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Abstract
Reservoir simulation to predict production performance re-
quires two steps: one is history-matching, and the other is
uncertainty quantification in forecasting. In the process of
history-matching, rock relative permeability curves are often
altered to reproduce production data. However, guidelines
for changing the shape of the curves have not been clearly
established. The aim of this paper is to clarify the possible
influence of relative permeabilities on reservoir simulation
using the uncertainty envelope.

We propose a method for adjusting the shape of relative
permeability curves during history-matching at the coarse
scale, using the Neighbourhood Approximation algorithm
and B-spline parameterisation. After generating multiple
history-matched models, we quantify the uncertainty envelope
in a Bayesian framework. Our approach aims at encapsulating
sub-grid heterogeneity in multi-phase functions directly in the
coarse-scale model, and predicting uncertainty. In this sense,
the framework differs from conventional procedures which
perturb fine-scale features, upscale the models and evaluate
each performance. In addition, B-spline parameterisation is
flexible allowing the capture of local features in the relative
permeability curves. The results of synthetic cases showed
that the lack of knowledge of the subgrid permeability and the
insufficient production data provoked a substantial amount of
uncertainty in reservoir performance forecasting.

Introduction
Reservoir simulation is routinely employed in the prediction of
reservoir performance under different depletion and operating
scenarios. This practical use of reservoir simulation requires
two steps: one is history-matching, and the other is uncertainty
quantification in forecasting. In the traditional approach,
a single history-matched model, conditioned to production
data, is obtained, and is used to forecast future production
profiles. Since the history-matching is non-unique, the forecast
production profiles are uncertain. Recently, in order to take
account of the non-uniqueness of the inverse problem, a new
methodology for uncertainty quantification has been introduced
to the petroleum industry. The Markov Chain Monte Carlo
method has been adopted by [1, 2, 3, 4], along with the
Neighbourhood Approximation [5, 6], in order to investigate
parameter space.

Here, the requirement for reservoir modelling is to gen-
erate multiple history-matched models which encapsulate the
effect of the detailed features in a reservoir. In general, as the
cell size of a model gets smaller, the accuracy for capturing
the details improves. In reservoir modelling studies, the
geostatistical approach has been employed to generate multiple
realisations at the fine scale. Then, because simulation of the
fine-scale model is usually too time consuming, the number
of cells is reduced by upscaling to conduct history-matching.
However, upscaling techniques have some problematic aspects
in real situations. For example, given complete details of the
fine-scale features, two-phase upscaling could be performed to
calculate pseudo relative permeabilities for every coarse-grid
cell in each direction. The pseudos then require grouping
into a limited number of tabular functions for coarse-scale
simulation, [7, 8]. Unfortunately, this procedure is not feasible,
as it is time consuming and results may not be robust. On top
of those issues on upscaling, the task of evaluating multiple
realisations of geostatistical models still remains a research
issue. For example, if you try to adjust a correlation length in
geostatistical simulations to history-match the model, you need
to take into account the variance of the multiple realisations as
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well.

The approach proposed in this paper aims at encapsulating
sub-grid heterogeneity in multi-phase functions directly at the
coarse-scale, and predicting uncertainty. The proposed frame-
work also aims at avoiding those problems in the conventional
approaches discussed above which perturb fine-scale features,
upscale the models and evaluate each performance.

Furthermore, during the process of history-matching, rock
relative permeability curves are often altered to reproduce pro-
duction data, although guidelines for changing the shape of the
curves have not been clearly established. In this paper, we em-
ploy B-spline functions to parameterise relative permeabilities
and try to clarify their influence on the uncertainty estimation.
B-spline parameterisation is flexible allowing the capture of
local features in the relative permeability curves, [9, 10, 11, 12].

We use a synthetic fine-scale model, which is small enough
to conduct flow simulations, and we assume that this is the
"truth". After generating multiple history-matched models, we
quantify the uncertainty envelope in a Bayesian framework.
We compare the pseudofunctions as the representative of
the truth with the relative permeabilities estimated using the
history-matching procedure, at the coarse-scale. This compar-
ison allows us to examine how reasonable the estimation of
relative permeabilities is, in terms of encapsulating small-scale
heterogeneity.

