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Abstract. In the ongoing discussion about combining rules and Ontologies on

the Semantic Web a recurring issue is how to combine first-order classical logic

with nonmonotonic rule languages. Whereas several modular approaches to de-

fine a combined semantics for such hybrid knowledge bases focus mainly on

decidability issues, we tackle the matter from a more general point of view. In

this paper we show how Quantified Equilibrium Logic (QEL) can function as

a unified framework which embraces classical logic as well as disjunctive logic

programs under the (open) answer set semantics. In the proposed variant of QEL

we relax the unique names assumption, which was present in earlier versions

of QEL. Moreover, we show that this framework elegantly captures the existing

modular approaches for hybrid knowledge bases in a unified way.

1 Introduction

In the current discussions on the Semantic Web architecture a recurring issue is how to

combine a first-order classical theory formalising an ontology with a nonmonotonic rule

base. In this context, nonmonotonic rule languages have received considerable attention

and achieved maturity over the last few years due to the success of Answer Set Program-

ming (ASP), a nonmonotonic, purely declarative logic programming and knowledge

representation paradigm with many useful features such as aggregates, weak constraints

and priorities, supported by efficient implementations (for an overview see [1]). As a

logical foundation for the answer set semantics and a tool for logical analysis in ASP,

the system of Equilibrium Logic was presented in [14] and further developed in subse-

quent works (see [15] for an overview and references). We will show how Equilibrium

Logic can be used as a logical foundation for the combination of ASP and Ontologies.

In the quest to provide a formal underpinning for a nonmonotonic rules layer for

the Semantic Web which can coexist in a semantically well-defined manner with the

Ontology layer, various proposals for combining classical first-order logic with differ-

ent variants of ASP have been presented in the literature.5 We distinguish three kinds

⋆ This research has been partially supported by the Spanish MEC under the projects TIC-2003-

9001, TIN2006-15455-CO3 and the Acción Integrada “Formal Techniques for Reasoning

about Ontologies in E-Science”, and by the European Commission under the projects Knowl-

edge Web (IST-2004-507482) and DIP (FP6-507483).
5 Most of these approaches focus on the Description Logics fragments of first-order logic un-

derlying the Web Ontology Language OWL.



of approaches: At the one end of the spectrum there are approaches which provide an

entailment-based query interface to the Ontology in the bodies of ASP rules, resulting

in a loose integration (e.g. [5, 4]). At the other end there are approaches which use a uni-

fying nonmonotonic formalism to embed both the Ontology and the rule base (e.g. [2,

13]), resulting in a tight coupling. Hybrid approaches (e.g. [18–20, 9]) fall between

these extremes. Common to hybrid approaches is the definition of a modular semantics

based on classical first-order models, on the one hand, and stable models, on the other

hand. Additionally, they require several syntactical restrictions on the use of classical

predicates within rules. With further restrictions of the classical part to decidable De-

scription Logics (DLs), these semantics support straightforward implementation using

existing DL reasoners and ASP engines, in a modular fashion. In this paper, we focus

on such hybrid approaches.

Example 1. Consider a hybrid knowledge base consisting of a classical theory T :

∀x.PERSON(x)→ (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y))→ ANIMAL(x)

which says that every PERSON is an AGENT and has some (unknown) mother, and

everyone who has a mother is an ANIMAL, and a nonmonotonic logic program P:

PERSON(x)← AGENT (x),¬machine(x)
AGENT (DaveB)

which says that AGENT s are by default PERSONs, unless known to be machines,

and DaveB is an AGENT .

Using a hybrid knowledge base which includes both T and P , we intuitively would

conclude PERSON(DaveB) since he is not known to be a machine, further that

DaveB has some (unknown) mother, and thus ANIMAL(DaveB).

We see two important shortcomings in current hybrid approaches:

(1) Current approaches to hybrid knowledge bases differ not only in terms of syntactic

restrictions, motivated by decidability considerations, but also in the way they deal with

more fundamental issues which arise when classical logic meets ASP, such as the do-

main closure and unique names assumptions.6 In particular, current proposals implicitly

deal with these issues by either restricting the allowed models of the classical theory, or

by using variants of the traditional answer set semantics which cater for open domains

and non-unique names. So far, little effort has been spent in a comparing the approaches

from a more general perspective.

(2) The semantics of current hybrid knowledge bases is defined in a modular fashion.

This has the important advantage that algorithms for reasoning with this combination

can be based on existing algorithms for DL and ASP satisfiability. A single underly-

ing logic for hybrid knowledge bases which, for example, allows to capture notions of

equivalence between combined knowledge bases in a standard way, is lacking though.

Our main contribution with this paper is twofold. First, we survey and compare

different (extensions of the) answer set semantics, as well as the existing approaches

to hybrid knowledge bases. Second, we propose to use Quantified Equilibrium Logic

(QEL) as a unified logical foundation for hybrid knowledge bases: As it turns out, the

6 See [3] for a more in-depth discussion of these issues.



equilibrium models of the combined knowledge base coincide exactly with the modular

nonmonotonic models for all approaches we are aware of [18–20, 9].

