


Abstract—  Within  this  work  a  Nagel-Schreckenberg  (NS) 
cellular  automata  is  used  to  simulate  a  basic  cyclic  road 
network. Results from SwitchEV, a real world Electric Vehicle 
trial  which  has  collected  more  than  two  years  of  detailed 
electric vehicle data, is used to quantify the results of the NS 
automata, demonstrating similar power consumption behavior 
to that observed in the experimental results. In particular the 
efficiency of the electric vehicles reduces as the vehicle density 
increases, due in part to the reduced efficiency of EVs at low 
speeds,  but  also  due  to  the  energy  consumption  inherent  in 
changing  speeds.  Further  work  shows  the  results  from 
introducing a spatially restricted speed restriction. In general it 
can be seen that induced congestion from a spatially transient 
event propagates back through the road network and alters the 
energy  and  efficiency  profile  of  the  simulated  vehicles,  both 
before and after the speed restriction. Vehicles upstream from 
the restriction show a reduced energy usage and an increased 
efficiency, vehicles downstream show an initial large increase in 
energy  usage  as  they  accelerate  away  from  the  speed 
restriction.

[1] INTRODUCTION

For  the  UK  to  achieve  a  sizable  reduction  in  carbon 
emissions  by  2050,  it  will  be  necessary  for  large  scale 
changes to be made. These may be in the form of societal 
upheavals  (mass  movement  of  people  to  more  carbon 
friendly cities [1]), changes in consumption levels [2] or a 
technological change. Of the three possibilities shown here, 
it is a technological change which may be adopted with the 
minimum of difference to the average person’s lifestyle and 
as such will be the easiest for society to accept.

One such technological change would be the introduction 
and mass adoption of Electric Vehicles (EV) whether as a 
hybrid vehicle,  purely battery powered vehicle or  plug in 
hybrid. [3]

Given  ideal  power  generation,  large  scale  adoption  of 
electric vehicles will lead to a typical improvement in carbon 
emissions of approximately 50% compared to that of an IC 
vehicle.  This  is  in  addition  the  health  benefits  from  the 
reduction  of  pollutants  released  by  vehicles  within  urban 
environments.

However,  the  large  scale  introduction  of  EVs,  and  the 
effect  this would have on transport  metrics such as traffic 
levels  and  commuter  behavior  is  not  an  experimentally 
known  quantity,  due  to  the  relative  scarcity  of  electric 
vehicles  on  the  road.  Trials  exist  ([4,5])  which  have 
examined  how  EVs  are  being  used  within  the  current 
environment, but each of these projects is limited in that they 
can  only  assess  the  use  of  EVs  within  the  current 
environment and fleet composition, they do not assess the 
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use of EVs in vehicle population where they are a significant 
proportion of the total fleet.

To properly assess the impact of a new technology within 
society it is necessary to use not only real world studies, but 
also to  use the  results  of  such  studies  to  properly  inform 
simulations.  Simulations,  when  properly  conducted,  allow 
for  a  much  wider  range  of  scenarios  to  be  tested.  One 
possible  technique  for  simulation  is  through  the  use  of 
Cellular Automata. [6]

A cellular automata is a discrete model where each cell 
may  exist  in  a  number  of  different  discrete  states.  The 
transition  from  one  state  to  another  is  governed  by  that 
model’s specific rule set and can either be deterministic, as is 
the case for Conway’s famous Life rule set [7], or stochastic. 
In  addition  to  the  distinction  between  deterministic  and 
stochastic  rule  sets  the  cellular  automata  may  also  be 
reversible  [8]  but  this  is  generally  only  possible  for  the 
simpler deterministic rule sets.

In  recent  years  cellular  automata  have  begun  to  find 
multiple  uses  in  physical  simulations  including,  but  not 
limited to, such topics as cryptography [9], neural simulation 
[10], and population dynamics. [11] 

However, the field of transport simulation is a natural fit 
for simulation by cellular automata. Cellular automata work 
at the base level by having single discrete entities which are 
a representation, within the model, for something within the 
real  world.  In  a  subject  like  fluid dynamics  the  cell  may 
correspond to a particular section of space. Within transport 
studies the cell will typically correspond to either a specific 
piece of road or a single vehicle. If the vehicle’s behavior 
can be governed by a set of rules then it should be possible 
to  model  the  behavior  of  that  vehicle  using  cellular 
automata.  