Theory for History-Matching and Uncertainty Quantifica-
tion
Bayesian Inference. Bayesian inference, [13], can be de-
scribed by the following equation in the context of history-
matching.

prob(m|o) =
prob(o|m) × prob(m)

∫

prob(o|m) × prob(m) dm
, (1)

where
∫

dm =
∫ ∫

. . .
∫

dm1dm2 . . . dmNm

for m = (m1,m2, . . . ,mNm ). The vector m represents a set of
parameters which describes a reservoir model and the vector
o represents a set of observed data in the reservoir. Here, the
probability of the vector means the joint probability for all
components in the vector. The term prob(m) in Equation (1) is
the prior probability which represents our state of knowledge
about the model before making an observation, and the poste-
rior probability prob(m|o) represents our state of knowledge
about model after making an observation. The likelihood
function, prob(o|m), is the probability that an observation is
correct given the model. This function is used to update the
prior probability. It implies how we should change the state
of knowledge of prob(m) as a result of making an observation
prob(o|m). The denominator in the right-hand side is referred
as the normalisation constant, since the sum of the posterior

probability over all possible models must equal one. Equation
(1) has been adopted for uncertainty quantification in reservoir
simulation, [1, 2, 3, 4]. In order to conduct Bayesian inference,
we may need to integrate over a high-dimensional probability
distribution. Markov Chain Monte Carlo (MCMC), which is
Monte Carlo integration using Markov chains, is widely used to
overcome the numerical difficulties in many applications, [14].

Neighbourhood Approximation (NA) Algorithm and
NA-Bayes Algorithm. The Neighbourhood Approximation
(NA) algorithm is a stochastic sampling algorithm, which
was originally developed to solve an inverse problem in
seismology, [5], and the application of the NA-algorithm to
history-matching has recently been introduced to the petroleum
industry, [15, 1, 2, 3, 4]. The algorithm uses information
obtained from previous runs to bias the sampling of model
parameters to regions of parameter space where a good fit is
likely. In this way it attempts to overcome a main concern of
stochastic sampling, namely poor convergence.

The algorithm explores parameter space using Voronoi
cells. Multiple history-matched models are generated in pa-
rameter space according to the following rule. At each iterative
stage, the algorithm generates ns models and calculates their
misfit values. Then all the models, including those previously
generated, are ranked to determine the best nr cells. ns new
models are then generated in these nr cells, i.e., by placing
ns/nr models in each cell. The philosophy behind the algorithm
is that the misfit of each of the previous models is representative
of the region of its neighbourhood, defined by its Voronoi cell.
Therefore at each iteration step, new samples are concentrated
in the neighbourhoods surrounding the better data-fitting
models. Thus the objective of the algorithm is to bias the
sampling to good history-matching regions of the parameter
space. By its nature, the algorithm exploits information in
all previous models to selectively sample parameter space.
The two parameters that control the algorithm are ns and nr.
Indeed, these are the only tuning parameters that control the
performance of the algorithm. The amount of exploration and
exploitation performed by the algorithm is dependent on these
parameters.

Sambridge [6] also applied this Neighbourhood Ap-
proximation to the sampling from the posterior probability
distribution (PPD) in Bayesian framework, (NA-Bayes Al-
gorithm). Suppose that we have obtained the information on
the PPD during the history-matching with NA. Then, we use
MCMC to evaluate the posterior expectation without conduct-
ing any additional flow simulations. By simply setting the
known PPD of each model to be constant inside its Voronoi cell,
we can construct an approximate PPD from a fixed ensemble.
This approximation allows us to avoid calculating the real PPD
of the new proposed models at each step of MCMC. Further
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details of the NA-Bayes Algorithm are described in Appendix
B. In this paper we used this scheme of the MCMC with
the Neighbourhood Approximation to evaluate the posterior
expectation and P10 and P90 cut-offs, [1, 2, 3, 4].

