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QUANTIFIER ELIMINATION FOR LEXICOGRAPHIC

PRODUCTS OF ORDERED ABELIAN GROUPS

By

Shingo Ibuka, Hirotaka Kikyo, and Hiroshi Tanaka

Abstract. Let Lag ¼ fþ;�; 0g be the language of the abelian groups,

L an expansion of Lagð<Þ by relations and constants, and Lmod ¼
Lag U f1ngnb2 where each 1n is defined as follows: x1n y if and

only if n j x� y. Let H be a structure for L such that H jLagð<Þ is a

totally ordered abelian group and K a totally ordered abelian group.

We consider a product interpretation of H � K with a new predicate

I for f0g � K defined by N. Suzuki [9].

Suppose that H admits quantifier elimination in L.

1. If K is a Presburger arithmetic with smallest positive element

1K then the product interpretation G of H � K with a new

predicate I admits quantifier elimination in LðI ; 1ÞULmod

with 1G ¼ ð0H ; 1KÞ.
2. If K is dense regular and K=nK is finite for every integer

nb 2 then the product interpretation G of H � K with a new

predicate I admits quantifier elimination in LðI ;DÞULmod for

some set D of constant symbols where G � IðdÞ for each

d A D.

3. If K admits quantifier elimination in Lmodð<;DÞ for some set

D of constant symbols then the product interpretation G of

H � K with a new predicate I admits quantifier elimination

in LðI ;DÞULmod unless K is dense regular with K=nK being

infinite for some n.

Conversely, if the product interpretation G of H � K with a new

predicate I admits quantifier elimination in LðI ;DÞULmod for some
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set D of constant symbols such that G � IðdÞ for each d A D then

H admits quantifier elimination in LULmod, and K admits quantifier

elimination in Lmodð<;DÞ.
We also discuss the axiomatization of the theory of the product

interpretation of H � K .

Introduction

Throughout the paper, ‘‘ordered abelian group’’ will stand for ‘‘totally or-

dered abelian group’’.

Komori [7] and Weispfenning [12] had shown that the direct product Z�Q

equipped with the lexicographic ordering admits quantifier elimination in a

language expanding the language of the ordered abelian groups fþ;�; 0; <g.
Here, Z is a Presburger arithmetic (the ordered abelian group of the integers),

and Q a divisible ordered abelian group (the ordered abelian group of rational

numbers). They also gave a concrete axiomatization (recursive axiomatization)

for the theory of Z�Q. Weispfenning [12] extensively studied quantifier elim-

ination in the language

fþ;�; 0; <gU f1i
ngiak;n<o U fIigiak

where the Ii for ia k represent convex subgroups such that Ik X Ik�1 X � � �X I0

and each 1i
n is a binary relation defined by x1i

n y , bzðIiðzÞ5n j ðx� y� zÞÞ.
Suzuki [9] has defined a product interpretation of H � K in the language LðIÞ
equipped with the lexicographic ordering where H is an L-structure for a lan-

guage L expanding fþ;�; 0; <g by adding relation symbols and constant symbols

such that the reduct of H to fþ;�; 0; <g is an ordered abelian group, K is also

an ordered abelian group, and I is interpreted as the set f0g � K . He has shown

that if H admits quantifier elimination in L and K is a divisible ordered abelian

group then the product interpretation of H � K admits quantifier elimination

in the language LðIÞ. Moreover, the theory of H � K is determined by the theory

of H and it is recursively axiomatizable if the theory of H is. Tanaka and

Yokoyama [11] gave another proof. We will show a similar result when K is a

Presburger arithmetic or a dense regular abelian group instead of a divisible

ordered abelian group. We also show a similar result when K is an ordered

abelian group which admits quantifier elimination in Lmodð<;DÞ for some set D of

constant symbols. In the case that H admits quantifier elimination in Lmodð<;CÞ
for some set C of constant symbols, our results follow from Weispfenning’s

results [12, 13]. But we believe that our proof is simpler. Choose an ordered
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abelian group H0, and let H be an expansion of H0 by relations and constants

which admits quantifier elimination. If the form of the language of H is di¤erent

from Lmodð<;CÞ for any set of constant symbols C, then we get a new example

of product interpretation of H � K which admits quantifier elimination.

Tanaka and Yokoyama have shown that if H1H 0 and K1K 0 in ap-

propriate languages then H � K1H 0 � K 0. Let us denote the theory of a

structure M by ThðMÞ. We present an axiomatization of ThðH � KÞ depending

on ThðHÞ and ThðKÞ. Furthermore, if ThðHÞ and ThðKÞ are recursively axi-

omatizable then so is ThðH � KÞ.

1. Preliminaries

We follow the notation of Hodges’ book [5] in general. Throughout the

paper, we use the symbols ‘‘þ’’, ‘‘�’’, ‘‘0’’, ‘‘<’’ and ‘‘I ’’, where ‘‘þ’’ is a binary

function symbol, ‘‘�’’ a unary function symbol, ‘‘0’’ a constant symbol, ‘‘<’’ a

binary relation symbol, and ‘‘I ’’ a unary relation symbol. Let Lag ¼ fþ;�; 0g. If
L is a language, s1; s2; . . . ; sn are new symbols and C is a set of new constant

symbols, then Lðs1; s2; . . . ; sn;CÞ denotes the language LU fs1; s2; . . . ; sngUC, and

Lðs1; s2; . . . ; snÞ denotes the language LU fs1; s2; . . . ; sng. We say that L 0 is an

expansion of L by relations and constants if L 0 can be obtained by adding relation

symbols and constant symbols to L.

If L is a language and M is an L-structure, domðMÞ denotes the domain

or the universe of M, sM denotes the interpretation of s in M for each symbol s

of L. We often omit ‘‘dom’’ from ‘‘domðMÞ’’. Hence, ‘‘x A M’’ will stand for

‘‘x A domðMÞ’’. For a map f and a subset X of the domain of f , f jX denotes

the restriction of f to X . If M is an L-structure and X JM, MjX is a structure

with domain X such that RMjX ¼ RM VX n for each n-ary relation symbol R of

L, f MjX ¼ f M jX n for each n-ary function symbol f of L, and cMjX ¼ cM for

each constant symbol c of L if cM A X . Note that f MjX might be a partial map

on X in general, and cMjX might be non-existing. MjX is an L-substructure of M

if f MjX is a total function from X n to X for every function symbol f of L, and

cM A X for every constant symbol c of L (i.e., MjX is an L-structure). Let M

be an L-structure and M 0 an expansion of M to a language L 0. M 0 is called a

definitional expansion of M if every non-logical symbol of L 0 is definable in M 0

by an L-formula.

If f is a function and a ¼ ða1; . . . ; anÞ is a tuple of elements a1; . . . ; an from

the domain of f , f ðaÞ denotes the tuple ð f ða1Þ; . . . ; f ðanÞÞ. If a ¼ ða1; . . . ; anÞ and
b is an element, a b̂ denotes the tuple ða1; . . . ; an; bÞ and b â denotes the tuple

ðb; a1; . . . ; anÞ.
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If L is a language and M is an L-structure, we also call M a structure for

L. If two structures are elementarily equivalent as L-structures, we also say

that the two structures are elementarily equivalent for L. If y ¼ ðy1; . . . ; ynÞ is a

tuple of variables, EyjðyÞ stands for Ey1 � � � Eynjðy1; . . . ; ynÞ. To dispense with

parentheses in formulas, we follow the following hierarchy of precedences for

logical operators and quantifiers. s has higher precedence than any other logical

operators,5 has higher precedence than4,4 has higher precedence than ! and

$, and the quantifiers E and b have lower precedence than any logical operators.

For example, the formula

Ex; y x2 ¼ y25x0 y ! x ¼ �y5x0 0

stands for

ðExðEyððx2 ¼ y25x0 yÞ ! ðx ¼ �y5x0 0ÞÞÞÞ:

When we write s < t, sometimes we allow s to be �y and t to be y. We

consider �y < t and s < y to be formulas that are always true. For example,

s < x < t with s ¼ �y stands for x < t, s < x < t with t ¼ y stands for s < x,

and s < x < t with s ¼ �y and t ¼ y stands for a formula that is always true.

Definition 1.1. An L-structure M admits quantifier elimination if for any

formula jðyÞ of L with a tuple of free variables y, there is a quantifier-free

formula cðyÞ of L such that

M � Ey jðyÞ $ cðyÞ:

A theory T in L admits quantifier elimination if for any formula jðyÞ of L with a

tuple of free variables y, there is a quantifier-free formula cðyÞ of L such that

T ‘ Ey jðyÞ $ cðyÞ:

We often consider a definitional expansion M 0 of M to some extended language

L 0. When the defining L-formulas of all the new symbols of L 0 is given, any L-

structure can naturally be expanded to an L 0-structure. We say that M admits

quantifier elimination in L 0 if the definitional expansion M 0 of M to L 0 admits

quantifier elimination. In the case that L 00 is a sublanguage of L 0, we also say that

M admits quantifier elimination in L 00 if M 0jL 00 admits quantifier elimination.

For the basic definitions and facts on (ordered) abelian groups, we refer the

reader to [3] and [4]. Nevertheless, we will review some definitions and facts.
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For a set X , idX denotes the identity map on X . For a term t of Lag, 0 � t
denotes 0, 1 � t denotes t, 2 � t denotes tþ t, 3 � t denotes tþ tþ t, and so on. In

this way, m � t is defined for any non-negative integer m. For any negative integer

m, m � t denotes the term �ðjmj � tÞ. We sometimes write mt for m � t when there

will be no confusion. Let Lmod ¼ Lag U f1n : nb 2g where each 1n is a binary

relation defined by x1n y , bz ðx� y ¼ nzÞ. Any abelian group can be con-

sidered as an Lmod-structure with this definition. For a natural number n, njx
denotes the formula bz ðx ¼ nzÞ.

Definition 1.2 (Abelian Group). An Lag-structure A is called an abelian

group if

A � Ex; y; z ðxþ yÞ þ z ¼ xþ ðyþ zÞ;

A � Ex; y; z xþ 0 ¼ 0þ x ¼ x;

A � Ex; y; z xþ ð�xÞ ¼ ð�xÞ þ x ¼ 0; and

A � Ex; y xþ y ¼ yþ x:

If an Lag-structure A is an abelian group, Lag-substructure of A is called a

subgroup of A. If B is a subgroup of an abelian group and a A A, aþ B ¼
faþ x : x A Bg is called a coset of B in A. A coset of B which is di¤erent from

B is called a proper coset of B. For an abelian group A, let nA ¼ fnx : x A Ag for

an integer n.

Definition 1.3. Suppose an Lag-structure A is an abelian group. A sub-

group B of A is called pure if for any positive integer n and for any b A B,

A � bx ðnx ¼ bÞ implies B � bx ðnx ¼ bÞ. If B is a pure subgroup of A, then B

is an Lmod-substructure of A.

A subgroup B of an abelian group is called divisible if nB ¼ B for every

positive integer n. An abelian group A is called torsion-free if A � Ex ðx0 0 !
nx0 0Þ for every integer n > 0. Suppose A is an abelian group and B and C are

subgroups of A. If A ¼ fbþ c : b A B; c A Cg and BVC ¼ f0g then we call A the

direct sum (or the internal direct sum) of B and C and write A ¼ BlC. In this

case, B is called a direct summand of A. C is also a direct summand of A. Every

direct summand of an abelian group is a pure subgroup.