A lot  of  previous  work  has  been  undertaken  using  the 
Nagel-Schreckenberg  (NS)  [12]  model,one  of  the  earliest 
cellular  automata  transport  models.  From  a  remarkably 
simple  rule  set  it  can  reproduce  some  of  the  more 
complicated  modes  of  behavior  exhibited  by  traffic. 
Although the NS model is not the most sophisticated model, 
it exhibits enough of the features shown by traffic in the real 
world to serve as a base starting point for expanding cellular 
automata to utilize real world EV transport data.

In addition to simply simulating the transport system, the 
energy usage within the system has also been simulated. [16] 
For  this  simulation  the  theoretical  energy  usage  was 
compared to the density of the vehicles on the network. The 
work presented in this project  is  concentrating on the full 
energy usage of the electric vehicles using real world data, 
as modeled by cellular automata, compared to previous work 
which focused on purely theoretical results and data. 

Although it  is possible to simulate vehicle with cellular 
automata  there  exist  other  possibilities.  Current  micro 
simulation packages, would allow for electric vehicles to be 
simulated  directly  in  something  approaching  a  real  word 
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scenario.  However,  full  micro  simulation  packages  are 
typically  computationally  intensive,  and  may  not  be 
necessary  in  all  cases.  By  contrast  cellular  automata 
simulations are typically less intensive to run as they do not 
attempt  to  model  the  fine  grain  behavior  of  the  vehicle, 
instead they rely on the statistical nature of their processes to 
accurately recreate the macroscopic behavior in the traffic 
system. In addition cellular automata are typically easy to 
run  in  massive  parallel  systems  and  as  such  can  benefit 
greatly from distributed computing techniques.

[2] THE DATA AND THE MODEL

A. The Vehicle Data

The  data  to  realize  the  quantization  of  the  cellular 
automata is drawn from the empirical data collected as part 
of the SwitchEV project. [13]

SwitchEV  is  a  large  scale  trial  in  the  North  East  of 
England and is one of the largest real world data collection 
projects for electric vehicles. The aims of the project are to 
accurately assess how electric vehicles are used in a day to 
day driving cycle by monitoring each vehicle on a second by 
second  basis  and  assessing  the  effect  of  numerous 
parameters on the EV usage. In addition other data sets are 
collected to enable a much more complete picture to be built 
up around the use of EVs. The additional data includes, but 
is  not  limited  to,  road  gradients,  local  weather,  traffic 
congestion parameters through both local SCOOT systems 
and the open data released by the UK Government on inter-
urban link data [14] and data from charging points (private 
and  public).   As  well  as  the  hard  data  sets,  multiple 
questionnaires and focus groups have been undertaken with 
the  EV  drivers  to  determine  their  thoughts  and 
preconception  before  the  trial,  and  how  they  may  have 
altered after their experience of the electric vehicle. [15]

The vehicle monitoring is conducted through the use of 
multiple data loggers fitted to each vehicle. Typically each 
logger  will  monitor  the  battery  usage  of  the  vehicle,  the 
speed and position and also any features of the vehicle, such 
as  lights  or  air-conditioning,  which  may contribute  to  the 
vehicle's ancillary load.

Specifically from the vehicle’s Controller Area Network 
(CAN) data it is possible to determine the second by second 
power usage of the electric vehicle. This is simply derived 
through the instantaneous voltage and current on the battery. 
It is then possible to construct a heat-map for the vehicle’s  
typical power usage for any particular state of the vehicle. 
Within  this  work  the  power  usage  of  the  vehicle  was 
calculated using the speed and acceleration of the vehicle. 
Other possible factors such as air conditioning, current road 
gradient, passenger number or ambient temperature were not 
included  due  to  the  lack  of  representation  within  current 
cellular automata traffic models.

