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Introduction

Quantifier elimination transforms a quantified 
formula, e.g., ∃x1∀x2∃x3 ⋅⋅⋅ ∀xn ϕ, into an 
equivalent quantifier-free formula ψ

ψ can be preferable to ∃x1∀x2∃x3 ⋅⋅⋅ ∀xn ϕ
E.g.,

Properties of ψ can be reasoned more easily
ψ can be treated as a synthesis result for implementation
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Introduction

QE examples
Gauss elimination for systems of linear 
equalities

Fourier-Motzkin elimination for systems of 
linear inequalities

Cylindrical algebraic decomposition for 
systems of polynomial inequalities
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Motivations

QE arises in many contexts, including 
computation theory, mathematical logic, 
optimization, …

Constraint reduction
Quantified Boolean Formula (QBF) solving
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Main focus

Propositional logic
Quantifier elimination for QBFs
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Prior work

Formula expansion
∃y ϕ(x,y) = ϕ(x,0) ∨ ϕ(x,1) 
BDD, AIG based image-computation [Coudert90][Pigorsch06]

Normal-form conversion
Existential (universal) quantification is computationally trivial for disjunctive 
(conjunctive) normal form formulas 

Simply remove from the formula the literals of variables to be quantified
E.g., ∀x1[(x1 ∨ x2 ∨ x3)(¬x1 ∨ x3)(x2 ∨ x4)]  =  (x2 ∨ x3)(x3)(x2 ∨ x4)

Formula conversion between CNF and DNF [McMillan02]

Solution enumeration
Compute ψ(x) = ∃y ϕ(x,y) by enumerating all satisfiable assignments on x
SAT-based image computation, e.g., [Ganai04]

Yet another way?
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Question

Given a quantified formula ∃y ϕ(x,y), 
what should a function f be such that 
ϕ(x,f(x)) = ∃y ϕ(x,y)?

I.e., QE by functional composition



2009/6/30 CAV 2009 9

Answer

ϕ(x,f(x)) = ∃y ϕ(x,y) if and only if
f has 
care onset ϕ(x,1) ∧ ¬ϕ(x,0)
care offset ϕ(x,0) ∧ ¬ϕ(x,1)
don’t care set ϕ(x,1) ≡ ϕ(x,0)

In other words,
(ϕ(x,1) ∧ ¬ϕ(x,0)) ≤ f ≤ ¬(ϕ(x,0) ∧ ¬ϕ(x,1))

Such f always exists
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Problem formulation

For universal quantification 
∀y ϕ(x,y) = ¬∃y ¬ϕ(x,y) = ¬¬ϕ(x,f(x)) = 
ϕ(x,f(x))

f has 
care onset ¬ϕ(x,1) ∧ ϕ(x,0)
care offset ¬ϕ(x,0) ∧ ϕ(x,1)
don’t care set ϕ(x,1) ≡ ϕ(x,0)

So by computing composite functions f, one 
can iteratively eliminate the quantifiers of any 
QBF
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Computation

f can be computed by
Binary decision diagrams (BDDs)

Not scalable for large ϕ
Craig interpolation
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Craig interpolation 

(Propositional logic)
For ϕA ∧ ϕB unsatisfiable, there exists an 
interpolant ι of ϕA w.r.t. ϕB such that
1. ϕA ⇒ ι
2. ι ∧ ϕB is unsatisfiable
3. ι refers only to the common variables 
of ϕA and ϕB
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Computation

ϕA
care onset

ϕB
care offset

ι
interpolant

The interpolant is a valid implementation of f, which can be 
obtained from the refutation of ϕA ∧ ϕB in SAT solving and can 
be naturally represented in And-Inverter Graphs (AIGs)

care onset ϕ(x,1) ∧ ¬ϕ(x,0)
care offset ϕ(x,0) ∧ ¬ϕ(x,1)
don’t care set ϕ(x,1) ≡ ϕ(x,0)
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Composition vs. expansion

Is ϕ(x,f(x)) better than ϕ(x,0) ∨ ϕ(x,1) ?

f

x x

in terms of AIGs, where structurally identical nodes are merged 
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Composition vs. expansion

[∃] Consider simplifying ϕ(x,1) in ϕ(x,0) ∨ ϕ(x,1) using 
ϕ(x,0) as don’t care
care onset ϕ(x,1) ∧ ¬ϕ(x,0)
care offset ¬ϕ(x,1) ∧ ¬ϕ(x,0)

In contrast to f with
care onset ϕ(x,1) ∧ ¬ϕ(x,0)
care offset ϕ(x,0) ∧ ¬ϕ(x,1)

For existential quantification, composition can be 
much better than expansion for sparse ϕ (due to 
simple interpolants)
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Composition vs. expansion

[∀] Consider simplifying ϕ(x,1) in ϕ(x,0) ∧ ϕ(x,1) using 
¬ϕ(x,0) as don’t care
care onset ϕ(x,1) ∧ ϕ(x,0)
care offset ¬ϕ(x,1) ∧ ϕ(x,0)

In contrast to f with
care onset ¬ϕ(x,1) ∧ ϕ(x,0)
care offset ¬ϕ(x,0) ∧ ϕ(x,1)

For universal quantification, composition can be much 
better than expansion for dense ϕ (due to simple 
interpolants)



2009/6/30 CAV 2009 17

Generalization to predicate logic

For a language L in predicate logic under 
structure (interpretation) I, 
|=I ∀x(∃y ϕ(x,y) = ∃F ϕ(x,Fx))

QE is possible if such function F is finitely 
expressible in the language

If ∃y ϕ(x,y) = ϕ(x,fx), then ϕ(a,b)∨¬∃y ϕ(a,y) is satisfied for 
any a, b with f(a)=b
If for any a, b with f(a)=b satisfies ϕ(a,b)∨¬∃y ϕ(a,y), then 
∃y ϕ(x,y) = ∨ (γi ∧ ϕ(x,fix)), where f = fi if γi holds  

{(a,b) | ϕ(a,b)∨¬∃y ϕ(a,y)} characterizes the flexibility of f, 
which can be exploited to simplify QE
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Generalization to predicate logic

Example
∃x(a⋅x2+c=0) over the real number

f(a,c) = (–c/a)1/2 if c/a ≤ 0
– if c/a > 0 

Taking f(a,c) = (((–c/a)2)1/2)1/2, this quantified 
formula is equivalent to 
a⋅((((–c/a)2)1/2)1/2)2+c=0
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Experiments

Given a sequential circuit, we compute 
its transition relation with input variables 
being quantified out, i.e.,

∃x [∧i (si' ≡ δi(x,s))]

Simple quantification scheduling applied
AIG minimization applied 
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Experimental results
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Discussion

Expansion vs. composition based QE
Analogy with two-level vs. multi-level circuit 
minimization

Relaxing level constraints admits more compact 
circuit representation

Sparsity may play an essential role in the 
effectiveness of composition-based QE
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Conclusions

Quantifier elimination with functional 
composition can be effective at least for 
some applications (where the sparsity
condition holds)

Future work
Find more applications
QE in predicate logic
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Thanks for your attention!
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Questions?