Model and Problem Description
Fine-Scale Model, Coarse-Scale Model and Observed Data.
We assume a water flooding scenario in an oil reservoir. We
generated a 2D truth model, which is shown in Figures 1 (per-
meability distribution) and 2 (histogram). This is also referred
to as the fine-scale model, in contrast to the coarse-scale model
used for history matching (Figure 3). There are 55×275×1 cells
in this fine-scale model, each of size 5m×5m×20m. Porosity is
0.2 and is uniform throughout the model. The permeability was
generated by Sequential Gaussian Simulation (SGS), [16], and
was conditioned to data for 2 vertical wells (200mD). The cor-
relation length is 135 m in the Y-direction (North) and 67.5 m
in the X-direction (East). The Gaussian random numbers were
transformed to logarithmic permeabilities, ln(k), by multiplying
them by the standard deviation and adding the mean. In this
case, the mean and standard deviation of ln(k) were assumed to
be 5.3 and 0.5 respectively. Relative permeability for the truth
model was assigned by adopting Corey-type rock curves [17]
with an exponent of 2, i.e.,

Kro(S w) = ([S w − S wc]/[1 − S wc − S or])
2
, (2)

Krw(S w) = ([1 − S w − S or]/[1 − S wc − S or])2 , (3)

S wc = S or = 0.2, (4)

where Kro(S w) and Krw(S w) denote oil and water relative
permeabilities, S w is water saturation, S wc is connate water
saturation and S or is residual oil saturation. Oil viscosity is
approximately 1.0 [cp] and water viscosity is 0.3 [cp]. The
other parameters for the fluid properties are the same as those
in the second data set of the 10th SPE Comparative Solution
Project [18].

The coarse-scale model (Figure 3) was employed for
multiple flow simulations for history-matching. The coarse
cell size is 275m×275m×20m and the number of cells is
1×5×1. The producer and water injector wells were placed at
the centres of the edge coarse cells, and the well positions in
the coarse-scale model are exactly the same as those in the
fine-scale (truth) model. The boundary conditions were the
same in both scale models: the producer well was controlled
by a bottom hole pressure (BHP) of 400 [bar], the injector
well was controlled by a rate of 330.0 [m3/day] (reservoir
conditions) and BHP limit of 689.48 [bar], and the sides of the
model were sealed.

The main task of this paper is to estimate relative perme-
abilities at the coarse scale through history-matching rather
than varying parameters at the fine scale. The correlation
length of the truth model is less than half of a coarse-scale

cell (275m). In other words, each coarse-scale cell contains
subgrid heterogeneity for which the range is smaller than a cell.
In most models, a range of coarse-scale relative permeability
curves is required to take account of fine-scale effects. Also,
the relative permeability usually depends on distance from the
wells in coarse-scale models, [19]. In this study, however, we
have chosen to concentrate on the second and third cells from
the injector cell as our target cells for history matching, and we
refer to them below as Cell 2 and Cell 3, respectively (Figure
3). For simplification, although the truth model is unknown in
real situations, we used the truth model to fix all parameters
other than relative permeabilities of Cells 2 and 3. Details of
the coarse-scale model are provided in Appendix B.

We history-match the model by adjusting a single set of
relative permeability curves for those two cells. For compar-
ison, we also calculated two sets of pseudofunctions for the
two cells using the PVW method (ECLIPSE PSEUDO package
[20]). Figures 4 and 5 show the production performance of the
fine-scale model, the coarse-scale model with rock curves and
the coarse-scale model with pseudofunctions. The oil rate and
injector bottom hole pressure (BHP) of the coarse-scale model
with pseudofunctions coincide with those of the fine-scale
model, whereas the coarse-scale model with rock curve fails
to reproduce the fine-scale profiles in some intervals. In the
section below, we replace the two sets of pseudofunctions
with the one set of optimised relative permeability curves and
compare the results.

We use the oil rate and injector BHP as history data. To cre-
ate a more realistic case, we added uncorrelated random noise
to the fine-scale data in the following way. We drew a set of ran-
dom numbers rnd from a normal distribution, rnd ∼ N(0, 1),
and defined Observed Oil Rate and Observed Injector BHP:

(Observed Oil Rate) = (Fine model Oil Rate) + σq rnd, (5)

(Observed Inj.BHP) = (Fine model Inj.BHP) + σp rnd, (6)

where σq and σp are the standard deviations of the data errors
for the oil rate and injector BHP respectively. In this paper,
we assume that σq = 15.0 [m3/day] and σp = 1.0 [bar]. We
denote the fine-scale data as the truth in the sections below.
Then we use data for 1350 days as history data. The task is to
history-match the coarse-scale model to the observed data, by
adjusting the relative permeability curves. Finally, we forecast
the production performance to 4000 days, and quantify the
uncertainty in our forecast.