B. The Model

The rule set used in this model is the fundamental Nagel-

Schreckenberg  model,  a  probabilistic  irreversible  cellular 
automata  model  designed  to  simulate  freeway  traffic  and 
reproduce  some  of  the  phenomenon  observed  within. 
Although  this  model  does  not  exhibit  the  full  range  of 
behaviors which would be exhibited within the real  world 
traffic set, it does reproduce several macroscopic aspects of 
the traffic which are of interest when studied in conjunction 
with the experimental EV data.

To initiate the model the vehicle positions are distributed 
evenly across  the  road  network according to  the  assigned 
vehicle density. The vehicles are all initially at rest. Within 
the NS model each vehicle is updated every time step and 
simultaneously. For each time step the following rules are 
applied to each vehicle.

1. (Acceleration) Each car not at  its  maximum 
velocity increases its velocity by one unit.

2. (Collision  Avoidance)  If  the  distance  to  the 
car  in  front  is  smaller  than  the  current  velocity, 
then the current velocity is reduced to this distance 
minus one unit.

3.  (Randomization)  The  speed  of  the  car  is 
reduced by one unit, with a probability of P.

4.  (Movement) All cars are advanced by their 
current speed.

The four  conceptual  rules  above can  be  condensed  down 
further into 3 main steps:

1. v i (t+1 ) → min ( v i (t )+1,vmax ,d i (t ))
2. v i (t+1 ) → max (v i (t )−1,0 )  with P ( p )❑
3. x i (t+1 )→ x i (t )+v i (t+1 )

Where  d i (t )  is the distance to the next nearest vehicle, 

vmax  is  the  maximum  speed  and  P ( p ) is  the 

probability of deceleration.
In general there are multiple different parameters which 

can  be  varied  to  produce  different  traffic  scenarios.  For 
example  the  maximum  speed  or  the  randomization 
probability  may  be  varied.  Although  the  effect  of  the 
maximum speed is obvious the effect of the randomization is 
less so. Previous work has shown that a random deceleration 
is  needed  to  induce  non  deterministic  behavior  into  the 
model. In addition to the parameters governing the behavior 
of  each  individual  vehicle  within  the  rule  set  it  is  also 
possible to vary other factors, such as the initial density of 
cars in the simulation and also the topographical nature of 
the  road.  For  example,  in  the  simplest  form  of  the 
simulation, the road is a cyclic loop with vehicles exiting at 
one end and re-entering at the opposite end, with the same 
vehicle state. Other possible topographies include sections of 
road  with  variable  maximum  speeds,  merging  lanes, 



junctions, variable vehicle injection parameters etc.
For  this  work  this  simplest  form  of  road,  a  cyclic 

homogeneous road was used. Although this is not the most 
realistic  road pattern it  does  allow the most room for  the 
propagation of patterns through the system and also reduces 
the need to worry about “end effects” induced by the start 
and end of the road. 

Fig.  1.  The  spontaneous  appearance  and  subsequent  propagation  of 
congestion shock waves forwards in time and backwards through the road 
network is shown here

In figure 1 it can be seen that the model exhibits the traffic 
shock flow patterns expected to be observed in a freeway 
traffic  model.  The  propagation  of  the  shock  down  the 
freeway and ahead in time is represented here by the denser 
patterns  which  appear  with  no  discernible  cause  and 
propagate down and to the right. Although the existence of 
such  shock  patterns  is  no  guarantee  that  the  model  will 
accurately simulate other aspects of traffic flow, it is a good 
indication that there is, at some level, a relationship between 
the model and real life. 

C. Quantizing the Model

To assign power consumption to a single vehicle in the 
simulation it is necessary to categorize the vehicle  to allow 
easy comparison with the real world data. In the NS model 
each  cell  is  assumed  to  be  5m long  with  a  unit  time  of 
approximately 1 second. Hence an in-simulation speed of 1 
cell/unit time would translate into a real world speed of 5 
m/s. By assigning real world speeds to the speeds exhibited 
by the vehicles in the simulation, it  is possible to directly 
assign real world speeds, and hence power consumptions.