The remainder of this paper is structured as follows: Section 2 recalls some basics of

classical first-order logic. Section 3 reformulates different variants of the answer set se-

mantics introduced in the literature using a common notation and points out correspon-

dences and discrepancies between these variants. Next, definitions of hybrid knowledge

bases from the literature are compared and generalised in Section 4. QEL and its rela-

tion to the different variants of ASP are clarified in Section 5. Section 6 describes an

embedding of hybrid knowledge bases into QEL and establishes the correspondence

between equilibrium models and nonmonotonic models of hybrid KBs. Implications of

our results and further work are discussed in the concluding Sections 6.1, 6.2, and 7.

2 First-Order Logic (FOL)

A function-free first-order language L = 〈C,P 〉 with equality consists of disjoint sets

of constant and predicate symbols C and P . Moreover, we assume a fixed countably

infinite set of variables, the symbols ‘→’, ‘∨’, ‘∧’, ‘¬’, ‘∃’, ‘∀’, and auxiliary paren-

theses ‘(’,‘)’. Each predicate symbol p ∈ P has an assigned arity ar(p). Atoms and

formulas are constructed as usual. Closed formulas, or sentences, are those where each

variable is bound by some quantifier. A theory T is a set of sentences. Variable-free

atoms, formulas, or theories are also called ground. If D is a non-empty set, we denote

by AtD(C,P ) the set of ground atoms constructible from L′ = 〈C ∪D,P 〉.
Given a first-order language L, an L-structure consists of a pair I = 〈U, I〉, where

the universe U = (D,σ) (sometimes called pre-interpretation) consists of a non-empty

domain D and a function σ : C∪D → D which assigns a domain value to each constant

such that σ(d) = d for every d ∈ D. For tuples we write σ(t) = (σ(d1), . . . , σ(dn)).
We call d ∈ D an unnamed individual if there is no c ∈ C such that σ(c) = d.

The function I assigns a relation pI ⊆ Dn to each n-ary predicate symbol p ∈ P

and is called the L-interpretation over D . The designated binary predicate symbol eq,

occasionally written ‘=’ in infix notation, is assumed to be associated with the fixed

interpretation function eqI = {(d, d) | d ∈ D}. If I is an L′-structure we denote by

I|L the restriction of I to a sublanguage L ⊆ L′.

An L-structure I = 〈U, I〉 satisfies an atom p(d1, . . . , dn) of AtD(C,P ), written

I |= p(d1, . . . , dn), iff (σ(d1), . . . , σ(dn)) ∈ pI . This is extended as usual to sentences

and theories. I is a model of an atom (sentence, theory, respectively) ϕ, written I |= ϕ,

if it satisfies ϕ. A theory T entails a sentence ϕ, written T |= ϕ, if every model of T is

also a model of ϕ. A theory is consistent if it has a model.

In the context of logic programs, the following assumptions often play a role: We

say that the parameter names assumption (PNA) applies in case σ is surjective, i.e., there

are no unnamed individuals in D; the unique names assumption (UNA) applies in case

σ is injective; in case both the PNA and UNA apply, the standard names assumption

(SNA) applies, i.e. σ is a bijection. In the following, we will speak about PNA-, UNA-,

or SNA-structures, (or PNA-, UNA-, or SNA-models, respectively), depending on σ.

An L-interpretation I over D can be seen as a subset of AtD(C,P ). So, we can

define a subset relation for L-structures I1 = 〈(D,σ1), I1〉 and I2 = 〈(D,σ2), I2〉



over the same domain by setting I1 ⊆ I2 if I1 ⊆ I2.7 Whenever we speak about subset

minimality of models/structures in the following, we thus mean minimality among all

models/structures over the same domain.

3 Answer Set Semantics

In this paper we assume non-ground disjunctive logic programs with negation allowed

in rule heads and bodies, interpreted under the answer set semantics [12].8 A program

P consists of a set of rules of the form

a1 ∨ a2 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (1)

where ai (i ∈ {1, . . . , l}) and bj (j ∈ {1, . . . , n}) are atoms, called head (body, respec-

tively) atoms of the rule, in a function-free first-order language L = 〈C,P 〉 without

equality. By CP ⊆ C we denote the set of constants which appear in P . A rule with

k = l and m = n is called positive. Rules where each variable appears in b1, . . . , bm

are called safe. A program is positive (safe) if all its rules are positive (safe).

For the purposes of this paper, we give a slightly generalised definition of the com-

mon notion of the grounding of a program: The grounding grU (P) of P wrt. a universe

U = (D,σ) denotes the set of all rules obtained as follows: For r ∈ P , replace (i)

each constant c appearing in r with σ(c) and (ii) each variable with some element in D.

Observe that thus grU (P) is a ground program over the atoms in AtD(C,P ).
For a ground program P and first-order structure I the reduct PI consists of rules

a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bm

obtained from all rules of the form (1) in P for which hold that I |= ai for all k < i ≤ l

and I 6|= bj for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over L =
〈C,P 〉. Herbrand structures have a fixed universe, the Herbrand universeH = (C, id),
where id is the identity function. For a Herbrand structure I = 〈H, I〉, I can be viewed

as a subset of the Herbrand base, B, which consists of the ground atoms of L. Note that

by definition of H, Herbrand structures are SNA-structures. A Herbrand structure I is

an answer set [12] ofP if I is subset minimal among the structures satisfying grH(P)I .