Fact 1.4. Let A be an abelian group and B its subgroup. B is a direct

summand of A if and only if there is a group homomorphism p : A ! B such that

p jB ¼ idB.
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Definition 1.5 (Direct Product). Suppose Lag-structures B and C are

abelian groups. Let A be an Lag-structure with domðAÞ ¼ domðBÞ � domðCÞ (a

product set) such that 0A ¼ ð0B; 0CÞ, ðx1; y1Þ þA ðx2; y2Þ ¼ ðx1 þB x2; y1 þC y2Þ,
and �Aðx; yÞ ¼ ð�Bx;�CyÞ. A is called the direct product (or external direct sum)

of B and C. Let B 0 ¼ fðb; 0CÞ : b A domðBÞg and C 0 ¼ fð0B; cÞ : c A domðCÞg.
AjB 0 and AjC 0 are subgroups of A and are isomorphic to B and C respectively as

groups (Lag-structures). A is the (internal) direct sum of AjB 0 and AjC 0.

Fact 1.6. Let A be a torsion-free abelian group. Any equation nx ¼ a with

n A Z and a A A has at most one solution in A. Intersections of pure subgroups of A

are again pure in A. For every subset S of A, there exists a minimal pure subgroup

containing S. This subgroup is called the pure subgroup generated by S.

The following fact is Theorem 38.1 together with Exercise 4 and 5 on p. 162

in [4]. Eklof and Fisher called an abelian group o1-equationally compact if it

satisfies condition (5) of this fact, and pointed out this equivalence [2]. By an

equation over A, we mean a formula of the form t ¼ a with a term t of Lag (with

variables) and a A A. Note that any term of Lag can be considered as a Z-linear

combination of variables in abelian groups.

Fact 1.7. The following conditions on an abelian group A are equivalent:

(1) If B is a pure subgroup of C, C=B is countable, and f : B ! A is a group

homomorphism, then there is a group homomorphism g : C ! A such that

g jB ¼ f .

(2) A is pure-injective: If B is a pure subgroup of C, and f : B ! A a group

homomorphism, then there is a group homomorphism g : C ! A such that

g jB ¼ f .

(3) A is algebraically compact: If A is a pure subgroup of C then A is a direct

summand of C.

(4) If every finite subsystem of a system of equations over A has a solution in

A, then the whole system is solvable in A.

(5) If every finite subsystem of a countable system of equations over A has a

solution in A, then the whole system is solvable in A.

Fact 1.8. Let A be a torsion-free abelian group. Then for any positive

integers m, n,

(1) A � Ex; y x1n y $ mx1mn my,

(2) A � Ex; y x1n y ! mx1n my, and

(3) A � Ex1; x2; y1; y2 x1 1n y15x2 1n y2 ! x1 þ x2 1n y1 þ y2.
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The following lemma seems to be well-known but we could not find it in the

literature. It is essentially due to Presburger [8].

Lemma 1.9. Suppose G is a torsion-free abelian group. Let t1ðyÞ; . . . ; tnðyÞ be

terms of Lag with tuple y of variables, and l1; . . . ; ln positive integers. Then we can

e¤ectively find (by a recursive procedure) a quantifier-free formula yðyÞ of Lmod

such that

G � Ey bx 5
i¼1;...;n

x1li tiðyÞ
 !

$ yðyÞ:

Proof. First, we prove a claim.

Claim 1. Let l and m be any positive integers and let d be the greatest

common divisor of l and m. Since l=d and m=d are relatively prime integers, we

can choose integers u, v such that ul=d þ vm=d ¼ 1. Then

G � Ex; y; z ðx1l y5x1m zÞ $ ðx1lm=d ðvm=dÞyþ ðul=dÞz5y� z1d 0Þ:

Let x; y; z A G be arbitrary. Suppose G � x1l y and G � x1m z. Then

G � ðm=dÞx1ml=d ðm=dÞy and G � ðl=dÞx1ml=d ðl=dÞz. Hence, G � ðvm=dÞx
1ml=d ðvm=dÞy and G � ðul=dÞx1ml=d ðul=dÞz. By adding terms on each side, we

have G � x1ml=d ðvm=dÞyþ ðul=dÞz.
Also, since G � l j x� y, G � m j x� z, and djl, m, we have G � d j x� y and

G � d j x� z, and thus G � d j y� z.

Conversely, suppose that G � x1lm=d ðvm=dÞyþ ðul=dÞz and G � y� z1d 0.

Choose w A G such that G � y� z ¼ dw. Then in G,

x1lm=d ðvm=dÞyþ ðul=dÞz

¼ ðvm=d þ ul=dÞyþ ðul=dÞðz� yÞ

¼ 1 � y� ulw

1l y:

Hence, G � x1l y. Similarly, G � x1m z. The claim is proved.

We prove the statement of the lemma by induction on the number n of

conjuncts in the scope of ‘‘bx’’.
If n ¼ 1, then we can always choose such x. Therefore, we can choose 0 ¼ 0

for yðyÞ.
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If nb 2, by Claim 1, we have

G � Ey bx 5
i¼1;...;n

x1li tiðyÞ
 !

$ t1ðyÞ � t2ðyÞ1d 05bx

x1l1l2=d ðvl2=dÞt1ðyÞ þ ðul1=dÞt2ðyÞ5 5
i¼3;...;n

x1li tiðyÞ

where d is the greatest common divisor of l1 and l2, and v, u are integers such

that ul1 þ vl2 ¼ d. Note that l1=d and l2=d are integers.

By induction hypothesis, we can e¤ectively eliminate ‘‘bx’’ from the sub-

formula

bx x1l1l2=d ðvl2=dÞt1ðyÞ þ ðul1=dÞt2ðyÞ5 5
i¼3;...;n

x1li tiðyÞ: r

Quantifier elimination is known for abelian groups by Szmielew [10]. A

shorter proof can be found in a Ziegler’s paper [14].

Fact 1.10 (Szmielew). Any abelian group admits quantifier elimination in

Lmod.

Definition 1.11 (Ordered Abelian Group). An Lagð<Þ-structure A is called

an ordered abelian group if AjLag is an abelian group, <A is a total order on

domðAÞ, and

A � Ex; y; z x < y ! xþ z < yþ z:

If an Lagð<Þ-structure A is an ordered abelian group and B is a subgroup of

AjLag, then the Lagð<Þ-substructure of A with domain domðBÞ is also an ordered

abelian group.

Suppose an Lagð<Þ-structure A is an ordered abelian group. A subset B of A

is called convex if for any a; b A B and for any x A A, A � a < x < b implies

x A B. A convex subgroup of A is a subgroup of A whose domain is a convex

subset of A. A subset B of A is called dense if for any a; b A A, there is an element

x A B such that A � a < x < b. A dense subgroup of A is a subgroup of A whose

domain is a dense subset of A.

If an Lagð<Þ-structure A is an ordered abelian group then AjLag is a torsion-

free abelian group, and any convex subgroup of A is a pure subgroup of A.

The ordered abelian groups which admit quantifier elimination in Lmodð<Þ
together with some set of constant symbols have been classified by Weispfenning

[13].
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Definition 1.12. An ordered abelian group G is dense regular if it satisfies

the following equivalent conditions:

(1) For any integer nb 2,

G � Ey; z 0 < y ! bx ð0 < x < y5x1n zÞ:

(2) For any prime p, pG is dense in G.

(3) G is elementarily equivalent to a dense subgroup of the real numbers R

(a dense Archimedean group).

Remark 1.13. Suppose n is an integerb 2. Then for any ordered abelian

group G,

G � Ey; zbx y < x5x1n z:

Proof. Let y; z A G be arbitrary. If y < z then the statement holds with

x ¼ z. If y ¼ z, choose a positive element d in G. Then the statement holds with

x ¼ zþ nd. If z < y, then 0 < y� z. Then y� z < nðy� zÞ since nb 2. There-

fore, y < zþ nðy� zÞ1n z. The statement holds with x ¼ zþ nðy� zÞ. r

Lemma 1.14. Let n be an integerb 2. For an ordered abelian group G, the

following are equivalent:

(1) G � Eb; c 0 < b ! bx ð0 < x < b5x1n cÞ.
(2) G � Ea; b; c 0a a < b ! bx ða < x < b5x1n cÞ.
(3) G � Ea; b; c a < b ! bx ða < x < b5x1n cÞ.

Proof. We work in G.

(3) ) (1) is immediate.

(1) ) (2). Let a; b; c A G be arbitrary with 0a a < b. By (1), we can choose

x0 A G such that 0 < x0 < b� a and x0 1n c. Again by (1), we can choose

x1 A G such that 0 < x1 < x0 and x1 1n a. Let x ¼ a� x1 þ x0. Since a� x1 1n 0,

x1n x0 1n c. On the other hand, 0 < x1 < x0 < b� a implies 0 < x0 � x1 < b� a.

Hence, a < aþ x0 � x1 < b.

(2) ) (3). Let a; b; c A G be arbitrary with a < b. If 0 < b then 0a a < b

or a < 0 < b. In either cases, we can choose desired x by (2). If ba 0, then

0a�b < �a. By (2), we can choose x 0 A G such that �b < x 0 < �a and

x 0 1�c ðmod nÞ. Hence, a < �x 0 < b and �x 0 1 c ðmod nÞ. r

The additive group of rational numbers Q is dense regular. There are many

dense regular groups. Let p be a prime number, and let Fp be the prime field
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of characteristic p. For any abelian group G, G=pG is a Fp-vector space. Let

bpðGÞ ¼ dimFp
G=pG. bpðGÞ is called a Szmielew invariant. Note that G=nG is

finite for every positive integer n if and only if bpðGÞ is finite for every prime

number p.

Fact 1.15 (Zakon). For any function f from the set of prime numbers to

oU fog, there is a dense regular group G such that bpðGÞ ¼ f ðpÞ for any prime

number p. Here o is the first infinite ordinal number.

Proof. We present a construction by Weispfenning [12]. Let frp;n : p is

a prime; n < og be a set of linearly independent real numbers over Q. Let

Zp ¼ fa=b A Q : bD 0 ðmod pÞg, and

G ¼ 0
p:prime

0
n< f ðpÞ

Zp � rp;n:

Then G is a dense subgroup of the additive group of the real number field and

bpðGÞ ¼ f ðpÞ for every prime p. r

Fact 1.16 (Weispfenning). Let G be an ordered abelian group, and D a pure

subgroup of G. Consider each element of D as a constant symbol. Then G admits

quantifier elimination in Lmodð<;DÞ if and only if

(1) G is dense regular or

(2) there exists a finite sequence fGig0aiam of convex subgroups of G and a

sequence fðki; diÞg1aiam such that

(i) Gm ¼ G;

(ii) for 1a iam, ki is a positive integer, di A D, di A Gi � Gi�1, Gi=Gi�1

is a Z-group with smallest positive element 1i þ Gi�1, ki � 1i � di A

Gi�1;

(iii) G0 is dense regular, and for every prime p, bpðG0Þ is finite and every

coset of pG0 in G0 has a representative in D.

The following is a corollary to this fact.

Fact 1.17 (Weispfenning). Let G be an ordered abelian group.

(1) G admits quantifier elimination in Lmodð<Þ if and only if G is dense

regular.

