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Abstract

Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to
global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical
framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings,
decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or
administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches
provide suitable metrics of local uncertainty—the fidelity of predictions at each mapped pixel—but have not been adapted
for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the
authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation
of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is
implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at
any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three
policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming
previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of
infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.
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Introduction

Risk maps estimating the spatial distribution of infectious

diseases in relation to underlying populations are required to

support public health decision-making at local to global scales

[1–3]. The advancement of theory, increasing availability of

computation and growing recognition of the importance of robust

handling of uncertainty have all contributed to the emergence in

recent years of a new paradigm in the mapping of disease: the use

of a special family of generalised linear models known as model-

based geostatistics (MBG), generally implemented in a Bayesian

framework [4,5].

MBG models take point observations of disease prevalence from

dispersed survey locations and generate continuous maps by

interpolating prevalence at unsampled locations across raster grid

surfaces. The most striking advantage of MBG in disease mapping

is its handling of uncertainty. Interpolating sparse, often

imperfectly sampled, survey data to predict disease prevalence

across wide regions results in inherently uncertain risk maps, with

the level of uncertainty varying spatially as a function of the

density, quality, and sample size of available survey data, and

moderated by the underlying spatial variability of the disease in

question. MBG approaches allow these sources of uncertainty to

be propagated to the final mapped output, predicting a probability

distribution (known formally as a posterior predictive distribution)

for the prevalence at each location of interest. Where predictions

are made with small uncertainty, these distributions will be tightly

concentrated around a central value; where uncertainty is large

they will be more dispersed. These techniques have been used to

generate robust and informative risk maps for malaria [6–12], as

well as a range of other infectious diseases [13–19], at scales

varying from national to global. Some studies have extended the

handling of variation through space to also include the temporal

dimension, allowing disease risk to be modelled and quantified

over time as well as space [6,20].

Implementation of MBG models over even relatively small areas

is extremely computationally expensive. Not only are the matrix

algebra operations required to generate predictions at each

individual pixel costly compared to simpler interpolation methods

[21,22], but this cost must be multiplied many times because

prediction uncertainty is evaluated by generating many, equally

probable, ‘‘realisations’’ of prevalence at each pixel. Implementa-

tions of MBG disease models over large areas therefore tend to be

via ‘‘per-pixel’’ computation whereby complete maps are built up

by generating predictive realisations for each pixel independently.

This allows the computational task to be broken down into many
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small, more easily manageable, operations. Such an approach

yields appropriate measures of ‘‘local’’ uncertainty: the set of

realisations for each pixel represents a posterior predictive

distribution of prevalence from which summary statistics such as

the mean, inter-quartile range or 95% credible intervals can be

readily extracted, providing the user with valid uncertainty

information for each individual location considered in isolation.

There is often a need to evaluate disease prevalence aggregated

across spatial regions, temporal periods, or combinations of both

[23,24]. This may be to quantify and compare mean prevalence

between countries or administrative units, for example, or to

measure a shift in mean prevalence between the start and end of

an intervention period or policy change. In addition, MBG

prevalence models can be used to estimate derived quantities such

as population totals living in regions at different levels of risk, or

the burden of disease cases expected within individual countries or

continents as a function of underlying prevalence [25], quantities

that by definition exist only over aggregated space-time units. It is

not possible, however, to construct posterior distributions for these

aggregate quantities using a per-pixel approach. To estimate the

mean of a region made up of multiple pixels, and the uncertainty

around this estimate, the correlation between all the pixels in the

region must be known. In a per-pixel approach, each pixel is

modelled as independent of its neighbours, ignoring any spatial or

temporal correlation. Failing to account for correlation between

pixels leads to gross underestimates of the uncertainty in the

aggregated quantity, especially over large regions [26].

The solution to the problem outlined above is to replace per-

pixel simulation of prevalence realisations with the simultaneous or

‘joint’ simulation of all pixels to be aggregated, recreating

appropriate spatial and temporal correlation between them [26].

Crucially, the set of pixel values can then be aggregated in any

way, or used as input in derived aggregated quantities, and

realisations of these aggregations will have the appropriate

posterior predictive distributions. Whilst conceptually simple, the

extension from local to regional simulation induces a fundamental

computational constraint in that the necessary calculations can no

longer be disaggregated into separate tasks for each pixel. This

constraint has thus far prevented any use of MBG in disease

mapping for the evaluation of aggregate quantities over very large

areas, despite the profound public health importance of such

measures. Where examples of joint simulation in MBG disease

mapping exist, they tend either to be over very small spatial

regions [8] or are achieved by simply breaking larger regions down

manually into smaller more manageable tiles [17].