Two variations of this semantics, the open [8] and generalised open answer set [9]

semantics, consider open domains, thereby relaxing the PNA. An extended Herbrand

structure is a first-order structure based on a universe U = (D, id), where D ⊇ C.

Definition 1. A first-order L-structure I = 〈U, I〉 is called a generalised open answer

set of P if I is subset minimal among the structures satisfying all rules in grU (P)I . If,

additionally, I is an extended Herbrand structure, then I is an open answer set of P .

In the open answer set semantics the UNA applies. Note that every answer set of a

program is also an open answer set [8], but the converse does not hold in general:

7 Note that this is not the substructure or submodel relation in classical model theory, which

holds between a structure and its restriction to a subdomain.
8 By ¬ we mean negation as failure and not classical, or strong negation, which is also sometimes

considered in ASP.



Example 2. Consider P = {p(a); ok ← ¬p(x); ← ¬ok} over L = 〈{a}, {p, ok}〉.
We leave it as an exercise to the reader to show that P is inconsistent under the answer

set semantics, butM = 〈({a, c1}, id), {p(a), ok}〉 is an open answer set of P .

An alternative approach to relax the UNA has been presented by Rosati in [19]:

Instead of grounding with respect to U , programs are grounded with respect to the

Herbrand universe H = (C, id), and minimality of the models of grH(P)I wrt. U is

redefined: I↾H = {p(σ(c1), . . . , σ(cn)) | p(c1, . . . , cn) ∈ B, I |= p(c1, . . . , cn)}, i.e.,

I↾H is the restriction of I to ground atoms of B. Given L-structures I1 = (U1, I1) and

I2 = (U2, I2), the relation I1 ⊆H I2 holds if I1↾H ⊆ I2↾H.

Definition 2. An L-structure I is called a generalised answer set of P if I is ⊆H-

minimal among the structures satisfying all rules in grH(P)I .

The following Lemma establishes that, for safe programs, all atoms of AtD(C,P )
satisfied in an open answer set of a safe program are ground atoms over CP :

Lemma 1. Let P be a safe program over L = 〈C,P 〉 withM = 〈U, I〉 a (generalised)

open answer set over universe U = (D,σ). Then, for any atom from AtD(C,P ) such

thatM |= p(d1, . . . , dn), there exist ci ∈ CP such that σ(ci) = di for each 1 ≤ i ≤ n.

From this Lemma, the following correspondence follows directly.

Proposition 1. M is an (generalised) answer set of a safe program P if and only ifM
is an (generalised) open answer set of P .

If the SNA applies, consistency with respect to all semantics introduced so far boils

down to consistency under the original definition of answer sets:

Proposition 2. A program P has an answer set if and only if P has a generalised open

answer under the SNA.

Answer sets under SNA may differ from the original answer sets since also non-Herbrand

structures are allowed. Further, we observe that there are programs which have gener-

alised (open) answer sets but do not have (open) answer sets, even for safe programs:

Example 3. ConsiderP = {p(a); ← ¬p(b)} over L = 〈{a, b}, {p}〉. P is ground, thus

obviously safe. However, although P has a generalised (open) answer set – the reader

may verify this by, for instance, considering the one-element universe U = ({d}, σ),
where σ(a) = σ(b) = d – it is inconsistent under the open answer set semantics.

4 Hybrid Knowledge Bases

We now turn to the concept of hybrid knowledge bases, which combine classical the-

ories with the various notions of answer sets. We define a notion of hybrid knowledge

bases which generalizes definitions in the literature [18–20, 9]. We then compare and

discuss the differences between the various definitions. It turns out that the differences

are mainly concerned with the notion of answer sets, and syntactical restrictions, but

do not change the general semantics. This will allow us to base our embedding into

Quantified Equilibrium Logic on a unified definition.



A hybrid knowledge baseK = (T ,P) over the function-free languageL = 〈C,PT ∪
PP〉 consists of a classical first-order theory T (also called the structural part of K)

over the language LT = 〈C,PT 〉 and a program P (also called rules part of K) over

the language L, where PT ∩ PP = ∅, i.e. T and P share a single set of constants, and

the predicate symbols allowed to be used in P are a superset of the predicate symbols

in LT . Intuitively, the predicates in LT are interpreted classically, whereas the predi-

cates in LP are interpreted nonmonotonically under the (generalised open) answer set

semantics. With LP = 〈C,PP〉 we denote the restricted language of P .

We define the projection of a ground program P with respect to an L-structure

I = 〈U, I〉, denoted Π(P, I), as follows: for each rule r ∈ P , rΠ is defined as:

1. rΠ = ∅ if there is a literal over AtD(C,PT ) in the head of r of form p(t) such that

p(σ(t)) ∈ I or of form ¬p(t) with p(σ(t)) 6∈ I;

2. rΠ = ∅ if there is a literal over AtD(C,PT ) in the body of r of form p(t) such that

p(σ(t)) 6∈ I or of form ¬p(t) such that p(σ(t)) ∈ I;

3. otherwise rΠ is the singleton set resulting from r by deleting all occurrences of

literals from LT ,

and Π(P, I) =
⋃
{rΠ : r ∈ P}. Intuitively, the projection “evaluates” all classical

literals in P with respect to I.