(2) Let d be an element of G. G admits quantifier elimination in Lmodð<; dÞ if

and only if G is dense regular, or there exists a divisible convex subgroup

G0 of G and an integer k0 0 such that G=G0 is a Z-group with smallest

positive element 1þ G0 and k � 1� d A G0.
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2. Product Interpretations

Definition 2.1 (Lexicographic Product). Let Lagð<Þ-structures B and C be

ordered abelian groups. An Lagð<Þ-structure A is called the lexicographic product

of B and C if AjLag is the direct product of abelian groups BjLag and CjLag, and

for any x; y A A with x ¼ ðxB; xCÞ, y ¼ ðyB; yCÞ, A � x < y if and only if

B � xB < yB or

B � xB ¼ yB and C � xC < yC :

Now, we will introduce the notion of product interpretation for the direct

product of two ordered abelian groups. The definition was given in [9] and [11].

The following is a slightly generalized one.

Definition 2.2 (Extended Product Interpretation). Let L be an expansion

of Lagð<Þ by predicates and constants, and D a set of constant symbols such

that DVL ¼ q. Suppose that H is an L-structure such that H jLagð<Þ is an

ordered abelian group, K an Lagð<;DÞ-structure such that K jLagð<Þ is an

ordered abelian group. Let I be a new unary relation symbol which does not

appear in L. A structure G for LðI ;DÞ is called an extended product interpretation

of H � K with new predicate I , if

1. G jLagð<Þ is a lexicographic product of H jLagð<Þ and K jLagð<Þ,
2. for each constant symbol c A L, there is an element cK A K such that

cG ¼ ðcH ; cKÞ, and cH1 ¼ cH2 implies cG1 ¼ cG2 for any constant symbols

c1; c2 A L,

3. ððx1; y1Þ; . . . ; ðxn; ynÞÞ A RG if and only if ðx1; . . . ; xnÞ A RH for each re-

lation symbol R of L� f<g,
4. I G ¼ fð0H ; xÞ : x A Kg, and

5. dG ¼ ð0H ; dKÞ for each constant symbol d A D.

Note that KGG j I G as Lmodð<;DÞ-structures. An extended product inter-

pretation of H � K is not unique because of condition 2. If cG ¼ ðcH ; 0KÞ for

each constant symbol c A L, then G is called the product interpretation of H � K

with new predicate I [9, 11].

Lemmas 2.3 and 2.8 below are essentially proved by Tanaka and Yokoyama

[11].

Lemma 2.3. Let L be an expansion of Lagð<Þ by predicates and constants,

and D a set of constant symbols such that DVL ¼ q. Suppose that H is an
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L-structure such that H jLagð<Þ is an ordered abelian group, K an Lmodð<;DÞ-
structure such that K jLagð<Þ is an ordered abelian group, and G an extended

product interpretation of H � K with a new predicate I . If jðxÞ is a quantifier-free

formula of L with an n-tuple x of variables, there is a quantifier-free formula

j�ðxÞ of LðIÞ such that for any tuple g ¼ ðg1; . . . ; gnÞ A Gn with gi ¼ ðgi;H ; gi;KÞ for
i ¼ 1; . . . ; n, H � jðgHÞ if and only if G � j�ðgÞ, where gH ¼ ðg1;H ; . . . ; gn;HÞ.

Proof. Let jðxÞ be a quantifier-free formula of L with a tuple x of n

variables. Then jðxÞ is a Boolean combination of formulas of forms tðxÞ ¼ 0,

0 < tðxÞ, and Rðs1ðxÞ; . . . ; slðxÞÞ, where tðxÞ, s1ðxÞ; . . . ; slðxÞ are terms of L and

R is an l-ary relation symbol of L.

Let g ¼ ðg1; . . . ; gnÞ be an arbitrary tuple from G with gi ¼ ðgi;H ; gi;KÞ for

i ¼ 1; . . . ; n, and let gH ¼ ðg1;H ; . . . ; gn;HÞ and gK ¼ ðg1;K ; . . . ; gn;KÞ.
We can write tðxÞ ¼ t1ðxÞ þ t2ðcÞ where t1ðxÞ is a term of Lag, t2ðzÞ a term

of Lag with a p-tuple z of variables, and c ¼ ðc1; . . . ; cpÞ a tuple of constant

symbols of L. Choose ci;K A K such that cGi ¼ ðcHi ; ci;KÞ for i ¼ 1; . . . ; p and let

cK ¼ ðc1;K ; . . . ; cp;KÞ. Then tGðgÞ ¼ ðtHðgHÞ; tK1 ðgKÞ þ tK2 ðcKÞÞ. Hence,

H � tðgHÞ ¼ 0 , G � IðtðgÞÞ; and

H � 0 < tðgHÞ , G � 0 < tðgÞ5sIðtðgÞÞ:

Similarly, we have

H � Rðs1ðgHÞ; . . . ; slðgHÞÞ , G � Rðs1ðgÞ; . . . ; slðgÞÞ:

Let j�ðxÞ be the formula obtained from jðxÞ by replacing tðxÞ ¼ 0 and

0 < tðxÞ with IðtðxÞÞ and 0 < tðxÞ5sIðtðxÞÞ, respectively. Then H � jðgHÞ if

and only if G � j�ðgÞ. r

Definition 2.4 (Unnested atomic formula). Let L be a language. By an

unnested atomic formula jðxÞ where x is a tuple of variables, we mean an atomic

formula of one of the following forms:

u ¼ v;

c ¼ v for some constant symbol c of L;

f ðzÞ ¼ y for some function symbol f of L;

RðzÞ for some relation symbol R of L:

Here, u, v, y are variables from x, and z a tuple of variables from x.
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Definition 2.5 (Partial isomorphism). Let A and B be structures for a

language L. A partial map f from A to B is called a partial L-isomorphism if

for any tuple a from the domain of f and for any unnested formula jðxÞ of L

with a tuple x of free variables such that the length of x is equal to the length

of a,

A � jðaÞ , B � jð f ðaÞÞ:

Note that since u ¼ v is an unnested formula, a partial L-isomorphism is a one-

to-one map.

We are going to define AAk B, which is defined in [5], p. 102. We define it in

a di¤erent way, but they are equivalent essentially by [5], Lemma 3.3.1.

Definition 2.6. Let A and B be structures for a language L, a a tuple from

A, and b a tuple from B. Suppose that a and b have the same length. For any

integer kb 0, we define ðA; aÞAk ðB; bÞ for L by induction on k as the following:

ðA; aÞA0 ðB; bÞ for L if there is a partial L-isomorphism f from A to B such

that f ðaÞ ¼ b.

Suppose k > 0. ðA; aÞAk ðB; bÞ for L if for every element c of A there is an

element d of B such that ðA; a ĉÞAk�1 ðB; b d̂Þ for L, and for every element d of

B there is an element c of A such that ðA; a ĉÞAk�1 ðB; b d̂Þ for L.

For kb 1, AAk B for L if ðA; ð ÞÞAk ðB; ð ÞÞ for L where ð Þ is the empty

tuple.

The following is Corollary 3.3.3 in [5].

Fact 2.7 (Fraı̈ssé-Hintikka). Let A and B be structures for a finite language

L. Then the following are equivalent:

(1) A1B for L.

(2) AAk B for L for every integer kb 1.

Lemma 2.8. Let L be an expansion of Lagð<Þ by predicates and constants and

I a new unary predicate. Suppose that H1H 0 for L, and K1K 0 for Lagð<;DÞ
for some set D of new constant symbols. Then the following hold.

(1) The product interpretations H � K and H 0 � K 0 with new predicate I are

elementarily equivalent.

(2) If G is an extended product interpretation of H � K with new predicate I ,

G 0 is an extended product interpretation of H 0 � K 0 with new predicate I ,
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and for each constant symbol c in L there is a constant symbol dc A DU f0g
such that cG ¼ ðcH ; dK

c Þ and cG
0 ¼ ðcH 0

; dK 0
c Þ, then G1G 0 for the lan-

guage LðI ;DÞ.

Proof. It is enough to prove (2). Let G and G 0 be as above. We only

have to show that G1G 0 for any finite sublanguage L 0 of LðI ;DÞ such that

Lagð<; IÞJL 0. We can assume that for any constant symbol c A LVL 0, there is a

constant symbol d A ðDVL 0ÞU f0g such that cG ¼ ðcH ; dKÞ and cG
0 ¼ ðcH 0

; dK 0 Þ.

Claim 1. Let ai A H, a 0
i A H 0, bi A K and b 0

i A K 0 for i ¼ 1; . . . ;m with

mb 0. For any integer kb 0, if ðH; ða1; a2; . . . ; amÞÞAk ðH 0; ða 0
1; a

0
2; . . . ; a

0
mÞÞ for

LVL 0 and ðK ; ðb1; b2; . . . ; bmÞÞAk ðH 0; ðb 0
1; b

0
2; . . . ; b

0
mÞÞ for Lagð<;DÞVL 0 then

ðG; ðg1; g2; . . . ; gmÞÞAk ðG 0; ðg 0
1; g

0
2; . . . ; g

0
mÞÞ for L 0 where gi ¼ ðai; biÞ and g 0

i ¼
ða 0

i ; b
0
i Þ for i ¼ 1; . . . ;m.

We prove the claim by induction on k.

Suppose k ¼ 0. Assume m > 0. By the assumption, there is a partial ðLVL 0Þ-
isomorphism f1 from H to H 0 such that f1ðaiÞ ¼ a 0

i for i ¼ 1; . . . ;m, and there

is a partial ðLagð<;DÞVL 0Þ-isomorphism f2 from K to K 0 such that f2ðbiÞ ¼ b 0
i

for i ¼ 1; . . . ;m. Let f be a partial map from G to G 0 defined by f ðgiÞ ¼
f ððai; biÞÞ ¼ ða 0

i ; b
0
i Þ ¼ ð f1ðaiÞ; f2ðbiÞÞ ¼ g 0

i for i ¼ 1; . . . ;m. It is straightforward to

prove that f is well-defined and it is a partial L 0-isomorphism. We show that f

is a partial C U fIg-isomorphism where C is the set of constant symbols of

LVL 0. The remaining cases can be treated similarly.

If G � IðgiÞ then ai ¼ 0H since gi ¼ ðai; biÞ. We have f ðgiÞ ¼ f ðð0H ; biÞÞ ¼
ð f1ð0HÞ; f2ðbiÞÞ ¼ ð0H 0

; b 0
i Þ. Hence, G 0 � Ið f ðgiÞÞ. By symmetry, G � IðgiÞ if and

only if G 0 � Ið f ðgiÞÞ. Therefore, f is a partial fIg-isomorphism.

Suppose G � gi ¼ c for a constant symbol c A LVL 0. Then gi ¼ ðcH ; dK
c Þ for

some dc A DVL 0. We have f ðgiÞ ¼ f ððcH ; dK
c ÞÞ ¼ ð f1ðcHÞ; f2ðdK

c ÞÞ ¼ ðcH 0
; dK 0

c Þ.
Hence, G 0 � f ðgiÞ ¼ c. By symmetry, G � gi ¼ c if and only if G 0 � f ðgiÞ ¼ c.

Therefore, f is a partial C-isomorphism.

Now, we turn to the induction step. Suppose k > 0. We are going to

show that ðG; ðg1; g2; . . . ; gmÞÞAk ðG 0; ðg 0
1; g

0
2; . . . ; g

0
mÞÞ for L 0. By symmetry, it

is enough to show that for any gmþ1 A G, there is g 0
mþ1 A G 0 such that

ðG; ðg1; g2; . . . ; gm; gmþ1ÞÞAk�1 ðG 0; ðg 0
1; g

0
2; . . . ; g

0
m; g

0
mþ1ÞÞ for L 0.