In  addition  to  the  speed  of  the  vehicle,  the  power 
consumption of the electric vehicle is strongly driven by its 
current  acceleration/deceleration  profile.  EVs  in  particular 
have an interesting power consumption for deceleration as 
they  may  regain  energy  when  decelerating  from  a  given 
speed.  However,  categorizing  the  power  consumption  by 
acceleration  and  relating  this  to  the  simulated  electric 
vehicle is not as straightforward as for speed. 

In particular the problem with the NS model is that the 
acceleration and deceleration are much harsher than would 
be observed in real life. The typical acceleration/deceleration 
profile for the EVs ranges from +/- 3m/s2 with the majority 
falling within +/- 1m/s2. Within the NS model the vehicles 
are allowed to accelerate or decelerate by one cell per unit 
time  step.  This  is  equivalent  to  a  speed  change  of 
approximately  5  m/s2,  a  markedly  higher  value  than  that 
exhibited  by  the  vehicles  on  the  road.  Future  work  may 
include reducing the size of each time step to allow for more 
realistic acceleration and deceleration values. 

However,  currently  an  assumption  is  made  that  the 
vehicles  will  only  be  categorized  as  accelerating, 
decelerating or at a steady speed. It is then possible to look 
at this as a three state system where the driver has chosen 
one of three possibilities:

1 Brake Applied
2 Accelerator Applied
3 No Action

The categorization for the acceleration of the real world 
data has been achieved by splitting the population for each 
of  the  populations  previously  categorized  by  speed,  into 
three  evenly  sized  populations,  ordered  by  acceleration 
magnitude.  So  the  deceleration  category  will  contain  the 
bottom third of the acceleration, the steady speed category 
will contain the middle third and the acceleration category 
will contain the top third. It may be possible with future data 
sets to directly split the data by the user's action  

Hence each individual power consumption point will be 
categorized by two variables, speed and acceleration. From 
these  categories  it  is  possible  to  gain  the  current  power 
consumptions for any simulated vehicle in any of the vehicle 
states by assigning a power consumption state based on that 
vehicles particular speed and an acceleration state based on 
the vehicles current acceleration condition. 

Statistics for the entire simulation, including such metrics 
as total power consumption, total efficiency or average, may 
then be collected and analyzed. 

[3] RESULTS

Previous modeling results suggests that a vehicle density of 
0.2 vehicles per spatial unit and a spontaneous deceleration 
probability  of  0.2  are  good  parameters  to  allow  the 
simulation to exhibit congestion like behavior.

In general the parameters for the simulation size (both in 
terms of physical size of the road, and the temporal length 
for each individual run) were chosen so that the statistical 
uncertainty of the general behavior of the model (rather than 
variation  within  the  population)  was  reduced  to  an 
acceptable level. Typically this would occur with a model of 
length 1000 cells and a 5000 second time frame.



Fig. 2 The power consumption per second for each vehicle at each time 
point is shown here. The data is drawn from the same simulation as figure 
1. Darker areas show points of low power use.

Figure  2 shows that  the back  propagating shock waves 
also exist  as  a  feature in the power map for  position and 
time.  It can be seen that there is a strong reduction in the 
overall  power  usage  for  any  vehicle  in  a  shockwave. 
However, typically it is not the power consumption which is 
most important metric for electric vehicles. A more useful 
metric  is  the  efficiency  of  the  vehicle,  which  is  normally 
measured in terms of kWh/km, a dimensional inversion of 
the mpg form more commonly used for internal combustion 
vehicles. 

Fig. 3 The vehicle efficiency is shown here. Lighter areas show areas of  
higher power usage per km and thus a lower overall efficiency.

It can be seen that the efficiency of the vehicle generally 
improves at  the instigation point  of  a  traffic  jam. Initially 
this may seem a counter intuitive result but in general EVs 
are less affected by congestion in terms of their efficiency, 
plus their most efficient speed is in general lower than that 

of  an  equivalent  IC  engined  vehicle.  So  a  traffic  jam, 
especially  under  something  closer  to  freeway  conditions, 
will normally slow the vehicle down and push it into a more 
efficient speed. It is expected that this would not be the case 
in urban driving, where the vehicle is operating close to its 
most  efficient  speed  under  free  flow  conditions,  so  any 
congestion  will  force  the  vehicle  down to a  less  efficient 
speed.

