Quantifier Elimination via Functional Composition

Jie-Hong Roland Jiang

Dept. of Electrical Eng. / Grad. Inst. of Electronics Eng. National Taiwan University Taipei 10617, Taiwan

Outline

- Motivations
- Prior work
- Quantifier elimination by functional composition
 - Propositional logic
 - Predicate logic
- Experimental results
- Conclusions

Introduction

- Quantifier elimination transforms a quantified formula, e.g., ∃x₁∀x₂∃x₃ … ∀x_n φ, into an equivalent quantifier-free formula ψ
 - ψ can be preferable to $\exists x_1 \forall x_2 \exists x_3 \cdots \forall x_n \phi$ E.g.,
 - Properties of $\boldsymbol{\psi}$ can be reasoned more easily
 - ψ can be treated as a synthesis result for implementation

Introduction

QE examples

 Gauss elimination for systems of linear equalities

 Fourier-Motzkin elimination for systems of linear inequalities

 Cylindrical algebraic decomposition for systems of polynomial inequalities

Motivations

- QE arises in many contexts, including computation theory, mathematical logic, optimization, ...
 - Constraint reduction
 - Quantified Boolean Formula (QBF) solving

Prior work

Formula expansion

- $\exists y \ \phi(\mathbf{x}, y) = \phi(\mathbf{x}, 0) \lor \phi(\mathbf{x}, 1)$
- BDD, AIG based image-computation [Coudert90][Pigorsch06]

Normal-form conversion

- Existential (universal) quantification is computationally trivial for disjunctive (conjunctive) normal form formulas
 - Simply remove from the formula the literals of variables to be quantified E.g., $\forall x_1[(x_1 \lor x_2 \lor x_3)(\neg x_1 \lor x_3)(x_2 \lor x_4)] = (x_2 \lor x_3)(x_3)(x_2 \lor x_4)$
- Formula conversion between CNF and DNF [McMillan02]

• Solution enumeration

- Compute $\psi(\mathbf{x}) = \exists \mathbf{y} \phi(\mathbf{x}, \mathbf{y})$ by enumerating all satisfiable assignments on \mathbf{x}
- SAT-based image computation, e.g., [Ganai04]
- Yet another way?

Answer

- φ(**x**, f(**x**)) = ∃y φ(**x**, y) if and only if
 f has
 - care onset $\varphi(\mathbf{x},1) \land \neg \varphi(\mathbf{x},0)$ care offset $\varphi(\mathbf{x},0) \land \neg \varphi(\mathbf{x},1)$ don't care set $\varphi(\mathbf{x},1) \equiv \varphi(\mathbf{x},0)$

• In other words,

 $(\phi(\mathbf{x}, \mathbf{1}) \land \neg \phi(\mathbf{x}, \mathbf{0})) \leq f \leq \neg(\phi(\mathbf{x}, \mathbf{0}) \land \neg \phi(\mathbf{x}, \mathbf{1}))$

• Such *f* always exists

Problem formulation

- For universal quantification ∀y φ(x,y) = ¬∃y ¬φ(x,y) = ¬¬φ(x,f(x)) = φ(x,f(x)) *f* has care onset ¬φ(x,1) ∧ φ(x,0) care offset ¬φ(x,0) ∧ φ(x,1) don't care set φ(x,1) ≡ φ(x,0)
- So by computing composite functions *f*, one can iteratively eliminate the quantifiers of any QBF

Computation

• f can be computed by

Binary decision diagrams (BDDs)

- \bullet Not scalable for large ϕ
- Craig interpolation

Craig interpolation

• (Propositional logic)

For $\phi_A \wedge \phi_B$ unsatisfiable, there exists an interpolant ι of ϕ_A w.r.t. ϕ_B such that

1.
$$\phi_A \Rightarrow \iota$$

- 2. $\iota \wedge \phi_{\mathsf{B}}$ is unsatisfiable
- 3. ι refers only to the common variables of ϕ_{A} and ϕ_{B}