Let gmþ1 ¼ ðamþ1; bmþ1Þ A G be arbitrary. Since

ðH; ða1; a2; . . . ; amÞÞAk ðH 0; ða 0
1; a

0
2; . . . ; a

0
mÞÞ
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for LVL 0 and amþ1 A H, we can choose a 0
mþ1 A H 0 such that

ðH; ða1; a2; . . . ; am; amþ1ÞÞAk�1 ðH 0; ða 0
1; a

0
2; . . . ; a

0
m; a

0
mþ1ÞÞ

for LVL 0. Also, since

ðK ; ðb1; b2; . . . ; bmÞÞAk ðK 0; ðb 0
1; b

0
2; . . . ; b

0
mÞÞ

for Lagð<;DÞVL 0, we can choose b 0
mþ1 A K 0 such that

ðK ; ðb1; b2; . . . ; bm; bmþ1ÞÞAk�1 ðH 0; ðb 0
1; b

0
2; . . . ; b

0
m; b

0
mþ1ÞÞ

for Lagð<;DÞVL 0. Let g 0
mþ1 ¼ ða 0

mþ1; b
0
mþ1Þ. Then by the induction hypothesis,

ðG; ðg1; g2; . . . ; gm; gmþ1ÞÞAk�1 ðG 0; ðg 0
1; g

0
2; . . . ; g

0
m; g

0
mþ1ÞÞ

for L 0. We have proved the claim.

Now we turn to the proof of the lemma. Let kb 1 be any integer. Since

H1H 0 for LVL 0 and K 1K 0 for Lagð<;DÞVL 0, we have HAk H
0 for LVL 0

and KAk K
0 for Lagð<;DÞVL 0 by Fact 2.7. Hence, GAk G

0 for L 0 by Claim 1.

Since GAk G
0 for L 0 for any integer kb 1, G1G 0 for L 0 by Fact 2.7. r

Lemma 2.9. If G is an ordered abelian group, A a convex subgroup of G, B a

subgroup of G, and G ¼ BlA as an abelian group, then G is isomorphic to the

lexicographic product of B and A.

Proof. Assume bþ aa b 0 þ a 0 with b; b 0 A B and a; a 0 A A.

Suppose b < b 0 is not the case. Then bb b 0 and we have 0a b� b 0 a

a 0 � a A A. Hence, b� b 0 A A by convexity of A and thus b� b 0 A AVB ¼ f0g.
Hence, b ¼ b 0 and aa a 0. r

Proposition 2.10 (Theory of an Extended Product Interpretation). Let L be

an expansion of Lagð<Þ by predicates and constants, and H a structure for L such

that H jLagð<Þ is an ordered abelian group, and K an Lagð<;DÞ-structure for some

set D of constant symbols such that K jLagð<Þ is an ordered abelian group. Let G

be an extended product interpretation of H � K with a new predicate I . Suppose

that for each constant symbol c A L, there is a constant symbol dc A D such that

cG ¼ ðcH ; dK
c Þ. Then M1G for LðI ;DÞ if and only if M satisfies the following

axioms:

1. M jLagð<Þ is an ordered abelian group;

2. I M is a convex subgroup;

3. I M 1K for Lagð<;DÞ;

109Quantifier elimination for lexicographic products



4. for each relation symbol R of L� f<g, truth value of R is fixed modulo I ,

i.e., if R has the arity m,

M � Ex1; . . . ; xmEy1; . . . ; ym

Iðy1Þ5� � �5IðymÞ ! ðRðx1; . . . ; xmÞ $ Rðx1 � y1; . . . ; xm � ymÞÞ;

5. M=I M 1H for L;

6. for each term tðy1; . . . ; ynÞ of Lag and a tuple ðc1; . . . ; cnÞ of constant

symbols of L,

M � tðc1 � dc1 ; . . . ; cn � dcnÞ0 0 ! sIðtðc1 � dc1 ; . . . ; cn � dcnÞÞ

and for each positive integer n,

M � Ex IðxÞ5n j xþ tðc1 � dc1 ; . . . ; cn � dcnÞ

! n j x5n j tðc1 � dc1 ; . . . ; cn � dcnÞ:

Note that assuming condition 4, M=I M can naturally be considered as an L-

structure.

In particular, if the theory of H in L and the theory of K in Lagð<;DÞ are

recursively axiomatizable and the function mapping each constant symbol c of L

to a constant symbol dc of D is a recursive function, then the theory of G in LðI ;DÞ
is recursively axiomatizable.

Proof. It is straitforward to check that G satisfies the axioms 1–6.

Let M be any model of the axioms 1–6. To show that M1G for LðI ;DÞ,
we can replace M by an elementary extension of M. So, we can assume that M

is o1-saturated. Let us denote the Lagð<;DÞ-substructure of M with domain I M

by I M also. Let C be the set of constant symbols of L and P the pure sub-

group of M generated by fðc� dcÞM : c A Cg. Then PV I M ¼ f0g and Pl I M is

a pure subgroup of M by Axiom 6. Therefore, there is a group homomorphism

g from Pl I M to I M such that g j I M ¼ id and gðxÞ ¼ 0M for every x A P.

Since M is o1-saturated, I
M satisfies condition (5) of Fact 1.7 (o1-equationally

compact). Hence, I M is pure-injective by Fact 1.7. Therefore, we can extend

g to a homomorphism g 0 : M ! I M . Since g 0ðxÞ ¼ gðxÞ ¼ x for every x A I M ,

M ¼ Ker g 0 l I M . Since PJKerðgÞJKerðg 0Þ, M is isomorphic to an extended

product interpretation of Kerðg 0Þ and I M by Lemma 2.9, and Kerðg 0Þ1H as

L-structures by Axiom 4. Therefore, MGKerðg 0Þ � I M 1G in the language

LðI ;DÞ by Lemma 2.8. r
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3. Lemmas for Quantifier Elimination

In this section, we present some lemmas used in common later.

Remark 3.1. Suppose that L ¼ L 0ðCÞ for some set C of constant symbols.

Then to show that a theory T admits quantifier elimination in L, it is enough to

show that every existential formula of L 0 is equivalent to a quantifier-free formula

of L ¼ L 0ðCÞ modulo T .

Lemma 3.2. Let L be an expansion of Lagð<Þ by predicates and constants,

and D a set of constant symbols such that DVL ¼ q. Suppose H is an L-structure

such that H jLagð<Þ is an ordered abelian group, K an Lagð<;DÞ-structure such

that K jLagð<Þ is an ordered abelian group, and G an extended product inter-

pretation of H � K with a new predicate I . Let LR be the set of relation symbols

of L other than <. Then the following are equivalent:

(1) G admits quantifier elimination in LðI ;DÞULmod.

(2) Let x be a variable and y an n-tuple of variables. Suppose that p, q are

natural numbers such that pa q, m is a non-zero integer, jðx; yÞ a con-

junction of literals of LRðþ;�; 0; IÞ, tiðyÞ a term of Lag for i ¼ 1; . . . ; q,

s1ðyÞ a term of Lag or �y, s2ðyÞ a term of Lag or y, C1ðx; yÞ the

formula

s1ðyÞ < mx < s2ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ;

and C2ðx; yÞ the formula

mx ¼ s1ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ:

We assume that s1ðyÞ is a term of Lag in C2ðx; yÞ.
Then for any n-tuple a from G, each of the statements G � bxjðx; aÞ,

G � bxC1ðx; aÞ and G � bxC2ðx; aÞ is equivalent to a Boolean combina-

tion of statements of the form G � yðaÞ for some quantifier-free formula

yðyÞ of LðI ;DÞULmod.

Proof. Let C be the set of constant symbols of L. Let L 0 be the language

LRðIÞULmod. Then LðI ;DÞULmod ¼ L 0ðC UDÞ. By Remark 3.1, it is enough to

show that any existential formula of LRðIÞULmod is equivalent to a quantifier-

free formula of LðI ;DÞULmod modulo the theory of G.
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Since G is totally ordered by <G, any quantifier-free formula of LRðIÞULmod

with free variables x̂ y is equivalent to a disjunction of formulas of forms

C1ðx; yÞ and C2ðx; yÞ allowing m to be 0. In the case with m ¼ 0, it is enough to

eliminate the quantifier from bxjðx; yÞ. Now, the lemma is clear. r

The statements G � bxjðx; aÞ and G � bxC2ðx; aÞ of Lemma 3.2 (2) are

reduced by the following lemma.

Lemma 3.3. Assume the assumption of Lemma 3.2, and the assumption of

Lemma 3.2 (2). Let j1ðx; yÞ be the formula obtained from jðx; yÞ by replacing

each subformula ‘‘IðtÞ’’ with ‘‘t ¼ 0’’. Then the following hold:

(1) Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and aH the

n-tuple ðb1; . . . ; bnÞ. Then G � bxjðx; aÞ if and only if H � bx1j1ðx1; aHÞ.
(2) Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and aH the

n-tuple ðb1; . . . ; bnÞ. Then G � bxC2ðx; aÞ if and only if the conjunction of

the following statements holds:

H � bx1 mx1 ¼ sðaHÞ5j1ðx1; aHÞ;

G � sðaÞ1m 05 5
1aiap

sðaÞDli tiðaÞ5 5
pþ1ajaq

sðaÞ1lj tjðaÞ:

(3) If H admits quantifier elimination in L then for any n-tuple a from G,

each of the statements G � bxjðx; aÞ and G � bxC2ðx; aÞ is equivalent to a

Boolean combination of statements of the form G � yðaÞ with a quantifier-

free formula yðyÞ of LðIÞULmod.

Proof. (1) and (2) are immediate. We have (3) by (1), (2) and Lemma 2.3.

r

Statement G � bxC1ðx; aÞ of Lemma 3.2 (2) will be reduced with several

lemmas.

Lemma 3.4. Assume the assumption of Lemma 3.2, and the assumption of

Lemma 3.2 (2). Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and

aH the n-tuple ðb1; . . . ; bnÞ. Then G � bxC1ðx; aÞ is equivalent to the disjunction of

the following statements (a) and (b):

(a) H � s1ðaHÞ < s2ðaHÞ and G � bxC1ðx; aÞ.
(b) H � s1ðaHÞ ¼ s2ðaHÞ and G � bxC1ðx; aÞ.
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Statement (a) of Lemma 3.4 is reduced by the following lemma.

Lemma 3.5. Assume the assumption of Lemma 3.2, and the assumption of

Lemma 3.2 (2). Let j1ðx; yÞ be the formula obtained from jðx; yÞ by replacing

each subformula ‘‘IðtÞ’’ with ‘‘t ¼ 0’’.

Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, aH the n-tuple

ðb1; . . . ; bnÞ, and aK the n-tuple ðc1; . . . ; cnÞ. Then the following statements (1) and

(2) are equivalent:

(1) H � s1ðaHÞ < s2ðaHÞ and G � C1ðx; aÞ.
(2) For some W J f1; . . . ; pg,

H � s1ðaHÞ < s2ðaHÞ5bx1

s1ðaHÞamx1 a s2ðaHÞ5j1ðx1; aHÞ5 5
k AW c

mx1 Dlk tkðaHÞ

5 5
i AW

mx1 1li tiðaHÞ5 5
pþ1ajaq

mx1 1lj tjðaHÞ

and

K � bx2 5
i AW

mx2 Dli tiðaKÞ5 5
pþ1ajaq

mx2 1lj tjðaKÞ:

Proof. (1) ) (2). Assume (1). Then there is x ¼ ðxH ; xKÞ A G such that

G � s1ðaÞ < mx < s2ðaÞ5 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ5jðx; aÞ:

First, we have

H � s1ðaHÞamxH a s2ðaHÞ5j1ðxH ; aÞ:

Let W ¼ f1a ia p : H � mxH 1li tiðaHÞg. For i A W , if K � mxK 1li tiðaKÞ then
G � mðxH ; xKÞ1li ðtiðaHÞ; tiðaKÞÞ. Therefore, K � mxK Dli tiðaKÞ for i A W . (2)

holds with x1 ¼ xH A H and x2 ¼ xK A K.

(2) ) (1). Assume (2). Choose W J f1; . . . ; pg, x1 A H and x2 A K such that

H � s1ðaHÞamx1 a s2ðaHÞ5j1ðx1; aHÞ

5 5
k AW c

mx1 Dlk tkðaHÞ5 5
i AW

mx1 1li tiðaHÞ5 5
pþ1ajaq

mx1 1lj tjðaHÞ

and

K � 5
i AW

mx2 Dli tiðaKÞ5 5
pþ1ajaq

mx2 1lj tjðaKÞ:

113Quantifier elimination for lexicographic products



Since H � s1ðaHÞ < s2ðaHÞ and H � s1ðaHÞamx1 a s2ðaHÞ, we have H �
mx1 < s2ðaHÞ or H � mx1 ¼ s2ðaHÞ.

Case H � mx1 < s2ðaHÞ. Let l be a common multiple of l1; . . . ; lq and

m. By Remark 1.13, we can choose an element d A K satisfying K � d1l 0

and K � s1ðaKÞ �mx2 < d. Since K � d1l 0, K � d1jmj 0. Pick d 0 A K such

that K � d ¼ md 0. Put xK ¼ x2 þ d 0 A K and x ¼ ðx1; xKÞ. Then K � s1ðaKÞ <
mx2 þ d ¼ mðx2 þ d 0Þ ¼ mxK . Since H � s1ðaHÞamx1, K � s1ðaKÞ < mxK , and

sG1 ðaÞ ¼ ðsH1 ðaHÞ; sK1 ðaKÞÞ, we have G � s1ðaÞ < mx. Since H � mx1 < s2ðaHÞ, we
have G � mx < s2ðaÞ.

Since K � d1li 0 for each li, we have K � mxK ¼ mx2 þ d1li mx2 for each i.

Hence,

K � 5
i AW

mxK Dli tiðaKÞ5 5
pþ1ajaq

mxK 1lj tjðaKÞ:

Therefore, we have (1):

H � s1ðaHÞ < s2ðaHÞ and

G � s1ðaÞ < mx < s2ðaÞ5 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ5jðx; aÞ:

Case H � mx1 ¼ s2ðaHÞ. Let l be a common multiple of l1; . . . ; lq and m.

By Remark 1.13, we can choose an element d A K satisfying K � d1l 0

and K � �s2ðaKÞ þmx2 < d. Since K � d1l 0, K � d1jmj 0. Pick d 0 A K such

that K � d ¼ md 0. Put xK ¼ x2 � d 0 A K and x ¼ ðx1; xKÞ. Then K � mxK ¼
mðx2 � d 0Þ ¼ mx2 � d < s2ðaKÞ. Since H � mx1 ¼ s2ðaHÞ, K � mxK < s2ðaKÞ,
and sG2 ðaÞ ¼ ðsH2 ðaHÞ; sK2 ðaKÞÞ, we have G � mx < s2ðaÞ. Since H � s1ðaHÞ <
s2ðaHÞ ¼ mx1, we have G � s1ðaÞ < mx.

Now, with an argument similar to the case H � mx1 < s2ðaHÞ, we can

deduce (1). r

Lemma 3.6. Assume the assumption of Lemma 3.2, and the assumption of

Lemma 3.2 (2). Suppose H admits quantifier elimination in L and for any positive

integer l, K=lK is finite and there is a set Dl of variable-free terms of LagðDÞ
such that DK

l ¼ fdK : d A Dlg forms a set of representatives of the proper cosets

of lK in K. Let cðx; yÞ be a formula of L, and W a subset of f1; . . . ; pg. Let

a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and put aH ¼ ðb1; . . . ; bnÞ
and aK ¼ ðc1; . . . ; cnÞ. Then the conjunction of the statements

H � bx1 cðx1; aHÞ5 5
i AW

mx1 1li tiðaHÞ5 5
pþ1ajaq

mx1 1lj tjðaHÞðeÞ
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and

K � bx2 5
i AW

mx2 Dli tiðaKÞ5 5
pþ1ajaq

mx2 1lj tjðaKÞðfÞ

is equivalent to a Boolean combination of statements of the form G � yðaÞ with

a quantifier-free formula yðyÞ of LðI ;DÞULmod.

Proof. Let l be an arbitrary integer such that lb 2, and let Dl be a set

of variable-free terms of LagðDÞ such that DK
l ¼ fdK : d A Dlg forms a set of

representatives of the proper cosets of lK in K . Then (f ) is equivalent to (f1):

K � bx2 5
i AW

4
d ADli

mx2 1li tiðaKÞ þ d

 !
5 5

pþ1ajaq

mx2 1lj tjðaKÞ:ðf1Þ

Assuming (e), (f1) is equivalent to

G � bx 5
i AW

4
d ADli

mx1li tiðaÞ þ d

 !
5 5

pþ1ajaq

mx1lj tjðaÞ:ðf2Þ

Hence, the conjuction of (e) and (f ) is equivalent to the conjunction of (e)

and (f2).

By the assumption that H admits quantifier elimination in L and Lemma 2.3,

(e) is equivalent to a statement of the form G � yðaÞ with yðyÞ a quantifier-free

formula of LðIÞ.
It is enough to show that (f2) is equivalent to a Boolean combination of

statements of the form G � yðaÞ with yðyÞ a quantifier-free formula of LðI ; 1ÞU
Lmod. (f2) is equivalent to a finite disjunction of statements of the form

G � bx 5
1aian 0

mx1l 0
i
t 0i ðaÞðf3Þ

with terms t 0i ðyÞ of LagðDÞ.
By Lemma 1.9,

G � Ez1; . . . ; zn 0 bx 5
i¼1;...;n 0

x1l 0
i
zi

 !
$ y2ðz1; . . . ; zn 0 Þ

for some quantifier-free formula y2ðz1; . . . ; zn 0 Þ in Lmod. Therefore, (f3) is equiv-

alent to

G � y2ðt1ðaÞ; . . . ; tn 0 ðaÞÞ

with a quantifier-free formula y2ðt 01ðyÞ; . . . ; t 0n 0 ðyÞÞ of LmodðDÞ. The lemma is

proved. r
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4. Products with a Presburger Arithmetic

Definition 4.1. An ordered abelian group G is called a Presburger arithmetic

or a Z-group if it is elementarily equivalent to the structure Z of integers for

Lagð<Þ.

Theorem 4.2. Let L be an expansion of Lagð<Þ by predicates and constants,

and H an L-structure such that H jLagð<Þ is an ordered abelian group and H

admits quantifier elimination in L, and K a Presburger arithmetic (Z-group) with

smallest positive element 1K. Then any extended product interpretation G of H � K

with new predicate I admits quantifier elimination in LðI ; dÞULmod with a new

constant symbol d when dG is any non-zero multiple of ð0H ; 1KÞ.
Moreover, if there is a recursive procedure for quantifier elimination of H in

L and there is a recursive map f from the set C of constant symbols of L to K

such that cG ¼ ðcH ; f ðcÞÞ for each c A C, then there is a recursive procedure for

quantifier elimination of G in LðI ; dÞULmod.

Proof. First, we introduce a constant symbol 1 such that 1G ¼ ð0H ; 1KÞ. In
G, d can be represented as m0 � 1 for some non-zero integer m0. At some stage,

we use 1 for quantifier elimination an then eliminate the constant 1 using d.

We show the statement of Lemma 3.2 (2). Let x be a variable and y an

n-tuple of variables. Suppose that p, q, and m are natural numbers with pa q,

jðx; yÞ is a conjunction of literals of LRðþ;�; 0; IÞ, tiðyÞ a term of Lag for

i ¼ 1; . . . ; q, s1ðyÞ a term of Lag or �y, s2ðyÞ a term of Lag or y, C1ðx; yÞ the

formula

s1ðyÞ < mx < s2ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ;

and C2ðx; yÞ the formula

mx ¼ s1ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1a jaq

mx1lj tjðyÞ5jðx; yÞ:

We assume that s1ðyÞ is a term of Lag in C2ðx; yÞ.
By Lemma 3.3, we have the following:

Claim 1. For any n-tuple a from G, each of the statements G � bxjðx; aÞ and
G � bxC2ðx; aÞ is equivalent to a Boolean combination of statements of the form

G � yðaÞ with a quantifier-free formula yðyÞ of LðIÞ.
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Now, we turn to the reduction of G � bxC1ðx; aÞ for any n-tuple a from G.

Claim 2. Let l be a common multiple of all the li’s and m. Let a ¼
ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and put aH ¼ ðb1; . . . ; bnÞ.
Then the following statements (b) and (b1) are equivalent:

(b) H � s1ðaHÞ ¼ s2ðaHÞ and G � C1ðx; aÞ.
(b1) H � bx1 s1ðaHÞ ¼ s2ðaHÞ ¼ mx15j1ðx1; aHÞ, and for some natural num-

ber k such that 1a ka l,

G � s1ðaÞ þ k � 1 < s2ðaÞ5s1ðaÞ þ k � 11m 0

5 5
1aiap

s1ðaÞ þ k � 1Dli tiðaÞ5 5
pþ1ajaq

s1ðaÞ þ k � 11lj tjðaÞ:

Proof of Claim 2. Suppose (b) holds. Choose x ¼ ðxH ; xKÞ A G such that

G � s1ðaÞ < mx < s2ðaÞ5jðx; aÞ5 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

Since H � s1ðaHÞ ¼ s2ðaHÞ, we have H � s1ðaHÞ ¼ mxH ¼ s2ðaHÞ. Hence,

H � bx1 s1ðaHÞ ¼ s2ðaHÞ ¼ mx15j1ðx1; aHÞ.
Since G � Iðs2ðaÞ � s1ðaÞÞ, we have G � mx ¼ s1ðaÞ þ z for some z A I G with

G � 0 < z. Let z ¼ ð0H ; zKÞ. Since K is a Z-group, there is an integer k such

that 1a ka l and K � k � 11l zK . Also, K � k � 1a zK because 1K is the least

positive element of K . Therefore, G � s1ðaÞ þ k � 1a s1ðaÞ þ z ¼ mx < s2ðaÞ.
Also, G � s1ðaÞ þ k � 11l mx. By the choice of l, we have G � s1ðaÞ þ k � 11m

mx1m 0 and G � s1ðaÞ þ k � 11li mx for each i. Therefore, we have (b1).