In this paper we use a new approximate algorithm for joint

simulation to quantify, for the first time, aggregated uncertainty

over space and time in a global scale MBG disease model for

Plasmodium falciparum malaria prevalence [6]. We exemplify how

this approach allows uncertainty in prevalence predictions to be

enumerated at the continental, national, and sub-national scales at

which public-health decisions are usually made. We then extend

the model architecture to estimate a second quantity of particular

epidemiological interest: national populations at risk (PAR) under

different policy-relevant strata of P. falciparum transmission

intensity.

PAR estimates form a fundamental metric for malaria decision-

makers at national and international levels [24,27] and have also

been used to assess equity in donor funding distributions [28], chart

the changing exposure of human populations to the disease [29] and

provide baselines for predicted changes in exposure under climate

change scenarios [30]. A range of techniques have been used to

estimate PAR, including the use of MBG and other prevalence

models to delineate risk strata in relation to underlying population

distributions [6,29,31–33]. None of these studies have incorporated

the inherent uncertainty in prevalence estimates, however, and the

resulting PAR estimates are presented as point values with no

uncertainty metrics. Here we use the joint simulation framework to

generate posterior predictive distributions of PAR living under

conditions of low, medium, and high stable transmission within each

malaria endemic country, allowing the uncertainty inherent in these

estimates to be quantified in a formal statistical framework. These

PAR estimates are presented in full with this paper, making them

available to any interested parties to support theoretical and applied

epidemiological and public health applications.

In the remainder of this introductory section we outline the

computational challenges of large scale joint simulation and review

existing approaches to overcoming them. In the methods section

we present our algorithm for efficient joint simulation over very

large grids, detail its implementation and testing with the global P.

falciparum model, and its extension to estimating PAR. The results

section provides the outcome of the testing and validation

procedures and examples of jointly simulated realisations of

continental, national, and locally aggregated estimates of P.

falciparum prevalence in 2007. We present our national level

estimates of PAR and exemplify how the accompanying

uncertainty metrics can be communicated effectively to enhance

their utility to decision-makers. We conclude by discussing the

strengths and weaknesses of our modelling architecture, the

implications for the future of disease mapping, and useful

directions for further research.

The Computational Challenge of Joint Simulation
A general form for MBG models can be defined as follows:

Nz
i *Bin(Ni, p(x))

p(x)~g{1(f (x))

f Dw*GP(Mw,Cw)

ð1Þ

such that in a disease survey of N individuals at a given location,

Author Summary

Reliable disease maps can support rational decision
making. These maps are often made by interpolation:
taking disease data from field studies and predicting
values for the gaps between the data to make a complete
map. Such maps always contain uncertainty, however, and
measuring this uncertainty is vital so that the reliability of
risk maps can be determined. A modern approach called
model-based geostatistics (MBG) has led to increasingly
sophisticated ways of mapping disease and measuring
spatial uncertainty. Many health management decisions
are made for administrative areas (e.g., districts, provinces,
countries) and disease maps can support these decisions
by averaging their values over the regions of interest.
Carrying out this aggregation in conjunction with MBG
techniques has not previously been possible for very large
maps, however, due largely to the computational con-
straints involved. This study has addressed this problem by
developing a new algorithm and allows aggregation of a
global MBG disease map over very large areas. It is used to
estimate Plasmodium falciparum malaria prevalence and
corresponding populations at risk worldwide, aggregated
across regions of different sizes. These estimates are a
cornerstone for disease burden estimation and are
provided in full to facilitate that process.

Geostatistical joint simulation of P. falciparum
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the number observed to be infected Nz is modelled as binomially

distributed with probability of infections given by p, the underlying

prevalence of the disease in question, which is modelled as a

transformation via an inverse link-function g of an unknown

Gaussian process (GP) f [34,35]. A Gaussian process in the

context of disease mapping is a convenient probability distribution

for 2-d surfaces (or 3-d cubes if considering time), describing

probabilities associated with different forms of the surface (or

cube). Using Bayesian inference, the Gaussian process can be

updated to take account of the input data, providing a refined

description of these probabilities. Possible surfaces can then be

drawn from this updated Gaussian process which, after passing

through the inverse link-function, provide realisations of the target

disease surface. The Gaussian process can take a wide range of

forms: the central tendency at any location is governed by the

underlying mean function Mw, whilst textural properties (the

roughness of the surface, and its tendency to fluctuate across space)

are governed by the covariance function Cw. The symbol w

denotes a set of nw parameters that define the form of the

covariance and mean, which can include covariate coefficients.

