Quantifier Elimination via Functional Composition

Jie-Hong Roland Jiang
Dept. of Electrical Eng. / Grad. Inst. of Electronics Eng. National Taiwan University Taipei 10617, Taiwan

Outline

- Motivations
- Prior work
- Quantifier elimination by functional composition
- Propositional logic
- Predicate logic
- Experimental results
- Conclusions

Introduction

- Quantifier elimination transforms a quantified formula, e.g., $\exists x_{1} \forall x_{2} \exists x_{3} \cdots \forall x_{n} \varphi$, into an equivalent quantifier-free formula ψ
- ψ can be preferable to $\exists x_{1} \forall x_{2} \exists x_{3} \cdots \forall x_{n} \varphi$
E.g.,
- Properties of ψ can be reasoned more easily
- ψ can be treated as a synthesis result for implementation

Introduction

- QE examples

- Gauss elimination for systems of linear equalities
- Fourier-Motzkin elimination for systems of linear inequalities
- Cylindrical algebraic decomposition for systems of polynomial inequalities

Motivations

QE arises in many contexts, including computation theory, mathematical logic, optimization, ...

- Constraint reduction
- Quantified Boolean Formula (QBF) solving

Main focus

- Propositional logic
- Quantifier elimination for QBFs

Prior work

- Formula expansion
- $\exists y \varphi(\mathbf{x}, \mathrm{y})=\varphi(\mathbf{x}, 0) \vee \varphi(\mathbf{x}, 1)$
- BDD, AIG based image-computation [Coudert90][Pigorsch06]
- Normal-form conversion
- Existential (universal) quantification is computationally trivial for disjunctive (conjunctive) normal form formulas
- Simply remove from the formula the literals of variables to be quantified

$$
\text { E.g., } \forall x_{1}\left[\left(x_{1} \vee x_{2} \vee x_{3}\right)\left(\neg x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{4}\right)\right]=\left(x_{2} \vee x_{3}\right)\left(x_{3}\right)\left(x_{2} \vee x_{4}\right)
$$

- Formula conversion between CNF and DNF [McMillan02]
- Solution enumeration
- Compute $\psi(\mathbf{x})=\exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$ by enumerating all satisfiable assignments on \mathbf{x}
- SAT-based image computation, e.g., [Ganai04]
- Yet another way?

Question

- Given a quantified formula $\exists \mathrm{y} \varphi(\mathbf{x}, \mathrm{y})$, what should a function f be such that $\varphi(\mathbf{x}, f(\mathbf{x}))=\exists \mathrm{y} \varphi(\mathbf{x}, \mathrm{y})$?
- I.e., QE by functional composition

Answer

- $\varphi(\mathbf{x}, f(\mathbf{x}))=\exists \mathrm{y} \varphi(\mathbf{x}, \mathrm{y})$ if and only if
- f has
care onset $\varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)$
care offset $\varphi(\mathbf{x}, 0) \wedge \neg \varphi(\mathbf{x}, 1)$
don't care set $\varphi(\mathbf{x}, 1) \equiv \varphi(\mathbf{x}, 0)$
- In other words, $(\varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)) \leq f \leq \neg(\varphi(\mathbf{x}, 0) \wedge \neg \varphi(\mathbf{x}, 1))$
- Such f always exists

Problem formulation

- For universal quantification

```
\forally \varphi(x,y) = \neg\existsy \neg\varphi(x,y) = \neg\neg\varphi(\mathbf{x},f(\mathbf{x}))=
\varphi(\mathbf{x},f(\mathbf{x}))
- \(f\) has
care onset \(\neg \varphi(\mathbf{x}, 1) \wedge \varphi(\mathbf{x}, 0)\)
care offset \(\neg \varphi(\mathbf{x}, 0) \wedge \varphi(\mathbf{x}, 1)\)
don't care set \(\varphi(\mathbf{x}, 1) \equiv \varphi(\mathbf{x}, 0)\)
```

- So by computing composite functions f, one can iteratively eliminate the quantifiers of any QBF

Computation

- f can be computed by
- Binary decision diagrams (BDDs)
- Not scalable for large φ
- Craig interpolation

Craig interpolation

- (Propositional logic)