Definition 3. Let K = (T ,P) be a hybrid knowledge base over the language L =
〈C,PT ∪ PP〉. An NM-model M = 〈U, I〉 (with U = (D,σ)) of K is a first-order

L-structure such thatM|LT
is a model of T andM|LP

is a generalised open answer

set of Π(grU (P),M).

Analogous to first-order models, we speak about PNA-, UNA-, and SNA-NM-models.

Example 4. Consider the hybrid knowledge base K = (T ,P), with T and P as in Ex-

ample 1, with the capitalised predicates being predicates in PT . Now consider the in-

terpretation I = 〈U, I〉 (with U = (D,σ)) with D = {DaveB, k}, σ the identity func-

tion, and I = {AGENT (DaveB), HAS-MOTHER(DaveB, k), ANIMAL(DaveB),
machine(DaveB)}. Clearly, I|LT

is a model of T . The projection Π(grU (P), I) is

← ¬machine(DaveB),

which does not have a stable model, and thus I is not an NM-model of K. In fact,

the logic program P ensures that an interpretation cannot be an NM-model of K if

there is an AGENT which is neither a PERSON nor known (by conclusions from

P) to be a machine. It is easy to verify that, for any NM-model of K, the atoms

AGENT (DaveB), PERSON(DaveB), and ANIMAL(DaveB) must be true, and

are thus entailed by K. The latter cannot be derived from T or P individually.

We now proceed to compare our definition of NM-models with the various defi-

nitions in the literature. The first kind of hybrid knowledge base we consider was in-

troduced by Rosati in [18] (and extended in [20] under the name DL+log), and was

labeled r-hybrid knowledge base. Syntactically, r-hybrid KBs do not allow negated

atoms in rule heads, i.e. for rules of the form (1) l = k, and do not allow atoms from



LT to occur negatively in the rule body.9 Moreover, in [18], Rosati deploys a restriction

which is stronger than standard safety: each variable must appear in at least one positive

body atom with a predicate from LP . We call this condition LP -safe in the remainder.

In [20] this condition is relaxed to weak LP -safety: there is no special safety restriction

for variables which occur only in body atoms from PT .

Definition 4. Let K = (T ,P) be an r-hybrid knowledge base, over the language L =
〈C,PT ∪ PP〉, where C is countably infinite, and P is a (weak) LP -safe program. An

r-NM-modelM = 〈U, I〉 of K is a first-order L-SNA-structure such that M|LT
is a

model of T andM|LP
is an answer set of Π(grU (P),M).

In view of the (weak) LP -safety condition, we observe that r-NM-model existence co-

incides with SNA-NM-model existence on r-hybrid knowledge bases, by Lemma 1 and

Proposition 2. In [19], Rosati relaxes the UNA for what we will call here r+-hybrid

knowledge bases.

Definition 5. Let K = (T ,P) be an r+-hybrid knowledge base consisting of a theory

T and an LP -safe program P . An r+-NM-model, M = 〈U, I〉 of K is a first-order

L-structure such thatM|LT
is a model of T andM|LP

is a generalised answer set of

Π(grU (P),M).

LP -safety guarantees safety of Π(grU (P),M). Thus, by Proposition 1, we can

conclude that r+-NM-models coincide with NM-models on r-hybrid knowledge bases.

G-hybrid knowledge bases [9] allow a different form of rules in the program. In

order to regain decidability, rules are not required to be safe, but they are required to

be guarded (hence the ‘g’ in g-hybrid): All variables in a rule are required to occur in

a single positive body atom, the guard, with the exception of unsafe choice rules of the

form

p(c1, . . . , cn) ∨ ¬p(c1, . . . , cn)←
are allowed. Moreover, disjunction in rule heads is limited to at most one positive atom,

i.e. for rules of the form (1) we have that k ≤ 1, but an arbitrary number of negated

head atoms is allowed. The definition of NM-models in [9] coincides precisely with

our Definition 3.

5 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic programs was presented in [14]

as a foundation for answer set semantics, and extended to the first-order case in [16],

as well as, in slightly more general, modified form, in [17]. For a survey of the main

properties of equilibrium logic, see [15]. Usually in quantified equilibrium logic we

consider a full first-order language allowing function symbols and we include a second,

strong negation operator as occurs in several ASP dialects. For the present purpose

of drawing comparisons with approaches to hybrid knowledge bases, it will suffice to

9 Note that by projection, negation of predicates from PT is treated classically, whereas nega-

tion of predicates from PP is treated nonmonotonically. The negative occurrence of classical

predicates in the body is equivalent to the positive occurrence of the predicate in the head.



consider the function-free language with a single negation symbol, ‘¬’. In particular, we

shall work with a quantified version of the logic HT of here-and-there. In other respects

we follow the treatment of [17].

5.1 General Structures for Quantified Here-and-There Logic

As before, we consider a function-free first order languages L = 〈C,P 〉 built over a

set of constant symbols, C, and a set of predicate symbols, P . The sets of L-formulas,

L-sentences and atomic L-sentences are defined in the usual way.