Misfit Definition. In this paper we assume that the data errors
are independently and identically distributed (IID). A more ad-
vanced definition of error models is discussed in [21]. We define
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the likelihood function in the following Gaussian expression.

prob(o|m) ∝

N
∏

k=1

exp













−
(qk − q′k)2

2σ2
q
−

(pk − p′k)2

2σ2
p













. (7)

Here q′ and p′ represent the simulated oil rate and BHP respec-
tively, and q and p represent the observed oil rate and BHP re-
spectively. The subscript k = 1, 2, . . . ,N represents the time
step. N is the total number of the time series data. As above,
σq and σp are the standard deviations of the data errors. Ac-
cordingly, the measure of misfit, M, as an object function can
be given in the least square sense by the following equation.

M =
N
∑

k=1













(qk − q′k)2

2σ2
q
+

(pk − p′k)2

2σ2
p













. (8)

Parameterisation for Relative Permeabilities
Issues on Relative Permeabilities. Relative permeability
is defined as the ratio of phase permeability to absolute
permeability and is assumed to be a function of saturation,
[22, 23]. Relative permeability curves for a core sample can
be obtained from steady-state or unsteady-state core flooding
experiments. The unsteady-state method is usually preferred
to the steady-state method because of the time required.
The JBN method [24] may be used to calculate relative
permeabilities from unsteady-state displacements, using the
saturation and fractional flows measured at the effluent end of
the core. Alternatively, relative permeabilities may be derived
by history-matching at the core scale, so that the simulation
result from a numerical model of the core flooding matches the
observed data.

It is not appropriate to use relative permeability curves
obtained from core flooding experiments directly in coarse-
scale simulation models. Ideally they should be upscaled to
account for geological heterogeneity, fluid forces and numer-
ical gridding effects. However, two-phase upscaling is time
consuming and is not robust [25, 26]. An alternative approach
is to obtain relative permeabilities directly at the coarse scale
by history-matching, and this is the approach taken here.

B-spline Function for Relative Permeabilities at the Coarse
Scale. B-splines are piecewise polynomials which form useful
local basis elements for spline spaces, [27]. The shapes of
the basis elements are determined by a knot-vector, which
is a partition of the interval on which the function is to be
defined. The advantage is that any continuous function can be
approximated by polynomial splines with sufficient number of
knots. Introduction of knots in an interval gives flexibility in
defining the function over that interval. Whereas the power law
(Corey) [17] and exponential function (Chierici) [28, 29] have

only a small number of parameters to control the shape of the
whole relative permeability curve, B-spline functions can have
more parameters each of which control a limited part of the
curve, [9, 10, 11, 12]. This characteristic of B-spline function
leads to the local flexibility for adjusting curves during the
history-matching. In this paper, we parameterise the relative
permeability with the fourth order (cubic) B-spline function in
the following way.

Kri(S w) =
n
∑

j=1

ci
jN

4
j (S w) for i = o,w, (9)

where Kri(S w) is the relative permeability for the i-th phase,
N4

j (S w) is the j-th normalised cubic B-spline basis function, ci
j

is the j-th B-spline coefficient for the i-th phase and n is the
B-spline dimension, [27, 11].

It is important to select appropriate parameters for
the spline function (number of dimensions and knot spac-
ing) to produce a realistic shape for the relative permeabilities,
[10, 12]. Preliminary tests for nearly linear water flooding cases
were performed on 2D stochastic models, which were upscaled
using dynamic upscaling (PVW method, [20]). These tests
showed that when a model was upscaled, the pseudo relative
permeabilities were shifted to the right compared with the rock
curve to compensate for numerical dispersion, [30, 31]. On
the contrary, if there is a long correlation in the principal flow
direction, the pseudo relative permeabilities are shifted to the
left to represent early breakthrough. According to these results,
we decided to use 6 B-spline Basis functions (6-dimension),
with nonuniformly spaced knots at water saturations of 0.20,
0.35, 0.50 and 0.80. This allows us to represent complex
pseudos functions, especially in the saturation range between
0.2 and 0.5. The B-spline basis functions are shown in Figure 6.