For $\varphi_{A} \wedge \varphi_{B}$ unsatisfiable, there exists an interpolant \mathfrak{l} of φ_{A} w.r.t. φ_{B} such that

1. $\varphi_{\mathrm{A}} \Rightarrow \mathrm{I}$
2. $1 \wedge \varphi_{B}$ is unsatisfiable
3. ı refers only to the common variables
of φ_{A} and φ_{B}

Computation

care onset $\varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)$

care offset $\varphi(\mathbf{x}, 0) \wedge \neg \varphi(\mathbf{x}, 1)$
don't care set $\varphi(\mathbf{x}, 1) \equiv \varphi(\mathbf{x}, 0)$

The interpolant is a valid implementation of f, which can be obtained from the refutation of $\varphi_{A} \wedge \varphi_{B}$ in SAT solving and can be naturally represented in And-Inverter Graphs (AIGs)

Composition vs. expansion

- IS $\varphi(\mathbf{x}, f(\mathbf{x}))$ better than $\varphi(\mathbf{x}, 0) \vee \varphi(\mathbf{x}, 1)$?

in terms of AIGs, where structurally identical nodes are merged

Composition vs. expansion

- [\exists] Consider simplifying $\varphi(\mathbf{x}, 1)$ in $\varphi(\mathbf{x}, 0) \vee \varphi(\mathbf{x}, 1)$ using $\varphi(\mathbf{x}, 0)$ as don't care
care onset $\varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)$
care offset $\neg \varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)$
In contrast to f with
care onset $\varphi(\mathbf{x}, 1) \wedge \neg \varphi(\mathbf{x}, 0)$
care offset $\varphi(\mathbf{x}, 0) \wedge \neg \varphi(\mathbf{x}, 1)$
For existential quantification, composition can be much better than expansion for sparse φ (due to simple interpolants)

Composition vs. expansion

- $[\forall]$ Consider simplifying $\varphi(\mathbf{x}, 1)$ in $\varphi(\mathbf{x}, 0) \wedge \varphi(\mathbf{x}, 1)$ using $\neg \varphi(\mathbf{x}, 0)$ as don't care
care onset $\varphi(\mathbf{x}, 1) \wedge \varphi(\mathbf{x}, 0)$ care offset $\neg \varphi(\mathbf{x}, 1) \wedge \varphi(\mathbf{x}, 0)$

In contrast to f with
care onset $\neg \varphi(\mathbf{x}, 1) \wedge \varphi(\mathbf{x}, 0)$
care offset $\neg \varphi(\mathbf{x}, 0) \wedge \varphi(\mathbf{x}, 1)$
For universal quantification, composition can be much better than expansion for dense φ (due to simple interpolants)

Generalization to predicate logic

- For a language \mathcal{L} in predicate logic under structure (interpretation) \mathcal{J},
$\mid==_{\mathcal{J}} \forall \mathbf{x}(\exists \mathbf{y} \varphi(\mathbf{x}, \mathrm{y})=\exists F \varphi(\mathbf{x}, F \mathbf{x}))$
- QE is possible if such function F is finitely expressible in the language
- If $\exists y \varphi(\mathbf{x}, \mathrm{y})=\varphi(\mathbf{x}, f \mathbf{x})$, then $\varphi(\mathrm{a}, \mathrm{b}) \vee \neg \exists \mathrm{y} \varphi(\mathrm{a}, \mathrm{y})$ is satisfied for any a, b with $f(\mathrm{a})=\mathrm{b}$
- If for any a, b with $f(a)=b$ satisfies $\varphi(a, b) \vee \neg \exists y \varphi(a, y)$, then $\exists \mathrm{y} \varphi(\mathbf{x}, \mathrm{y})=\vee\left(\gamma_{i} \wedge \varphi\left(\mathbf{x}, f_{i} \mathbf{x}\right)\right)$, where $f=f_{i}$ if γ_{i} holds
- $\{(\mathrm{a}, \mathrm{b}) \mid \varphi(\mathrm{a}, \mathrm{b}) \vee \neg \exists \mathrm{y} \varphi(\mathrm{a}, \mathrm{y})\}$ characterizes the flexibility of f, which can be exploited to simplify QE