Again, we only work with sentences, and, as in Section 2, by an L-interpretation

I over a set D we mean a subset I of AtD(C,P ). A here-and-there L-structure with

static domains, or QHTs(L)-structure, is a tupleM = 〈(D,σ), Ih, It〉 where

– D is a non-empty set, called the domain ofM.

– σ is a mapping: C ∪ D → D called the assignment such that σ(d) = d for all

d ∈ D. If D = C and σ = id,M is a Herbrand structure.

– Ih, It are L-interpretations over D such that Ih ⊆ It.

We can think ofM as a structure similar to a first-order classical model, but having

two parts, or components, h and t that correspond to two different points or “worlds”,

‘here’ and ‘there’, in the sense of Kripke semantics for intuitionistic logic [22], where

the worlds are ordered by h ≤ t. At each world w ∈ {h, t} one verifies a set of atoms Iw

in the expanded language for the domain D. We call the model static, since, in contrast

to say intuitionistic logic, the same domain serves each of the worlds.10 Since h ≤ t,

whatever is verified at h remains true at t. The satisfaction relation for M is defined

so as to reflect the two different components, so we write M, w |= ϕ to denote that

ϕ is true inM with respect to the w component. Evidently we should require that an

atomic sentence is true at w just in case it belongs to the w-interpretation. Formally, if

p(t1, . . . , tn) ∈ AtD then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw. (2)

Then |= is extended recursively as follows11:

– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.

– M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.

– M, t |= ϕ→ ψ iff M, t 6|= ϕ or M, t |= ψ.

– M, h |= ϕ→ ψ iff M, t |= ϕ→ ψ and M, h 6|= ϕ or M, h |= ψ.

– M, w |= ¬ϕ iff M, t 6|= ϕ.

– M, t |= ∀xϕ(x) iff M, t |= ϕ(d) for all d ∈ D.

– M, h |= ∀xϕ(x) iff M, t |= ∀xϕ(x) and M, h |= ϕ(d) for all d ∈ D.

– M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows: M |= ϕ iff M, w |= ϕ for

each w ∈ {h, t}. A sentence ϕ is valid if it is true in all models, denoted by |= ϕ. A

sentence ϕ is a consequence of a set of sentences Γ , denoted Γ |= ϕ, if every model

10 Alternatively it is quite common to speak of a logic with constant domains.
11 The reader may easily check that the following correspond exactly to the usual Kripke seman-

tics for intuitionistic logic given our assumptions about the two worlds h and t and the single

domain D, see e.g. [22]



of Γ is a model of ϕ. In a modelM we often use the symbols H and T , possibly with

subscripts, to denote the interpretations Ih and It respectively; so, an L-structure may

be written in the form 〈U,H, T 〉, where U = (D,σ).
The resulting logic is called Quantified Here-and-There Logic with static domains,

denoted by QHTs, and can be axiomatised as follows.

Let INT= denote first-order intuitionistic logic [22] with the usual axioms for equal-

ity:
x = x,

x = y → (F (x)→ F (y))

for every formula F (x) such that y is substitutable for x in F (x). To this we add the

axiom of Hosoi
α ∨ (¬β ∨ (α→ β))

which determines 2-element here-and-there models in the propositional case, and the

axiom:

SQHT ∃x(F (x)→ ∀xF (x)).

The notation SQHT stands for “static quantified here-and-there”. Lastly we add the

“decidable equality” axiom

DE x = y ∨ x 6= y.

For a completeness proof for QHTs, see [11].

As usual in first order logic, satisfiability and validity are independent from the lan-

guage. IfM = 〈(D,σ),H, T 〉 is an QHTs(L′)-structure and L ⊂ L′, we denote by

M|L the restriction ofM to the sublanguage L:M|L = 〈(D,σ|L),H|L, T |L〉.

Proposition 3. Suppose that L′ ⊃ L, Γ is a theory in L andM is an L′-structure such

M |= Γ . ThenM|L is a model of Γ in QHTs
=(L).

Proposition 4. Suppose that L′ ⊃ L and ϕ ∈ L. Then ϕ is valid (resp. satisfiable) in

QHTs
=(L) if and only if is valid (resp. satisfiable) in QHTs

=(L′).

Analogous to the case of classical models we can define special kinds of QHTs

(resp. QHTs
=) models. LetM = 〈(D,σ),H, T 〉 be an L-structure that is a model of

a universal theory T . Then, we callM a PNA-, UNA-, or SNA-model if the restriction

of σ to constants in C is surjective, injective or bijective, respectively.

5.2 Equilibrium Models and their Relation to Answer Sets

As in the propositional case, quantified equilibrium logic is based on a suitable notion

of minimal model.

Definition 6. Among QHTs
=(L)-structures we define the order E as: 〈(D,σ),H, T 〉E

〈(D′, σ′),H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′. If the subset relation is

strict, we write ‘⊳’.

Definition 7. Let Γ be a set of sentences andM = 〈(D,σ),H, T 〉 a model of Γ .

1. M is said to be total if H = T .

2. M is said to be an equilibrium model of Γ (or short, we say: “M is in equilibrium”)

if it is minimal under E among models of Γ , and it is total.