Prior Distribution and NA-Algorithm Parameters. We
based the prior information on both the rock curves and the
scale-change effect in order to narrow down the parameter
space of B-spline coefficients. This tends to reduce the com-
putational cost for history-matching, i.e. the number of flow
simulations required to converge to the best fit regions in the
parameter space. We fixed the minimum and maximum values
for each B-spline coefficient as shown in Table 1. The range
of relative permeabilities corresponding to the minimum and
maximum coefficients are shown in Figure 7.

In real situations we can not calculate pseudofunctions
for thousands of fine-scale models. So here we just roughly
speculated the possible parameter ranges, rather than abstract-
ing the detailed features, of the pseudofunctions for a variety
of models which have different correlation lengths. Figure 7
shows the pseudofunctions, calculated for a range of correlation
lengths: 0 ≤ λX ≤ 67.5 m, and 0 ≤ λY ≤ 1350 m. The total
number of models generated by SGSIM is 96, 16 cases times
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6 realisations for each case, including the truth model. The
standard deviation and mean assumed in the transformation to
logarithmic permeabilities are the same as those for the truth
model explained above. Figure 7 also includes a homogeneous
model in which the only effect is the compensation of numerical
dispersion. Figure 7 indicates that we selected the minimum
and maximum values of B-spline coefficients in advance so
that we could narrow down the parameter space and cover a
wide variety of pseudofunctions encapsulating the possible
fine-scale features.

As shown in Table 1, we use history-matching to set
the relative permeabilities by adjusting 8 parameters, 4 for
each phase, within the specified ranges. In the section below,
parameters 1 to 4 denote co

2 to co
5 for the oil phase. In the

same manner, parameters 5 to 8 denote cw
2 to cw

5 for the water
phase. Since NA-algorithm samples parameters within the
prior ranges, it can be said that the resultant ensemble is auto-
matically truncated by the edges of uniform prior distribution.
Then, the next task is to sample the resulting ensemble using
MCMC with Neighbourhood Approximation. This step of
MCMC is referred to as sampling from posterior probability
distribution (PPD). Here, because of the Neighbourhood Ap-
proximation, the products of likelihood and prior distribution,
prob(o|m) × prob(m), of the second ensemble have already
been evaluated at the first step.

The characteristic of NA-sampling, in terms of exploration
and exploitation, is largely controlled by the two tuning
parameters ns and nr, [5]. The values of ns and nr used in this
paper were 96 and 48 respectively, because we aimed at the
exploratory sampling within the limitation of computational
cost.

Results of Estimating Relative Permeability and Produc-
tion Performance
Quantifying uncertainty requires several hundreds to thousands
of realizations. In this paper we present results where we have
used the NA-algorithm to generate 7296 models by sampling a
8-dimensional parameter space. To quantify the uncertainty in
our predictions, we ran a long chain of the MCMC algorithm
on the misfit surface, collected 100000 models in total and
performed a Bayes update of the probabilities. We monitored
the frequency of visits to each Voronoi cell during the random
walk. Thus we were able to calculate the relative probability
of each model in the ensemble. Since the MCMC algorithm
samples from the posterior distribution, through the product
of the likelihood and the prior distribution, the calculated
probability is representative of the posterior probability of each
model. Using the probability of each model, we determined not
only the expectation, but also P10 and P90 cut-offs for each of
the estimated relative permeabilities and production profiles.

We used the observed data up to 1350 days, corresponding
to 38.9% of water cut, for history-matching and quantified the
uncertainty up to 4000 days. The results are shown in Figures
8 to 15. Figure 8 confirms the convergence of NA-sampling
to regions of good fit. Figure 9 indicates that the optimised
relative permeability curves are similar to the pseudofunctions.
In other words, the two pseudofunctions could be grouped
into one set of curves. Figures 10 and 11 illustrate the
history-matching results for the oil rate and the injector BHP.
In this case, the simulated oil rate and injector BHP seem
to almost overlap with the truth profile. Figure 12 plots the
1-dimensional posterior probability distribution for each of
the parameters. These are projections of the multidimensional
posterior probability distribution onto each of the 8 parameter
axes. As shown in Figure 12, the marginal distributions of
some parameters, e.g. Parameter 1, Parameter 4 and Parameter
8, have wide shapes rather than the narrow skewed shapes
seen in the other parameters. The wide PPD means that the
parameters may not be fixed through history-matching because
of the lack of adequate information or noisy observed data.
Also, the features of the wide PPD caused a wide uncertainty
envelope in the relative permeability curves, Figure 13, and in
the production profiles during the prediction period, Figures
14 and 15. The spread in oil rate, between the P10 and P90
values, is relatively small. However, in a real reservoir, this
could represent a significant difference in cumulative oil, and
shows the importance of taking uncertainty into account when
planning the development of a field.