Conversely, suppose (b1) holds. Choose x1 A H and a positive integer k as in

(b1). Since G � s1ðaÞ þ k � 11m 0, there is x A G such that G � mx ¼ s1ðaÞ þ k � 1.
Let x ¼ ðx 0

1; x2Þ. Then clearly, H � mx1 ¼ s1ðaHÞ ¼ s2ðaHÞ ¼ mx 0
1, and thus

x 0
1 ¼ x1. Hence G � jðx; aÞ. Note also that G � s1ðaÞ < s1ðaÞ þ k � 1 by kb 1.

Replacing s1ðaÞ þ k � 1 with mx, we get (b). The claim is proved.

Claim 3. For any n-tuple a from G, G � bxC1ðx; aÞ is equivalent to a

Boolean combination of statements of the form G � yðaÞ with a quantifier-free

formula yðyÞ of LðI ; 1ÞULmod.

Proof of Claim 3. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple

from G, and put aH ¼ ðb1; . . . ; bnÞ. By Lemma 3.4, G � bxC1ðx; aÞ is equivalent

to the disjunction of the statements (a), (b) of Lemma 3.4. Statement (a) of
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Lemma 3.4 is equivalent to a Boolean combination of statements of the form

G � yðaÞ with a quantifier-free formula yðyÞ of LðI ; 1ÞULmod by Lemma 3.6 with

D ¼ f1g and Lemma 2.3. Statement (b) of Lemma 3.4 is equivalent to a Boolean

combination of statements of the form G � yðaÞ with a quantifier-free formula

yðyÞ of LðI ; 1ÞULmod by Claim 2 and Lemma 2.3. The claim is proved.

Claim 4. G admits quantifier elimination in LðI ; dÞULmod if d G ¼ m0 � 1G

with an integer m0 0 0.

Proof of Claim 4. 1 occurs only in subformulas of one of the forms

sðyÞ ¼ tðyÞ, sðyÞ1l tðyÞ and sðyÞ < tðyÞ with terms sðyÞ, tðyÞ of Lagð1Þ. For

any n-tuple a from G, G � sðaÞ ¼ tðaÞ $ jm0jsðaÞ ¼ jm0jtðaÞ, G � sðaÞ1l tðaÞ $
jm0jsðaÞ1ljm0j jm0jtðaÞ, and G � sðaÞ < tðaÞ $ jm0jsðaÞ < jm0jtðaÞ. Since jm0jsðyÞ
and jm0jtðyÞ can be considered as terms of LagðdÞ, G admits quantifier elimi-

nation in LðI ; dÞULmod. r

5. Products with a Dense Regular Group

Theorem 5.1. Let L be an expansion of Lagð<Þ by predicates and constants,

and D a set of constant symbols such that DVL ¼ q. Suppose H is an L-structure

such that H jLagð<Þ is an ordered abelian group, K an Lmodð<;DÞ-structure such

that K jLagð<Þ is a dense regular ordered abelian group, and K=nK is finite and

every proper coset of nK intersects with DK ¼ fdK : d A Dg for any integer nb 2.

If H admits quantifier elimination in L then any extended product interpretation G

of H � K with a new predicate I admits quantifier elimination in LðI ;DÞULmod.

Moreover, if there is a recursive procedure for quantifier elimination of H in

L and for quantifier elimination of K in Lmodð<;DÞ, and there is a recursive map

f from the set C of constant symbols of L to K such that cG ¼ ðcH ; f ðcÞÞ for

each c A C, then there is a recursive procedure for quantifier elimination of G in

LðI ;DÞULmod.

Proof. We show the statement of Lemma 3.2 (2). Let x be a variable and y

an n-tuple of variables. Suppose that p, q are natural numbers such that pa q, m

is a non-zero integer, jðx; yÞ is a conjunction of literals of LRðþ;�; 0; IÞ, tiðyÞ a

term of Lag for i ¼ 1; . . . ; q, s1ðyÞ a term of Lag or �y, s2ðyÞ a term of Lag or

y, C1ðx; yÞ the formula

s1ðyÞ < mx < s2ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ;
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and C2ðx; yÞ the formula

mx ¼ s1ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ:

We assume that s1ðyÞ is a term of Lag in C2ðx; yÞ.
By Lemma 3.3, we have the following:

Claim 1. For any n-tuple a from G, each of the statements G � bxjðx; aÞ and
G � bxC2ðx; aÞ is equivalent to a Boolean combination of statements of the form

G � yðaÞ with a quantifier-free formula yðyÞ of LðIÞ.

Now, we turn to the reduction of G � bxC1ðx; aÞ for any n-tuple a from G.

Claim 2. Let l be a common multiple of all the li’s and m, and Dl a subset

of D such that DK
l ¼ fdK : d A Dg forms a set of representatives of all the proper

cosets of lK in K. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and

put aH ¼ ðb1; . . . ; bnÞ. Then the following statements (b) and (b1) are equivalent:

(b) H � s1ðaHÞ ¼ s2ðaHÞ and G � C1ðx; aÞ.
(b1) H � bx1 s1ðaHÞ ¼ s2ðaHÞ ¼ mx15j1ðx1; aHÞ, and for some d A Dl U f0g,

G � s1ðaÞ < s2ðaÞ5s1ðaÞ þ d1m 0

5 5
1aiap

s1ðaÞ þ dDli tiðaÞ5 5
pþ1ajaq

s1ðaÞ þ d1lj tjðaÞ:

Proof of Claim 2. Suppose (b) holds. Choose x ¼ ðxH ; xKÞ A G such that

G � s1ðaÞ < mx < s2ðaÞ5jðx; aÞ5 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

Since H � s1ðaHÞ ¼ s2ðaHÞ, we have H � s1ðaHÞ ¼ mxH ¼ s2ðaHÞ. Hence,

H � bx1 s1ðaHÞ ¼ s2ðaHÞ ¼ mx15j1ðx1; aHÞ.
Since G � Iðs2ðaÞ � s1ðaÞÞ, we have G � mx ¼ s1ðaÞ þ z for some z A I G.

Since Dl U f0g is a set of representatives of all the cosets of lK in K and

KG I G, there is d A Dl such that I G � z1l d, and thus G � z1l d. Therefore,

G � s1ðaÞ þ d1l mx. By the choice of l, we have G � s1ðaÞ þ d1m mx1m 0 and

G � s1ðaÞ þ d1li mx for each i. Therefore, we have (b1).

Conversely, suppose (b1) holds. Choose x1 A H and d A Dl U f0g as in (b1).

We have G � 0 < s2ðaÞ � s1ðaÞ and G � Iðs2ðaÞ � s1ðaÞÞ. Since K is dense regular

and KGG j I G as LmodðDÞ-structures, we can pick x2 A I G such that G � 0 <

x2 < s2ðaÞ � s1ðaÞ5x2 1l d.
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Then we have

G � s1ðaÞ < s1ðaÞ þ x2 < s2ðaÞ5s1ðaÞ þ x2 1m 0

5 5
1aiap

s1ðaÞ þ x2 Dli tiðaÞ5 5
pþ1ajaq

s1ðaÞ þ x2 1lj tjðaÞ:

Let x ¼ ðxH ; xKÞ A G be such that G � mx ¼ s1ðaÞ þ x2. Since x2 A I G, x2 ¼
ð0; zÞ for some z A K . Hence, sG1 ðaÞ þ x2 ¼ ðsH1 ðaHÞ; sK1 ðaKÞ þ dÞ. Therefore,

H � mxH ¼ s1ðaHÞ. Since H � s1ðaHÞ ¼ s2ðaHÞ ¼ mx15j1ðx1; aHÞ, we have

H � mxH ¼ s1ðaHÞ ¼ s2ðaHÞ ¼ mx1. Hence, H � xH ¼ x1. Therefore, G � jðx; aÞ
since H � j1ðxH ; aHÞ. Now, we have (b). The claim is proved.

Claim 3. For any n-tuple a from G, G � bxC1ðx; aÞ is equivalent to a

Boolean combination of statements of the form G � yðaÞ with a quantifier-free

formula yðyÞ of LðI ;DÞULmod.

Proof of Claim 3. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple

from G, and put aH ¼ ðb1; . . . ; bnÞ. By Lemma 3.4, G � bxC1ðx; aÞ is equivalent

to the disjunction of the statements (a), (b) of Lemma 3.4. Statement (a) of

Lemma 3.4 is equivalent to a Boolean combination of statements of the form

G � yðaÞ with a quantifier-free formula yðyÞ of LðI ;DÞULmod by Lemma 3.6 and

Lemma 2.3. Statement (b) of Lemma 3.4 is equivalent to a Boolean combination

of statements of the form G � yðaÞ with a quantifier-free formula yðyÞ of

LðI ;DÞULmod by Claim 2 and Lemma 2.3. The claim is proved. r

For the case that K is a dense regular ordered abelian group such that K=nK

is infinite for some n, we have the following.

Theorem 5.2. Let L be an expansion of Lagð<Þ by predicates and constants.

Suppose H is an L-structure such that H jLagð<Þ is a divisible ordered abelian

group, and K an Lagð<Þ-structure which is a dense regular ordered abelian group.

If H admits quantifier elimination in L then any extended product interpretation G

of H � K with a new predicate I admits quantifier elimination in LðIÞULmod.

Proof. We show the statement of Lemma 3.2 (2). Let x be a variable and y

an n-tuple of variables. Suppose that p, q are natural numbers such that pa q,

m is a non-zero integer, jðx; yÞ a conjunction of literals of LRðþ;�; 0; IÞ, tiðyÞ a
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term of Lag for i ¼ 1; . . . ; q, s1ðyÞ a term of Lag or �y, s2ðyÞ a term of Lag or

y, C1ðx; yÞ the formula

s1ðyÞ < mx < s2ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ;

and C2ðx; yÞ the formula

mx ¼ s1ðyÞ5 5
1aiap

mxDli tiðyÞ5 5
pþ1ajaq

mx1lj tjðyÞ5jðx; yÞ:

We assume that s1ðyÞ is a term of Lag in C2ðx; yÞ.
By Lemma 3.3, we have the following:

Claim 1. For any n-tuple a from G, each of the statements G � bxjðx; aÞ and
G � bxC2ðx; aÞ is equivalent to a Boolean combination of statements of the form

G � yðaÞ with a quantifier-free formula yðyÞ of LðIÞ.

Now, we turn to the reduction of G � bxC1ðx; aÞ for any n-tuple a from G.

Claim 2. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and

put aH ¼ ðb1; . . . ; bnÞ. Then the following statements (a) and (a1) are equivalent:

(a) H � s1ðaHÞ < s2ðaHÞ and G � bxC1ðx; aÞ.
(a1) H � s1ðaHÞ < s2ðaHÞ5bx1 s1ðaHÞamx1 a s2ðaHÞ5j1ðx; aÞ and

G � bx 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

Proof of Claim 2. (a) ) (a1) is immediate.

(a1) ) (a). Suppose (a1) holds. Let aK ¼ ðc1; . . . ; cnÞ. Choose x¼ ðxH ; xKÞ A G
such that

G � 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

Since H is divisible, mxH 1li tiðaHÞ for i ¼ 1; . . . ; p; . . . ; q. Therefore,

K � 5
1aiap

mxK Dli tiðaKÞ5 5
pþ1ajaq

mx1lj tjðaKÞ:

Now, we can show (a) by an argument similar to the proof of (2) ) (1) for

Lemma 3.5. Claim 2 is proved.
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Claim 3. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple from G, and

put aH ¼ ðb1; . . . ; bnÞ. Then the following statements (b) and (b1) are equivalent:

(b) H � s1ðaHÞ ¼ s2ðaHÞ and G � bxC1ðx; aÞ.
(b1) H � s1ðaHÞ ¼ s2ðaHÞ5bx1 mx1 a s1ðaHÞ5j1ðx; aÞ and

G � s1ðaÞ < s2ðaÞ5bx 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

Proof of Claim 3. (b) ) (b1) is immediate.

