocated sensors. This paper focuses on the
interpretation of their estimator and on the quantification of
its accuracy, for the widely employed JW disdrometer.
A simulation framework, based on a model capable of
simulating the sampling process of a JW disdrometer in
non-stationary rain, is used in combination with a Monte
Carlo technique. First, it is found that the simulator is able
to closely mimic the data presented by GCWT. Then the
radar reflectivity variance due to the sampling effects is

shown to be half of the variance of the difference of the
radar reflectivity estimates of two collocated disdrometers
on the average. Finally, the Monte Carlo analysis shows that
the estimator provides a reliable quantification of the
variability due to the sampling error, but that its accuracy
depends on the ratio between the length of the measurement
series and the characteristic time scale of the studied
rainfall. The ability to simulate different DSD sensors offers
the opportunity to investigate the propagation of uncertain-
ties in analyses based on measured DSDs. For instance, the
influence of the sampling error on the widely used power
laws between bulk rain variables (e.g. rainfall intensity,
radar reflectivity and specific attenuation) at different wave-
lengths is the subject of ongoing research. Moreover, the
simulator is currently being generalized to incorporate
alternative DSD models (e.g. gamma, lognormal).
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Figure 3. Coefficient of variation of the distributions of
Var[DZ] as a function of the ratio of the length of the time
series and the characteristic time scale. The solid line
indicates the mean; the dashed lines indicate the 10% and
90% quantiles.
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