Discussion
Recently a new concept of “Top-down reservoir modelling”
has been discussed, [32]. The way of thinking is to start
at the coarse scale, keep the model simple and add the de-
tailed features later to evaluate the uncertainty, for instance
using downscaling methods, [33, 34, 35]. In the context of
“Top-down reservoir modelling”, the procedure proposed in
this paper can contribute to history-matching and uncertainty
prediction at the coarse scale without refining it. For exam-
ple, suppose that you are given a roughly history-matched
model, and the large-scale heterogeneity, such as channel
delineation and fault compartmentalisation, has already been
fixed. The following task is to take into account the small-scale
heterogeneity which the main representations of the simple
model may miss. Here, it is an inevitable bar to appropriate
modelling that we do not know the true fine-scale permeability
distribution. In such situations, our procedure shows how it
may be possible to encapsulate small-scale flow phenomenon
in relative permeabilities of the coarse-scale cells, using the
flexible B-spline parameterisation and the NA-sampler.
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Conclusion
This paper has demonstrated a methodology for adjusting
relative permeabilities to generate history-matched models
at a coarse scale, and quantifying uncertainty in reservoir
performance forecast using the Neighbourhood Approximation
algorithm and Markov Chain Monte Carlo.

In order to conduct the numerical experiments, we used
a synthetic data set for which the true solution is known.
We examined the optimised relative permeabilities and their
uncertainty envelope by comparing them with pseudofunctions
that were generated from the truth model. The optimised rela-
tive permeabilities and their uncertainty envelope were found
to resemble pseudofunctions. This evidence indicated that
the estimated relative permeability curves would encapsulate
the fine-scale flow phenomenon through the local features
of the B-spline functions. The key is to evaluate the relative
permeabilities so that they can represent both the sub-grid
heterogeneity and the numerical coarse-scale effect. One of
the issues which remains as future research is how to decrease
the number of parameters or limit their ranges to decrease
computational cost.

Basically, it is the essential and practical task of reser-
voir simulation to speculate on the future performance from
only a limited number of production data. Therefore, you
need to understand how the relative permeabilities affect
the overall production performance, whatever procedure is
used to adjust the curves during history-matching. From this
requirement, our results clarified the possible influence of rela-
tive permeabilities on the envelope of uncertainty in production.
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Nomenclature
co

j , cw
j = j-th B-spline coefficients for oil and water

i = index for phases of oil and water
j = index for B-spline coefficients or basis functions
k = index for time steps
Kro(S w), Krw(S w) = oil and water relative permeabilities
m = vector of model parameters
M = measure of misfit
Nm = total number of model parameters
N = total number of time series data for each p and q
n = B-spline dimension

N4
j (S w) = j-th normalised cubic B-spline basis function

N(mean, standard deviation) = normal distribution
nr = number of refinements at each iteration in NA-algorithm
ns = number of samples at each iteration in NA-algorithm
o = vector of observed data
prob(m) = prior probability of model parameters
prob(m|o) = posterior probability of model parameters
prob(o|m) = likelihood function of model parameters
p = injector bottom hole pressure, mL−1t−2, bar
p′k, q′k = simulated data at time "k" for p and q
pk, qk = observed data at time "k" for p and q
q = oil rate, L3t−1, m3/day
rnd = random numbers
S w = water saturation
S or = residual oil saturation
S wc = connate water saturation
σp, σq = standard deviations of data errors for p and q
λX , λY = correlation length in X-direction and Y-direction
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Appendix A- NA-Bayes Algorithm
Sambridge [6] applied the Neighbourhood Approximation
to the sampling from the posterior probability distribution
(PPD) in a Bayesian framework, (NA-Bayes Algorithm).
Sambridge used the rejection method [36] in Gibbs sampler of
MCMC [14] to draw random deviates from the 1-D conditional
probability density function of the posterior probability density
function, prob(m|o). The only information we have from the
history-matching phase is prob(o|m) prob(m), which does not
include the normalisation constant. However, we do not need to
evaluate the normalisation constant, because the Gibbs sampler
with the rejection method requires only the ratio of the 1-D
conditional PPDs.