(b1) ) (b). Suppose (b1) holds. Let aK ¼ ðc1; . . . ; cnÞ. As in Claim 2, we can

choose xK A K such that

K � 5
1aiap

mxK Dli tiðaKÞ5 5
pþ1ajaq

mx1lj tjðaKÞ:

Let l be a common multiple of all the li’s. Choose d A K such that K � 0 <

d < s2ðaKÞ � s1ðaKÞ5d1l xK . Let x ¼ ðsH1 ðaHÞ; sK1 ðaKÞ þ dÞ. Then we have (b).

The claim is proved.

Claim 4. For any n-tuple a from G, G � bxC1ðx; aÞ is equivalent to a

Boolean combination of statements of the form G � yðaÞ with a quantifier-free

formula yðyÞ of LðIÞULmod.

Proof of Claim 4. Let a ¼ ððb1; c1Þ; . . . ; ðbn; cnÞÞ be an arbitrary n-tuple

from G, and put aH ¼ ðb1; . . . ; bnÞ.
By Lemma 3.4, G � bxC1ðx; aÞ is equivalent to the disjunction of the state-

ments (a) and (b) of Lemma 3.4. By Fact 1.10, the statement

G � bx 5
1aiap

mxDli tiðaÞ5 5
pþ1ajaq

mx1lj tjðaÞ:

is equivalent to a statement of the form G � yðaÞ with a quantifier-free formula

yðyÞ of Lmod. Hence, the statement (a) of Lemma 3.4 is equivalent to a Boolean

combination of statements of the form G � yðaÞ with a quantifier-free formula

yðyÞ of LðIÞULmod by Claim 2 and Lemma 2.3, and the statement (b) of Lemma

3.4 is equivalent to a Boolean combination of statements of the form G � yðaÞ
with a quantifier-free formula yðyÞ of LðIÞULmod by Claim 3 and Lemma 2.3.

The claim is proved. r

Question 5.3. Is there any ordered abelian group H other than divisible

ordered abelian group such that an extended product interpretation of H � K

admits quantifier elimination?
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Example 5.4. Let R be a dense regular ordered abelian group such that

R=nR is infinite for some n > 0. Let H0 be the lexicographic product Z� R.

H0 does not admit quantifier elimination in Lmodð<Þ. Let H be a definitional

expansion of H0 such that H admits quantifier elimination in the expanded

language L. Note that L is di¤erent from Lmodð<;DÞ for any set D of constant

symbols. Let K be a Z-group or a dense regular group such that K=nK is finite

for any integer n > 0. Then any extended product interpretation of H � K admits

quantifier elimination in LðI ;DÞULmod for some set DJK of constants.

6. Products with a Quantifier Eliminable Group

The following two lemmas appear in [13] in some di¤erent forms.

Lemma 6.1. Let L be an expansion of Lagð<Þ by predicates and constants,

and D a set of constant symbols such that DVL ¼ q. Suppose H is an L-structure

such that H jLagð<Þ is an ordered abelian group, K an Lmodð<;DÞ-structure such

that K jLagð<Þ is an ordered abelian group, and G an extended product inter-

pretation of H � K with a new predicate I . Suppose H has the smallest positive

element 1H and there is a constant symbol c of L such that cH ¼ k � 1H for some

integer k0 0. Then I is equivalent to a quantifier-free formula of Lagð<; cÞ in G.

Proof. Suppose c is a constant symbol of L such that cH ¼ k � 1H with

an integer k0 0. Without loss of generality, we can assume that k > 0. Since

cG ¼ ðk � 1H ; cKÞ for some cK A K , we have G � Ex ðIðxÞ $ �c < kx < cÞ. r

Lemma 6.2. Let L be an expansion of Lagð<Þ by predicates and constants,

and D a set of constant symbols such that DVL ¼ q. Suppose H is an L-structure

such that H jLagð<Þ is an ordered abelian group, K an Lmodð<;DÞ-structure such

that K jLagð<Þ is an ordered abelian group, and G an extended product inter-

pretation of H � K with a new predicate I . Suppose further that n is an integer and

there is a binary relation 10
n of L such that H � Ex; y ðx10

n y $ n j ðx� yÞÞ.
Then the following hold:

(1) G � Ex; y x10
n y $ bz ðIðzÞ5x� y� z1n 0Þ.

(2) If K=nK is finite and every coset of nK in K has a representative of the

form tK for some term t of LagðDÞ, then the relation 10
n is definable by a

quantifier-free formula of LmodðDÞ in G.

(3) Suppose K is a Z-group and let 1K be the smallest positive element of K. If

K � d ¼ k � 1K for some d A D with an integer k0 0, then the relation 10
n

is definable by a quantifier-free formula of LmodðdÞ in G.
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Proof. (1) Let x, y be arbitrary elements of G. Then we can write

x ¼ ðxH ; xKÞ and y ¼ ðyH ; yKÞ for some xH ; yH A H and xK ; yK A K . Suppose

G � x10
n y. Then by the definition of an extended product interpretation,

H � xH 10
n yH , and thus H � n j ðxH � yHÞ. Let z ¼ ð0H ; xK �K yKÞ. Then z A G

and G � IðzÞ5x� y� z1n 0.

Conversely, suppose G � IðzÞ5x� y� z1n 0 for some z A G. Since G � IðzÞ,
z ¼ ð0H ; zKÞ for some zK A K . Hence, ðx� y� zÞG ¼ ðxH �H yH ; uÞ for some

u A K . Since G � n j ðx� y� zÞ, H � n j ðxH � yHÞ. Therefore, G � x10
n y.

(2) Let S be a finite set of terms of LagðDÞ such that the set SK ¼
ftK : t A Sg forms a set of representatives of all the cosets of nK in K . Then by (1),

G � Ex; y x10
n y $ 4

t AS

x� y1n t:

(3) Introduce a constant symbol 1 such that 1K is the smallest positive

element of K . Let S ¼ f0; 1; 2 � 1; . . . ; ðn� 1Þ � 1g. Then SK forms a set of repre-

sentatives of all the cosets of nK in K .

Let d A D be such that K � d ¼ k � 1 with an integer k0 0. Then for each

i < n and for any x; y A G, G � x� y1n i � 1 if and only if G � kðx� yÞ1kn

i � d. By this and (2), the relation 10
n is definable by a quantifier-free formula of

LmodðdÞ in G. r

Theorem 6.3. Let L be an expansion of Lagð<Þ by predicates and constants,

and H an L-structure such that H jLagð<Þ is an ordered abelian group. Suppose K

is an ordered abelian group and DJK a pure subgroup of K such that K admits

quantifier elimination in Lmodð<;DÞ but K is not dense regular.

If H admits quantifier elimination in L then any extended product interpre-

tation of H � K with a new predicate I admits quantifier elimination in LðI ;DÞU
Lmod.

Proof. Since K admits quantifier elimination in the language Lmodð<;DÞ,
by Fact 1.16, there is a finite sequence fGig0aiam of convex subgroups of K and

a sequence fðki; diÞg1aiam such that (i) Gm ¼ K ; (ii) for 1a iam, ki is a positive

integer, di A D, di A Gi � Gi�1, Gi=Gi�1 is a Z-group with smallest positive element

1i þ Gi�1, ki � 1i � di A Gi�1; and (iii) G0 is dense regular, and for every prime p,

bpðG0Þ is finite and every coset of pG0 in G0 has a representative in D.

Introduce a new predicate Ii representing Gi for each iam. Let K 0 be an

o1-saturated elementary extension of K in the expanded language Lagð<;DÞU
fIigiam. Let G

0
i ¼ IiðK 0Þ for each i ¼ 1; . . . ;m. By Fact 1.7, for each i ¼ 1; . . . ;m,
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there is a subgroup Ai of G 0
i such that G 0

i ¼ Ai lG 0
i�1. Ai GG 0

i =G
0
i�1 is a Z-

group. Let 1Ai
be the smallest positive element of Ai for each i ¼ 1; . . . ;m. Then

ki � 1Ai
� dK 0

i A G 0
i�1 for each i ¼ 1; . . . ;m.

Now, let G be an arbitrary extended product interpretation of H � K with a

new predicate I . For each constant symbols c of L, we have cG ¼ ðcH ; cKÞ for

some cK A K by the definition of an extended product interpretation. Let G 0 be an

extended product interpretation of H � K 0 jLmodð<;DÞ with new predicate I such

that cG
0 ¼ ðcH ; cKÞ for each constant symbols c of L. Then G 0 1G for LðI ;DÞ

by Lemma 2.8. To show that G admits quantifier elimination in LðI ;DÞULmod,

it is enough to show that G 0 admits quantifier elimination in LðI ;DÞULmod.

Let DG0
¼ fd A D : dK A G0g. Then by Remark 3.1, it is enough to show that

the reduct G 00 of G 0 to LðI ; dm; dm�1; . . . ; d1;DG0
Þ admits quantifier elimination in

LðI ; dm; dm�1; . . . ; d1;DG0
ÞULmod.

Consider Am as a structure for Lagð<; dmÞ by dAm
m ¼ km � 1Am

. Let Bm be a

structure for LðI ; dmÞ which is an extended product interpretation of H � Am with

new predicate I such that cBm ¼ ðcH ; cAm
Þ for each constant symbol of L where

cG ¼ ðcH ; cKÞ with cK ¼ cAm
þ cG 0

m�1
, cAm

A Am and cG 0
m�1

A G 0
m�1. By Theorem 4.2,

Bm admits quantifier elimination in the language LðI ; dmÞULmod. Let Lm
mod ¼

f1m
n : nb 2g and consider Bm as a structure for LðI ; dmÞULm

mod with Bm � Ex; y

ðx1m
n y $ x1n yÞ for each integer nb 2. Bm admits quantifier elimination in

the language LðI ; dmÞULm
mod. Since K 0 is isomorphic to the lexicographic pro-

duct of Am and G 0
m�1 by Lemma 2.9, G 00 is isomorphic to a reduct of an ex-

tended product interpretation of Bm � G 0
m�1 with new predicate Im�1. Here, G 0

m�1

is considered as a structure for Lagð<; dm�1; . . . ; d1;DG0
Þ.

Now, consider Am�1 as a structure for Lagð<; dm�1Þ by dAm�1

m�1 ¼ km�1 � 1Am�1
.

Let Bm�1 be a structure for LðI ; Im�1; dm; dm�1Þ which is an extended product

interpretation of Bm �Am with new predicate Im�1 such that cBm�1 ¼ ðcH ; cAm
; cAm�1

Þ
for each constant symbol of L where cK ¼ cAm

þ cAm�1 þ cG 0
m�2

, cAm
A Am, cAm�1

A

Am�1, and cG 0
m�1

A G 0
m�1. By Theorem 4.2, Bm�1 admits quantifier elimination in

the language LðI ; Im�1; dm; dm�1ÞULm
mod ULmod. Im�1 is definable by a quantifier-

free formula of LagðdmÞ in Bm�1 by Lemma 6.1, and each relation of Lm
mod is

definable by a quantifier-free formula of Lagðdm1
Þ in Bm�1 by Lemma 6.2. There-

fore, Bm�1 admits quantifier elimination in the language LðI ; dm; dm�1ÞULmod.