To more thoroughly investigate this, the vehicle density 
was  systematically  altered  and  the  metrics  for  the  CA 
analyzed.

Fig.  4  The  fundamental  diagram  of  vehicle  flow  vs.  occupancy  is 
reproduced here.

Figure  4  shows  that  this  simulation  will  reproduce  the 
fundamental diagram of flow vs. occupancy as observed in 
both real world data and in other simulation types. Although 
this model, as shown in other NS models, exhibits an earlier 
transition into congestion like behavior and a much sharper 
peak,  indicating  that  the  transition  phase  occurs  much 
quickly than for real world traffic.

Fig. 5 The instantaneous power usage is shown here. 

Figure 5 shows the average instantaneous power usage as 
a  function  of  vehicle  density  for  a  simulation  with  a 



maximum speed of 4 cell/s. The initial period of steady state 
power  usage  corresponds  to  complete  free  flow  of  non-
interacting vehicles.  Essentially each vehicle is  moving at 
the maximum speed without any forced deceleration from 
collision  avoidance  or  acceleration  back  up  to  maximum 
speed. As the density of the vehicles increases, the number 
of  interactions  between  vehicles  increases  leading  to  the 
subsequent decrease in the average speed.

Fig. 6 The average speed for all vehicles can be seen to fall as the vehicle 
density increases. This matches results in other simulation and in real world 
scenarios.

Figure  6  shows  a  similar  basic  form to  that  shown in 
figure  5,  due  to  the  strong  relationship  between 
instantaneous power and vehicle speed. 

The relationship between vehicle efficiency and speed is 
driven by a combination of two main factors. There is the 
energy required to produce the vehicle's speed and also the 
actual  speed  at  which  the  vehicle  is  moving.  The 
instantaneous power is the energy expanded to maintain a 
speed  and  the  speed  itself  determines  the  distance  over 
which this energy will be expanded.

Fig. 7 The vehicle efficiency in terms of kWh/km is shown here for four  
different maximum speeds.

At high speeds a vehicle will require a lot of energy to 
maintain the high speed, but it will also be covering a lot of 

ground,  whilst  at  low speeds a vehicle  will  have  a  lower 
power  usage  but  it  will  cover  less  distance  at  this  speed. 
Generally  the  most  efficient  speed  will  lie  somewhere 
between the two extremes. This is behavior common to any 
system which expends  energy  to  cover  distance.  At  some 
point  the  reduction  in  speed  will  dominate  the  efficiency 
equation, regardless of the reduction in energy usage. Hence 
at  low speeds  (which  occur  at  times  of  high  congestion) 
there will be a greatly reduced efficiency and an increased 
cost in terms of energy per distance covered.

Figure 7 shows how the efficiency of the vehicles (which 
here is represented by the metric of average energy used per 
cell  traveled)  varies  as  both  the  vehicle  density  and  the 
maximum allowed speed varies. It can be seen that although 
the  four  different  maximum  speeds  exhibit  the  same 
behavior  above  the  50%  occupation  rate,  they  exhibit  a 
marked divergence below this point.

This  divergence  is  due  to  the  differing  maximum 
allowable speeds. At low vehicle densities, each vehicle will 
accelerate up to the different maximum speed allowed by the 
different  model  conditions and hence the  vehicles  will  be 
operating  under  different  power  requirements  in  the  four 
different regimes. However for the different models, if the 
maximum speed  allowed  is  faster  than  the  most  efficient 
speed  (as  determined  by  the  real-world  data),  then  any 
interaction which reduces the average speed of the vehicle 
will  push  the  vehicle  down into  a  more  efficient  driving 
state.  Congestion  essentially  acts  as  a  traffic  calming 
measure to reduce the average speed of the vehicles.

The  convergence  of  the  data  at  points  above  the  50% 
occupation rate is due to each simulation being forced into a 
lower speed that is purely determined by the congestion of 
the system rather than the maximum allowed speed of the 
different models. At this point the different systems exhibit 
the same behavior as the speed and flow profiles are being 
dominated  by  the  identical  congestion  behavior  at  low 
speeds. 