Computation

Composition vs. expansion

[∃] Consider simplifying φ(x,1) in φ(x,0) ∨ φ(x,1) using φ(x,0) as don't care
 care onset φ(x,1) ∧ ¬φ(x,0)
 care offset ¬φ(x,1) ∧ ¬φ(x,0)

In contrast to *f* with care onset $\varphi(\mathbf{x},1) \land \neg \varphi(\mathbf{x},0)$ care offset $\varphi(\mathbf{x},0) \land \neg \varphi(\mathbf{x},1)$

For existential quantification, composition can be much better than expansion for sparse ϕ (due to simple interpolants)

Composition vs. expansion

[∀] Consider simplifying φ(x,1) in φ(x,0) ∧ φ(x,1) using ¬φ(x,0) as don't care
 care onset φ(x,1) ∧ φ(x,0)
 care offset ¬φ(x,1) ∧ φ(x,0)

```
In contrast to f with
care onset \neg \phi(\mathbf{x}, 1) \land \phi(\mathbf{x}, 0)
care offset \neg \phi(\mathbf{x}, 0) \land \phi(\mathbf{x}, 1)
```

For universal quantification, composition can be much better than expansion for dense φ (due to simple interpolants)

Generalization to predicate logic

• For a language \mathcal{L} in predicate logic under structure (interpretation) \mathcal{I} ,

 $=_{\mathcal{J}} \forall \mathbf{x} (\exists \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) = \exists F \ \phi(\mathbf{x}, F\mathbf{x}))$

- QE is possible if such function F is finitely expressible in the language
 - If ∃y φ(x,y) = φ(x, fx), then φ(a,b)∨¬∃y φ(a,y) is satisfied for any a, b with f(a)=b
 - If for any a, b with f(a)=b satisfies $\phi(a,b) \lor \neg \exists y \phi(a,y)$, then
 - $\exists y \ \phi(\mathbf{x}, y) = \bigvee (\gamma_i \land \phi(\mathbf{x}, f_i \mathbf{x})), \text{ where } f = f_i \text{ if } \gamma_i \text{ holds}$
 - {(a,b) | φ(a,b)∨¬∃y φ(a,y)} characterizes the flexibility of *f*, which can be exploited to simplify QE

Generalization to predicate logic

Example $\exists x(a \cdot x^2 + c = 0)$ over the real number $f(a,c) = \int (-c/a)^{1/2} \text{ if } c/a \leq 0$ - if c/a > 0Taking $f(a,c) = (((-c/a)^2)^{1/2})^{1/2}$, this c

Taking $f(a,c) = (((-c/a)^2)^{1/2})^{1/2}$, this quantified formula is equivalent to $a \cdot ((((-c/a)^2)^{1/2})^{1/2})^2 + c = 0$

Experiments

 Given a sequential circuit, we compute its transition relation with input variables being quantified out, i.e.,

$$\exists \mathbf{x} [\bigwedge_{i} (\mathbf{s}_{i}' \equiv \delta_{i}(\mathbf{x}, \mathbf{s}))]$$