Notice that a total QHTs
= model of a theory Γ is equivalent to a classical first order

model of Γ .

Proposition 5. Let Γ be a theory inL andM an equilibrium model of Γ in QHTs
=(L′)

with L′ ⊃ L. ThenM|L is an equilibrium model of Γ in QHTs
=(L).

The above version of QEL is described in more detail in [17]. If we assume all mod-

els are UNA-models, we obtain the version of QEL found in [16]. There, the relation of

QEL to (ordinary) answer sets for logic programs with variables was established (in [16,

Corollary 7.7]). For the present version of QEL the correspondence can be described as

follows.

Proposition 6 ([17]). Let Γ be a universal theory in L = 〈C,P 〉. Let 〈U, T, T 〉 be a

total QHTs
= model of Γ . Then 〈U, T, T 〉 is an equilibrium model of Γ iff 〈T, T 〉 is a

propositional equilibrium model of grU (Γ ).

By convention, when P is a logic program with variables we consider the models and

equilibrium models of its universal closure expressed as a set of logical formulas. So,

from Proposition 6 we obtain:

Corollary 1. Let P be a logic program. A total QHTs
= model 〈U, T, T 〉 of P is an

equilibrium model of P iff it is a generalised open answer set of P .

6 Relation between Hybrid KBs and QEL

In this section we show how equilibrium models for hybrid knowledge bases relate to

the NM models defined earlier and we show that QEL captures the various approaches

to the semantics of hybrid KBs in the literature [18–20, 9].

Given a hybrid KB K = (T ,P) we call T ∪ P ∪ st(T ) the stable closure of K,

where st(T ) = {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }.
12 From now on, unless otherwise clear

from context, the symbol ‘|=’ denotes the truth relation for QHTs
=. Given a ground

program P and an L-structureM = 〈U,H, T 〉, the projection Π(P,M) is understood

to be defined relative to the component T ofM.

Lemma 2. LetM = 〈U,H, T 〉 be a QHTs
=-model of T ∪ st(T ). ThenM |= P iff

M|LP
|= Π(grU (P),M).

Proof. By the hypothesisM |= {∀x(p(x)∨¬p(x)) : p ∈ LT }. It follows that H|LT
=

T |LT
. Consider any r ∈ P , such that rΠ 6= ∅. Then there are four cases to consider. (i)

r has the form α → β ∨ p(t), p(t) ∈ LT and p(σ(t)) 6∈ T , soM |= ¬p(t). W.l.o.g.

assume that α, β ∈ LP , so rΠ = α→ β and

M |= r ⇔M |= rΠ ⇔M|LP
|= rΠ (3)

by the semantics for QHTs
= and Theorem 3. (ii) r has the form α→ β ∨¬p(t), where

p(σ(t)) ∈ T ; so p(σ(t)) ∈ H and M |= p(t). Again it is easy to see that (3) holds.

Case (iii): r has the form α ∧ p(t) → β and p(σ(t)) ∈ H,T , soM |= p(t). Case (iv):

12 Evidently T becomes stable in K in the sense that ∀ϕ ∈ T , st(T ) |= ¬¬ϕ → ϕ. The

terminology is drawn from intuitionistic logic and mathematics.



r has the form α ∧ ¬p(t) → β andM |= ¬p(t). Clearly for these two cases (3) holds

as well. It follows that ifM |= P thenM|LP
|= Π(grU (P),M).

To check the converse condition we need now only examine the cases where rΠ =
∅. Suppose this arises because p(σ(t)) ∈ H,T , soM |= p(t). Now, if p(t) is in the head

of r, clearlyM |= r. Similarly if ¬p(t) is in the body of r, by the semanticsM |= r.

The cases where p(σ(t)) 6∈ T are analogous and left to the reader. Consequently if

M|LP
|= Π(grU (P),M), thenM |= P . �

We now state the relation between equilibrium models and NM-models.

Theorem 1. Let K = (T ,P) be a hybrid knowledge base. Let M = 〈U, T, T 〉 be a

total here-and-there model of the stable closure of K. ThenM is in equilibrium if and

only if 〈U, T 〉 is an NM-model of K.

Proof. Assume the hypothesis and suppose thatM is in equilibrium. Since T contains

only predicates from LT andM |= T ∪ st(T ), evidently

M|LT
|= T ∪ st(T ) (4)

and so in particular (U,M|LT
) is a model of T . By Lemma 2,

M |= P ⇔M|LP
|= Π(grU (P),M). (5)

We claim (i) that M|LP
is an equilibrium model of Π(grU (P),M). If not, there is

a model M′ = 〈H ′, T ′〉 with H ′ ⊂ T ′ = T |LP
and M′ |= Π(grU (P),M). Lift

(U,M′) to a (first order) L-structure N by interpreting each p ∈ LT according toM.

SoN|LT
=M|LT

and by (4) clearlyN |= T ∪st(T ). Moreover, by Lemma 2N |= P
and by assumption N ⊳M, contradicting the assumption that M is an equilibrium

model of T ∪ st(T ) ∪ P . This establishes (i). Lastly, we note that since 〈T |LP
, T |LP

〉
is an equilibrium model of Π(grU (P),M),M|LP

is a generalised open answer set of

Π(grU (P),M) by Corollary 1, so thatM = 〈U, T, T 〉 is an NM-model of K.