Although  this  data  is  based  on  an  idealized  model, 
parallels  do  exist  within  experimental  data.  In  particular 
studies  have  shown that  the  effect  of  congestion  on  EVs 
depends  on  the  type  of  road  where  it  occurs.  For  urban 
congestion  the  EVs  become  more  inefficient  as  they  are 
forced into a low-speed/low-efficiency state. For interurban 
traffic,  congestion  leads  to  an  improved  efficiency  as  it 
pushes the EVs from a high-speed/low-efficiency state into a 
mid-speed/high-efficiency state. 

In  addition  to  simulating  the  features  of  real  world 
homogeneous  traffic  it  is  also  possible  to  simulate  less 
homogeneous  environments,  such  as  the  influence  of  a 
spatially limited speed restriction. 



Fig 8. The position/time figure demonstrates the effect of a single localized 
speed restriction.

In figure 8 the vehicle position time lines are plotted for a 
simulation  where  there  is  a  single  point  with  a  restricted 
speed on the road network. In this example the vehicle speed 
is restricted to 1 unit/s in the center of the road network. 

v i (t+1 ) → min (v i (t+1 ) , vres )
where

x i (t )∈ xres .

The creation of congestion shock waves can be seen to 
systematically occur in the area of the speed restriction, see 
figure 8, with the congestion propagating upstream from the 
restriction  over  a  protracted  distance.  In  addition  to  the 
systematic creation of new congestion events, the creation of 
reduced traffic flow downstream from the speed restriction 
acts  as  an  inhibitor  to  congestion  events  downstream  by 
reducing  the  traffic  flow  to  a  level  not  conducive  to 
congestion events.

To examine the effect of this event on the energy usage 
and efficiency of electric vehicles specifically, the average 
power usage and efficiency were collected for each point on 
the  road  network.  Due  to  the  run-run  variation,  the  data 
shown here is averaged from multiple runs.

Figure 9  The lines here show the average power usage and efficiency 
around a cyclic road with a single speed restriction at the half way point.

It can be seen that the effect of the single speed restriction 
on energy  and  efficiency is  to  induce  a congestion shock 
wave  which  propagates  upstream  through  the  traffic 
environment,  altering  the  average  energy  usage  and 
efficiency. This data, again, shows results which would be 
expected from the real  world data.  In particular there is a 
reduction in energy usage and a reduction in kWh/km as the 
vehicles slowdown from their less efficient, top speed. There 
is  then  a  marked  increase  in  power  consumption  and  a 
reduction  in  the  efficiency  of  the  vehicles  after  the 
restriction. The reduction in efficiency and increase in power 
consumption are both due to the acceleration of the vehicle, 
once past the speed restriction. However, it can be seen that 
this is a temporary effect with the vehicles quickly returning 
to their stead state of power usage and efficiency.

[4] CONCLUSIONS

Within this work it has been shown that it is possible to 
quantize a working Nagel-Schreckenberg cellular automaton 
simulation of freeway traffic with data gained from a real 
world electric vehicle data set. In particular it is possible to 
assign  the  average  power  consumption  for  specific  speed 
and  acceleration  profiles  within  the  experimental  data  to 
vehicle  states  for  individual  simulated  vehicles  within the 
simulation. 

Data  from the simulations shows similar  results  to  that 
obtained  from  the  purely  experimental  results  with 
systematic variations in efficiency and power usage as the 
vehicle density  increases.  The variations in efficiency and 
energy  usage  match  what  would  be  expected  from 
considering  the  speed  and  acceleration  profiles  of  the 
simulated vehicles as analogous to real world vehicles.

In  addition  to  the  macroscopic  statistics,  more  detailed 
examination of  heterogeneous road networks demonstrates 



the effect of a single speed restriction; both in the formation 
of shockwaves upstream from the restriction and also in the 
change in efficiency and energy usage up and down stream 
from the  restriction.  The  EVs  typically  slow down when 
approaching the congestion event and accelerate away from 
the congestion event, before settling down to a more steady 
state driving pattern.

The overall  conclusion is that  it  is  possible to  quantize 
cellular automata simulation using real world data, but care 
must be taken with those points of simulation which do not 
accurately map onto real world events.
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