Appendix B- Details of Coarse-scale Model
In this paper, we are using history matching to estimate the
relative permeabilities in the inter-well region of the model, i.e.
we are estimating the relative permeabilities for cells 2 and 3
(Figure 3). We have treated the near-well regions as a special
case, and have upscaled permeability and relative permeability.
In a real reservoir, there is more data available in the near-well
regions, so this is a reasonable procedure. Additionally, the
near-well region has to be treated with care, because we have
radial flow. We adopted the method described in [37] and [38]
to calculate the coarse-scale well connection factor in cells 1
(injector) and 5 (producer), and the transmissibilities between
cells 1 and 2, and 4 and 5. Then we extended this method to
two-phase flow, to calculate the pseudo relative permeabilities
for the well connections and the interfaces between the wells
and adjacent cells. At the two inter-well cells (2 and 3), we
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calculated the absolute transmissibilities using the averaging
method adopted in the PVW method of the Eclipse Pseudo
Package [20].

Table 1: Min. and Max. Values for B-spline Coefficients
Basis No., j co

j min. co
j max. cw

j min. cw
j max.

1 1.0 1.0 0.0 0.0
2 0.3 1.0 0.0 0.4
3 0.0 1.0 0.0 0.7
4 0.0 1.0 0.0 1.0
5 0.0 0.7 0.0 1.0
6 0.0 0.0 1.0 1.0
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Figure 1: Permeability Distribution
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mean 211.95
std. dev. 105.62

coef. of var 0.50

maximum 1212.29
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median 190.64
lower quartile 138.35

minimum 35.07

Figure 2: Permeability Histogram: Note that the x-axis is logarithmic.

Cell 5 (Producer)

Cell 4

Cell 3

Cell 2

Cell 1 (Injector)

Figure 3: Coarse-Scale Model for History-Matching: Two arrows in the
inter-well cells represent flow for which the relative permeabilities are
adjusted during history-matching.
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Figure 4: Oil Rate: Note that the curves of the fine-scale model and the
coarse-scale model with pseudofunctions are superimposed.

 420

 430

 440

 450

 460

 0  1000  2000  3000  4000

In
je

ct
or

 B
H

P
 [b

ar
]

Time [days]

Fine

Coarse Rock Curve

Coarse Pseudos

Figure 5: Injector Bottom Hole Pressure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

B
-s

pl
in

e 
B

as
is

 F
un

ct
io

n

Sw

Basis 1

Basis 2

Basis 3

Basis 4

Basis 5

Basis 6

Figure 6: Normalised Cubic B-spline Basis Functions: Dimension 6,
Non-uniformly Spaced Knots 0.20, 0.35, 0.50, 0.80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Sw

Pseudos

Rock Curve

Krw Min.

Kro Min.

Krw Max.

Kro Max.

Figure 7: Range of Krw and Kro



10 SPE 94140

 0

 1000

 2000

 3000

 4000

 5000

 0  2000  4000  6000  8000

M
is

fit

Model Index

Figure 8: Misfit Values during History-Matching

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
el

at
iv

e 
P

er
m

ea
bi

lit
y

Sw

Rock Curve

Pseudos Cell2

Pseudos Cell3

Optimised

Figure 9: Optimised Relative Permeabilities

 0

 100

 200

 300

 400

 0  1000  2000  3000  4000

O
il 

R
at

e 
[s

m
3/

da
y]

Time [days]

Truth

Observed

Optimised

Figure 10: Oil Rate calculated using Optimised Relative Permeabilities
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Figure 12: 1D Marginal Distribution of 100000 samples in Markov
Chain: Note that each curve is scaled to the same maximum height
not the same area.
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Figure 13: Uncertainty in Relative Permeabilities
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Figure 14: Uncertainty in Oil Rate
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Figure 15: Uncertainty in Injector Bottom Hole Pressure