Let Lm�1
mod ¼ f1m�1

n : nb 2g and consider Bm�1 as a structure for LðI ; dm; dm�1ÞU
Lm�1
mod with Bm�1 � Ex; y ðx1m�1

n y $ x1n yÞ for each integer nb 2. Bm�1

admits quantifier elimination in the language LðI ; dm; dm�1ÞULm�1
mod . Since G 0

m�1 is

isomorphic to the lexicographic product of Am�1 and G 0
m�2 by Lemma 2.9, G 00 is

isomorphic to a reduct of an extended product interpretation of Bm�1 � G 0
m�2
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with new predicate Im�2. Here, G 0
m�2 is considered as a structure for

Lagð<; dm�2; . . . ; d1;DG0
Þ.

Repeating this argument, we get a structure B1 for LðI ; dm; dm�1; . . . ; d1ÞU
L1
mod with L1

mod ¼ f11
n : nb 2g such that B1 � Ex; y ðx11

n y $ x1n yÞ for each

integer nb 2, B1 admits quantifier elimination in its language, and G 00 is iso-

morphic to a reduct of an extended product interpretation B0 of B1 � G 0
0 with

new predicate I0. Here, G 0
0 is considered as a structure for Lagð<;DG0

Þ. B0 admits

quantifier elimination in the language LðI ; I0; dm; dm�1; . . . ; d1ÞUL1
mod ULmod by

Theorem 5.1. I0 is definable by a quantifier-free formula of Lagðd1Þ in B0 by

Lemma 6.1, and each relation of L1
mod is definable by a quantifier-free formula

of LagðDG0
Þ in B0 by Lemma 6.2. Therefore, B0 admits quantifier elimination

in the language LðI ; dm; dm�1; . . . ; d1;DG0
ÞULmod by Theorem 5.1. Since G 00 is

isomorphic to the reduct of B0 to the language LðI ; dm; dm�1; . . . ; d1;DG0
Þ, G 00

admits quantifier elimination in LðI ; dm; dm�1; . . . ; d1;DG0
ÞULmod. r

Finally, we show partial converses.

Theorem 6.4. Let L be an expansion of Lagð<Þ by predicates and constants,

and H an L-structure such that H jLagð<Þ is an ordered abelian group. Suppose K

is an ordered abelian group and DJK a pure subgroup of K .

If an extended product interpretation of H � K with a new predicate I admits

quantifier elimination in LðI ;DÞULmod then H admits quantifier elimination in

LULmod.

Proof. Suppose an extended product interpretation G of H � K with a

new predicate I admits quantifier elimination in LðI ;DÞULmod. We show that

H admits quantifier elimination in LULmod. Let x be a variable and y a tuple

of variables. Let bxjðx; yÞ be a formula of LULmod, where jðx; yÞ is quantifier-

free. Since jðx; yÞ is a quantifier-free formula of LULmod, the formula jðx; yÞ
is a Boolean combination of formulas of the forms mx ¼ tðyÞ, mx < tðyÞ,
mxþ tðyÞ1n 0 and Rðs1ðx; yÞ; . . . ; slðx; yÞÞ, where R is a relation symbol of

L� f<g, l, m, n are integers such that l is the arity of R and nb 2, and tðyÞ,
s1ðx; yÞ; . . . ; slðx; yÞ are terms of L.

Let j�ðx; yÞ be a formula obtained from jðx; yÞ by replacing mx ¼ tðyÞ,
mx < tðyÞ and mxþ tðyÞ1n 0 with IðtðyÞ �mxÞ, mx < tðyÞ5sIðtðyÞ �mxÞ,
and bzðIðmx þ tðyÞ � nzÞÞ, respectively. Let h ¼ ðh1; . . . ; hnÞ be a tuple of ele-

ments from the ordered abelian group H. Then, we have

H � bxjðx; hÞ , G � bxj�ðx; hGÞ;
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where hG ¼ ððh1; 0KÞ; . . . ; ðhn; 0KÞÞ. Since the ordered abelian group G admits

quantifier elimination in the language LðI ;DÞULmod, there exists some quantifier-

free formula cðyÞ in LðI ;DÞULmod such that

G � bxj�ðx; hGÞ , G � cðhGÞ:

Because cðyÞ is a quantifier-free formula of LðI ;DÞULmod, the formula cðyÞ is

a Boolean combination of formulas of the forms tðyÞ ¼ 0, tðyÞ < 0, tðyÞ1n 0,

Rðs1ðyÞ; . . . ; slðyÞÞ and IðtðyÞÞ, where l, n are positive integers, t, s1; . . . ; sl are

terms of LðDÞ and R is an l-ary relation symbol of L other than ‘‘<’’. Let

tðyÞ ¼ t1ðyÞ þ t2ðcÞ þ d, where t1ðyÞ is a term of Lag, t2ðzÞ a term of Lag with a

p-tuple z of variables, c ¼ ðc1; . . . ; cpÞ is a tuple of constant symbols from L, and

d A D. Choose ci;K A K such that cGi ¼ ðcHi ; ci;KÞ for each i ¼ 1; . . . ; p and let

cK ¼ ðc1;K ; . . . ; cp;KÞ. Note that t2ðcÞG ¼ ðt2ðcÞH ; tK2 ðcKÞÞ. Then,

G � t1ðhGÞ þ t2ðcÞ þ d ¼ 0 ,
H � t1ðhÞ þ t2ðcÞ ¼ 0 if K � t2ðcKÞ þ d ¼ 0

H � sð0 ¼ 0Þ if K � t2ðcKÞ þ d0 0;

(

G � t1ðhGÞ þ t2ðcÞ þ d < 0 ,
H � t1ðhÞ þ t2ðcÞ < 0 if K � t2ðcKÞ þ db 0

H � t1ðhÞ þ t2ðcÞa 0 if K � t2ðcKÞ þ d < 0;

(

G � t1ðhGÞ þ t2ðcÞ þ d1n 0 ,
H � t1ðhÞ þ t2ðcÞ1n 0 if K � t2ðcKÞ þ d1n 0

H � sð0 ¼ 0Þ if K � t2ðcKÞ þ dDn 0;

(

G � Rðs1ðhGÞ; . . . ; slðhGÞÞ , H � Rðs�1 ðhÞ; . . . ; s�l ðhÞÞ;

G � Iðt1ðhGÞ þ t2ðcÞ þ dÞ , H � t1ðhÞ þ t2ðcÞ ¼ 0;

where s�i ðyÞ is the term obtained from siðyÞ by replacing each element of D

with 0.

Therefore, there exists some quantifier-free formula c 0ðyÞ in LULmod such

that G � cðhGÞ , H � c 0ðhÞ. It follows that H admits quantifier elimination in

LULmod. r

Theorem 6.5. Let L be an expansion of Lagð<Þ by predicates and constants,

and H an L-structure such that H jLagð<Þ is an ordered abelian group. Suppose K

is an ordered abelian group and DJK a pure subgroup of K .

If an extended product interpretation G of H � K with a new predicate I

admits quantifier elimination in LðI ;DÞULmod and there is a constant symbol

dc A D such that cG ¼ ðcH ; dK
c Þ for each constant symbol c of L, then K admits

quantifier elimination in Lmodð<;DÞ.
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Proof. Suppose an extended product interpretation G of H � K with a

new predicate I admits quantifier elimination in LðI ;DÞULmod. We show that

K admits quantifier elimination in Lmodð<;DÞ. Let bxyðx; yÞ be a formula of

Lmodð<;DÞ, where yðx; yÞ is a quantifier-free formula of Lmodð<;DÞ. Then the

formula yðx; yÞ is a Boolean combination of formulas of the forms mx ¼ tðyÞ,
mx < tðyÞ, and mxþ tðyÞ1n 0, where m and n are integers such that nb 2, and

t is a term of LagðDÞ. Let k ¼ ðk1; . . . ; knÞ be a tuple of elements from the ordered

abelian group K . Let kG ¼ ðð0; k1Þ; . . . ; ð0; knÞÞ. Then, we have

K � bxjðx; kÞ , G � bx IðxÞ5jðx; kGÞ:

Since the ordered abelian group G admits quantifier elimination in the language

LðI ;DÞULmod, there exists some quantifier-free formula tðyÞ of LðI ;DÞULmod

such that

G � bx IðxÞ5jðx; kGÞ , G � tðkGÞ:

Because tðyÞ is a quantifier-free formula of LðI ;DÞULmod, the formula tðyÞ is a

Boolean combination of the forms tðyÞ ¼ 0, tðyÞ< 0, tðyÞ1n 0, Rðs1ðyÞ; . . . ; slðyÞÞ
and IðtðyÞÞ, where l, n are positive integers, t, s1; . . . ; sl are terms of LðDÞ and

R is an l-ary relation symbol of L. Let tðyÞ ¼ t1ðyÞ þ t2ðcÞ þ d, where t1ðyÞ is a

term of Lag, t2ðzÞ a term of Lag with a p-tuple z of variables, c ¼ ðc1; . . . ; cpÞ is a

tuple of constant symbols from L, and d A D. Put 0 ¼ ð0; . . . ; 0Þ. Choose dci A D

such that cGi ¼ ðcHi ; dK
ci
Þ for each i ¼ 1; . . . ; p and let dc ¼ ðdc1 ; . . . ; dcpÞ. Note that

t2ðcÞG ¼ ðt2ðcÞH ; t2ðdcÞKÞ. Then,

G � t1ðkGÞ þ t2ðcÞ þ d ¼ 0 ,
K � t1ðkÞ þ t2ðdcÞ þ d ¼ 0 if H � t2ðcÞ ¼ 0

K � sð0 ¼ 0Þ if H � t2ðcÞ0 0;

(

G � t1ðkGÞ þ t2ðcÞ þ d < 0 ,
K � sð0 ¼ 0Þ if H � t2ðcÞ > 0

K � t1ðkÞ þ t2ðdcÞ þ d < 0 if H � t2ðcÞ ¼ 0

K � 0 ¼ 0 if H � t2ðcÞ < 0;

8><
>:

G � t1ðkGÞ þ t2ðcÞ þ d1n 0 ,
K � t1ðkÞ þ t2ðdcÞ þ d1n 0 if H � t2ðcÞ1n 0

K � sð0 ¼ 0Þ if H � t2ðcÞDn 0;

(

G � Rðs1ðkGÞ; . . . ; slðkGÞÞ ,
K � 0 ¼ 0 if H � Rðs�1 ð0Þ; . . . ; s�l ð0ÞÞ
K � sð0 ¼ 0Þ if H � sRðs�1 ð0Þ; . . . ; s�l ð0ÞÞ;

(

G � Iðt1ðkGÞ þ t2ðcÞ þ dÞ ,
K � 0 ¼ 0 if H � t2ðcÞ ¼ 0

K � sð0 ¼ 0Þ if H � t2ðcÞ0 0;

(

where s�i ðyÞ is the term obtained from siðyÞ by replacing d with 0.

128 Shingo Ibuka, Hirotaka Kikyo, and Hiroshi Tanaka



Therefore, there exists some quantifier-free formula t 0ðyÞ in Lmodð<;DÞ such

that G � tðkGÞ , K � t 0ðkÞ. It follows that K admits quantifier elimination in

Lmodð<;DÞ. r
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