For the converse direction, assume the hypothesis but suppose that M is not in

equilibrium. Then there is a modelM′ = 〈U,H, T 〉 of T ∪ st(T ) ∪ P , with H ⊂ T .

SinceM′ |= P we can apply Lemma 2 to conclude thatM′|LP
|= Π(grU (P),M′).

But clearly

Π(grU (P),M′) = Π(grU (P),M).

However, since evidentlyM′|LT
= M|LT

, thusM′|LP
⊳M|LP

, so this shows that

M|LP
is not an equilibrium model of Π(grU (P),M) and therefore T |LP

is not an

answer set of Π(grU (P),M) andM is not an NM- model of K. �

This establishes the main theorem relating to the various special types of hybrid KBs

discussed earlier.

Theorem 2 (Main Theorem). (i) Let K = (T ,P) be a g-hybrid (resp. an r+-hybrid)

knowledge base. Let M = 〈U, T, T 〉 be a total here-and-there model of the stable

closure of K. Then M is in equilibrium if and only if 〈U, T 〉 is an NM-model (resp.

r+-NM-model) of K.

(ii) Let K = (T ,P) be an r-hybrid knowledge base. Let M = 〈U, T, T 〉 be an

Herbrand model of the stable closure of K. Then M is in equilibrium in the sense

of [16] if and only if 〈U, T 〉 is an r-NM-model of K.



Example 5. Consider again the hybrid knowledge base K = (T ,P), with T and P as

in Example 1. The stable closure of K, st(K) = T ∪ st(T ) ∪ P is

∀x.PERSON(x)→ (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y))→ ANIMAL(x)
∀x.PERSON(x) ∨ ¬PERSON(x)
∀x.AGENT (x) ∨ ¬AGENT (x)
∀x.ANIMAL(x) ∨ ¬ANIMAL(x)
∀x, y.HAS-MOTHER(x, y) ∨ ¬HAS-MOTHER(x, y)
∀x.AGENT (x) ∧ ¬machine(x)→ PERSON(x)
AGENT (DaveB)

Consider the total HT-modelMHT = 〈U, I, I〉 of st(K), with U, I as in Example 4.

MHT is not an equilibrium model of st(K), sinceMHT is not minimal among all mod-

els: 〈U, I ′, I〉, with I ′ = I\{machine(DaveB)}, is a model of st(K). Furthermore, it

is easy to verify that 〈U, I ′, I ′〉 is not a model of st(K).
Now, consider the total HT-modelM′

HT = 〈U,M,M〉, with U as before, and

M ={AGENT (DaveB), PERSON(DaveB),
ANIMAL(DaveB), HAS-NAME(DaveB, k)}.

M′
HT is an equilibrium model of st(K). Indeed, consider any M ′ ⊂ M . It is easy to

verify that 〈U,M ′,M〉 is not a model of st(K).

6.1 Discussion

We have seen that quantified equilibrium logic captures three of the main approaches to

integrating classical, first-order or DL knowledge bases with nonmonotonic rules under

the answer set semantics, in a modular, hybrid approach. However, QEL has a quite

distinct flavor from those of r-hybrid, r+-hybrid and g-hybrid KBs. Each of these hybrid

approaches has a semantics composed of two different components: a classical model

on the one hand and an answer set on the other. The style of QEL is different. There

is one semantics and one kind of model that covers both types of knowledge. The only

distinction we make is that for that part of the knowledge base considered to be classical

and monotonic we add a stability condition to obtain the intended interpretation.

There are other features of the approach using QEL that are worth highlighting.

First, it is based on a simple minimal model semantics in a known non-classical logic.

No reducts are involved and, consequently, the equilibrium construction applies directly

to arbitrary first-order theories. The rule part P of a knowledge base might therefore

comprise, say, a nested logic program, where the heads and bodies of rules may be

arbitrary boolean formulas, or perhaps rules permitting nestings of the implication con-

nective. While answer sets have recently been defined for such general formulas, more

work would be needed to provide integration in a hybrid KB setting.13 Evidently QEL in

the general case is undecidable, so for extensions of the rule language syntax for practi-

cal applications one may wish to study restrictions analogous to safety or guardedness.

Second, the logic QHTs
= can be applied to characterise properties such as the strong

equivalence of programs and theories [11, 17]. While strong equivalence and related

13 For a recent extension of answer sets to first-order formulas, see [6].



concepts have been much studied recently in ASP, their characterisation in the case of

hybrid KBs remains uncharted territory. The fact that QEL provides a single semantics

for hybrid KBs means that a simple concept of strong equivalence is applicable to such

KBs and characterisable using the underlying logic, QHTs
=. We now describe briefly

how QHTs
= can be applied in this context.