Simple quantification scheduling applied
AIG minimization applied

Experimental results

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	nem 18.0 17.3 17.5 10.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.0 7.3 7.5 .0.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.3 7.5 0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.5 0.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.6
$ \begin{vmatrix} s1423 \\ s1488 \end{vmatrix} \begin{pmatrix} (17, 74, 657, 59) \\ (8, 6, 653, 17) \end{vmatrix} \begin{vmatrix} 757 & 63 \\ 686 & 19 \end{vmatrix} \begin{vmatrix} 17619 & 59 \\ 1269 & 21 \end{vmatrix} \begin{vmatrix} 25.45 & 38.1 \\ 2.90 & 38.1 \end{vmatrix} \begin{vmatrix} 3142 & 452 & 6.19 \\ 515 & 48 & 3.82 \end{vmatrix} \begin{vmatrix} 3.82 & 3.82 \\ 3.82 & 3.82 \end{vmatrix} \begin{vmatrix} 3.82 & 3.82 \\ 3.82 & 3.82 \end{vmatrix} \end{vmatrix} $	
s1488 (8, 6, 653, 17) 686 19 1269 21 2.90 38.1 515 48 3.82	8.1
	8.1
s1494 $(8, 6, 647, 17)$ $ 696 $ $ 20 $ $ 1261 $ $ 21 $ $ 2.98 $ $ 38.1 $ $ 607 $ $ 42 $ $ 2.54 $	8.1
s1512 $(29, 57, 780, 30)$ $ 697 $ $ 28 $ $ 1187 $ $ 24 $ $ 2.64 $ $ 37.7 $ $ 823 $ $ 53 $ $ 3.78 $	7.7
s15850.1 (77, 534, 9786, 82) 5679 57 - - - 180597 14247 49409.27 40 40 40 40 40 40 40 40 40 4	27.4
s208.1 (10, 8, 104, 11) 103 14 65 11 0.08 37.4 49 12 0.06 37.4 49 12 0.06 37.4 49 12 0.06 37 37 37 37 37 37 37 37 37 3	7.4
s298 $(3, 14, 119, 9)$ $ 157 $ $ 15 $ $ 117 $ $ 12 $ $ 0.08 $ $ 37.4 122 $ $ 12 $ $ 0.23 32 $	7.4
s3271 (26, 116, 1573, 28) $ 1565 32 $ (1549) (29) $ 3.08 38.0 1604 62 7.11 32 $	8.0
s3330 (40, 132, 1789, 29) $ 1434 $ 29 $ - - - - 1029 $ 28 $ 6.37 $	8.0
s3384 (43, 183, 1702, 60) 1801 63 1307 58 6.94 38.3 1276 58 17.29 38.3 1276 58 17.29 38.3 1276 38.3 1276 38.3 1276 38.3 1276 38.3 1276 38.3 1276 38.3 1276 38.3 128 38.3	8.3
s344 (9, 15, 160, 20) 164 19 140 19 0.33 37.1 155 19 0.81 37 $ s344 $	7.1
s349 (9, 15, 161, 20) 168 19 140 19 0.26 37.5 155 19 0.82 37.5 155 19 0.82 37.5 155 19 0.82 37 35 155 19 0.82 37 35 155 19 0.82 37 35 155 19 0.82 37 35 35 35 35 35 35 35 35 35	7.5
s382 (3, 21, 158, 9) 220 19 179 16 0.10 37.7 189 16 0.27	7.7
s38417 $(28, 1636, 22397, 47) 15762 44 15705 40 44.79 48.7 18865 106 149.13 49.13 40 149.13 40 149.13 40 149.13 40 149.13 40 149.13 40 149 140 149 140 140 140 140 $	6.8
s38584.1 (38, 1426, 19407, 56) 18094 48 $ 57105$ $ 45$ $ 1382.97$ $ 71.4$ $ 38089$ $ 1362$ $ 268.94$ $ 48$.6.0
b12 (5, 121, 952, 19) 1485 26 1740 24 0.65 38.3 1908 41 2.21 c	38.3
b13 $(10, 53, 299, 20)$ $ 472 20 435 16 0.49 37.6 423 16 1.15 16 16 16 16 16 16 16 16 16 $	37.6
[ratio] 1.000 1.000 1.000 1.000 0.036 8.064 0.013]	0.952

Discussion

Expansion vs. composition based QE

- Analogy with two-level vs. multi-level circuit minimization
 - Relaxing level constraints admits more compact circuit representation

Sparsity may play an essential role in the effectiveness of composition-based QE

Conclusions

- Quantifier elimination with functional composition can be effective at least for some applications (where the sparsity condition holds)
- Future work
 - Find more applications
 - QE in predicate logic

Thanks for your attention!

Questions?