Generalization to predicate logic

Example

$\exists x\left(a \cdot x^{2}+c=0\right)$ over the real number

$$
f(a, c)=\left\{\begin{array}{cc}
(-c / a)^{1 / 2} & \text { if } c / a \leq 0 \\
- & \text { if } c / a>0
\end{array}\right.
$$

Taking $f(a, c)=\left(\left((-c / a)^{2}\right)^{1 / 2}\right)^{1 / 2}$, this quantified formula is equivalent to

$$
\left.a \cdot\left(\left((-c / a)^{2}\right)^{1 / 2}\right)^{1 / 2}\right)^{2}+c=0
$$

Experiments

- Given a sequential circuit, we compute its transition relation with input variables being quantified out, i.e.,
$\exists \mathbf{x}\left[\wedge_{i}\left(\mathbf{s}_{i}^{\prime} \equiv \delta_{i}(\mathbf{x}, \mathbf{s})\right)\right]$
- Simple quantification scheduling applied
- AIG minimization applied

Experimental results

circuit	(\#in, \#reg, \#n, \#l)	rel before QE		QE-Exp				QE-CMP			
		\#n	\#1	\#n	\#1	time	mem	\#n	\#1	time	mem
prolog	$(36,136,1656,26)$	1474	29	-		-	-	1088	31	6.27	38.0
s1196	$(14,18,529,24)$	548	22	3473	21	5.15	37.3	21881	2532	123.15	37.3
s1269	$(18,37,569,35)$	622	37	31005	39	59.24	37.5	1694	116	41.05	37.5
s13207.1	$(62,638,8027,59)$	5272	45	-	-	-	-	4741	44	50.60	40.6
s1423	$(17,74,657,59)$	757	63	17619	59	25.45	38.1	3142	452	6.19	38.1
s1488	$(8,6,653,17)$	686	19	1269	21	2.90	38.1	515	48	3.82	38.1
s1494	$(8,6,647,17)$	696	20	1261	21	2.98	38.1	607	42	2.54	38.1
s1512	$(29,57,780,30)$	697	28	1187	24	2.64	37.7	823	53	3.78	37.7
s15850.1	$(77,534,9786,82)$	5679	57	-	-	-	-	180597	14247	49409.27	427.4
s208.1	$(10,8,104,11)$	103	14	65	11	0.08	37.4	49	12	0.06	37.4
s298	$(3,14,119,9)$	157	15	117	12	0.08	37.4	122	12	0.23	37.4
s3271	$(26,116,1573,28)$	1565	32	1549	29	3.08	38.0	1604	62	7.11	38.0
s3330	$(40,132,1789,29)$	1434	29	-		-	-	1029	28	6.37	38.0
s3384	$(43,183,1702,60)$	1801	63	1307	58	6.94	38.3	1276	58	17.29	38.3
s344	$(9,15,160,20)$	164	19	140	19	0.33	37.1	155	19	0.81	37.1
s349	$(9,15,161,20)$	168	19	140	19	0.26	37.5	155	19	0.82	37.5
s382	$(3,21,158,9)$	220	19	179	16	0.10	37.7	189	16	0.27	37.7
s38417	$(28,1636,22397,47)$	15762	44	15705	40	44.79	48.7	18865	106	149.13	46.8
s38584.1	$(38,1426,19407,56)$	18094	48	57105	45	1382.97	71.4	38089	1362	268.94	46.0
b12	$(5,121,952,19)$	1485	26	1740	24	0.65	38.3	1908	41	2.21	38.3
b13	$(10,53,299,20)$	472	20	435	16	0.49	37.6	423	16	1.15	37.6
ratio				1.000	1.000	1.000	1.000	0.036	8.064	0.013	0.952

Discussion

- Expansion vs. composition based QE
- Analogy with two-level vs. multi-level circuit minimization
- Relaxing level constraints admits more compact circuit representation
- Sparsity may play an essential role in the effectiveness of composition-based QE

Conclusions

- Quantifier elimination with functional composition can be effective at least for some applications (where the sparsity condition holds)
- Future work
- Find more applications
- QE in predicate logic

Thanks for your attention!

Questions?