6.2 An application to the strong equivalence of knowledge bases

Generally speaking it is important to know when different reconstructions of a given

body of knowledge or state of affairs are equivalent and lead to essentially the same

solutions. In the case of knowledge reconstructed in classical logic, ordinary logical

equivalence can serve as a suitable concept when applied to theories formulated in

the same vocabulary. In the case where nonmonotonic rules are present, however, one

would like to know that equivalence between KBs is also robust, since two sets of rules

may have the same answer sets yet behave very differently once they are embedded

in some larger context. A robust or modular notion of equivalence for logic programs

should therefore require that programs behave similarly when extended by any further

programs. This leads to the following concept of strong equivalence: programs Π1 and

Π2 are strongly equivalent if and only if for any set of rules Σ, Π1 ∪ Σ and Π2 ∪ Σ

have the same answer sets. This concept of strong equivalence for logic programs in

ASP was introduced and studied in [10] and has given rise to a substantial body of

further work looking at different characterisations, new variations and applications of

the idea, as well as the development of systems to test for strong equivalence.

In the case of hybrid knowledge bases K = (T ,P), various kinds of equivalence

can be specified, according to whether one or other or both of the components T and P
are allowed to vary. Let us illustrate for simplicity the case where T is fixed and P may

vary; the extension to other cases is straightforward.

Definition 8. Let K1 = (T ,P1) and K2 = (T ,P2) be two hybrid KBs based on the

same classical theory T . K1 and K2 are said to be strongly equivalent if for any set of

rules P , (T ,P1 ∪ P) and (T ,P2 ∪ P) have the same NM-models.

The following characterisation of strong equivalence is an immediate consequence of

Theorem 1 and the main theorem of [11].

Proposition 7. Hybrid KBs K1 = (T ,P1) and K2 = (T ,P2) are strongly equivalent

if and only if P1 and P2 are logically equivalent in QHTs
=.

In other words, although we consider the effect of adding arbitrary nonmonotonic rules

to a knowledge base, ordinary logical equivalence in QHTs
= is a necessary and suffi-

cient condition for strong equivalence.

It is interesting to note here that meaning-preserving relations among ontologies

have recently become a topic of interest in the DL community where logical concepts

such as that of conservative extension are currently being studied and applied [7]. A

unified, logical approach to hybrid KBs such as that developed here should lend itself

well to the application of such concepts.



7 Related Work and Conclusions

We have provided a general notion of hybrid knowledge base, combining first-order

theories with nonmonotonic rules, with the aim of comparing and contrasting some of

the different variants of hybrid KBs found in the literature [18–20, 9]. We presented a

version of quantified equilibrium logic, QEL, without the unique names assumption, as

a unified logical foundation for hybrid knowledge bases. We showed how for a hybrid

knowledge baseK there is a natural correspondence between the nonmonotonic models

of K and the equilibrium models of what we call the stable closure of K. This yields a

way to capture in QEL the semantics of the g-hybrid KBs of Heymans et al. [9] and the

r-hybrid KBs of Rosati [19], where the latter is defined without the UNA but for safe

programs. Similarly, the version of QEL with UNA captures the semantics of r-hybrid

KBs as defined in [18, 20]. It is important to note that the aim of this paper was not that

of providing new kinds of safety conditions or decidability results; these issues are ably

dealt with in the literature reviewed here. Rather our objective has been to show how

classical and nonmonotonic theories might be unified under a single semantical model.

In part, as [9] show with their reduction of DL knowledge bases to open answer set pro-

grams, this can also be achieved (at some cost of translation) in other approaches. What

distinguishes QEL is the fact that it is based on a standard, nonclassical logic, QHTs
=,

which can therefore provide a unified logical foundation for such extensions of (open)

ASP. To illustrate the usefulness of our framework we showed how the logic QHTs
=

also captures a natural concept of strong equivalence between hybrid knowledge bases.

There are several other approaches to combining languages for Ontologies with non-

monotonic rules which can be divided into two main streams [3]: approaches which de-

fine integration of rules and ontologies (a) by entailment, ie. querying classical knowl-

edge bases through special predicates the rules body, and (b) on the basis of single

models, ie. defining a common notion of combined model.

The most prominent of the former kind of approaches are dl-programs [5] and their

generalization, HEX-programs [4]. Although these approaches both are based on An-

swer Set programming like our approach, the orthogonal view of integration by en-

tailment can probably not be captured by a simple embedding in QEL. Another such

approach which allows querying classical KBs from a nonmonotonic rules language is

based on Defeasible Logic [21].

As for the second stream, variants of Autoepistemic Logic [2], and the logic of mini-

mal knowledge and negation as failure (MKNF) [13] have been recently proposed in the

literature. Similar to our approach, both these approaches embed a combined knowledge

base in a unifying logic. Remarkably however, both [2] and [13] use modal logics which

syntactically and semantically extend first-order logics. Thus, in these approaches, em-

bedding of the classical part of the theory is trivial, whereas the nonmonotonic rules

part needs to be rewritten in terms of modal formulae. Our approach is orthogonal, as

we base on a non-classical logic where the nonmonotonic rules are trivially embedded,

but the stable closure guarantees classical behavior of certain predicates.

In future work we hope to consider further aspects of applying QEL to the domain

of hybrid knowledge systems. Extending the language with functions symbols and with

strong negation is a routine task, since QEL includes these items already. We also plan



to consider in the future how QEL can be used to define a catalogue of logical relations

between hybrid KBs.
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