In MBG, the aim is to estimate the joint posterior distribution of

the model parameters w and the values of f evaluated at all

locations and times for which a prediction is required - generally

across the nodes of a regular raster grid. Computationally, this task

can be split into two distinct phases. Firstly, Markov chain Monte

Carlo (MCMC) can be used to generate realisations from the joint

posterior of w and f at only the nd space-time locations xd ,td

where data exist, denoted f (xd ,td ). This is intuitive because it is

only at these locations that the fit of the Gaussian process is

evaluated, and this means the MCMC must only consider a

multivariate normal distribution of dimension nd , which is

generally several orders of magnitude smaller than if all prediction

locations across the raster grid were considered. A realisation of w
and f (xd ,td ) provides a ‘skeleton’ from which the Gaussian process

can be evaluated at all prediction locations across a raster grid in a

second computational stage. Conditional on these ‘skeleton’

realisations, the value of f at each prediction location and time

f (xp,tp) can be sampled from its posterior predictive distribution:

f (xp,tp)jw, f (xd ,td )*

Normal(Mwjxd ,td
(xp,tp),Cwjxd ,td

(xp,tp; xp,tp))
ð2Þ

where the posterior predictive mean and covariance parameters

are given by the standard conditioning formulas for multivariate

normal variables [36 (p.367)]:

Cwjxd ,td
(xp,tp; xp,tp)~Cw(xp,tp; xp,tp)

{Cw(xp,tp; xd ,td )Cw(xd ,td ; xd ,td ){1Cw(xd ,td ; xp,tp)
ð3Þ

Mwjxd ,td
(xp,tp)~Mw(xp,tp)

zCw(xp,tp; xd ,td )Cw(xd ,td ; xd ,td ){1(f (xd ,td ){Mw(xd ,td ))
ð4Þ

By carrying out this two-step procedure over many realisations,

samples are built up from the target posterior predictive

distribution (f (xp,tp)Dd).

In a per-pixel implementation, the predictive distributions

(f (xp,tp)1Dd), (f (xp,tp)2Dd), . . . (f (xp,tp)np
Dd) at all np prediction

locations in the output raster are realised independently to

generate local models of uncertainty. In this case, the largest

single computational component is the population and factorisa-

tion (via a procedure known as the Cholesky decomposition [37])

of the data-to-data covariance matrix Cw(xd ,td ; xd ,td ) which, in

typical disease prevalence data sets where nd is in the hundreds or

thousands, is a relatively minor task that could generally be

achieved on a standard desktop computer. The subsequent

sampling from the posterior predictive distribution (as in Eq. 2)

is trivial: the posterior predictive mean and covariance refer to a

single prediction location and sampling therefore amounts to

drawing from a univariate normal distribution. Total computation

for each pixel is therefore modest, and the cost of generating the

maps grows simply in proportion to the number of pixels involved,

np.

Switching from a per-pixel implementation to a joint simulation

over many prediction locations increases profoundly the compu-

tational challenge. The efficiency of a per-pixel approach arises

from the effective reduction of np to one, as each pixel is

considered in isolation. Joint simulation requires that np is

preserved as the total number of prediction points, which can be

many millions if large areas are considered at reasonably fine

spatial resolution. In addition to the nd 6 nd data-to-data

covariance matrix, the np 6 np prediction-to-prediction and nd 6
np data-to-prediction covariance matrices must be populated. More

importantly, in the subsequent sampling from the posterior

predictive multivariate normal distribution, the prediction-to-

prediction covariance matrix must be factorised [37]. The

computational cost of this operation is proportional to the cube of

np. To put this non-linear scaling in context, if a direct joint

simulation of a 1006100 raster grid could be computed in one

minute, a 100061000 grid would take approximately 66107 sec-

onds (around 694 days). In practice these scaling factors along with

those of memory and storage requirements mean direct joint

simulation using the equations outlined above is generally limited to

predictions at a maximum of around 10,000 points [17,38], at least

two orders of magnitude too few for global scale mapping at sub-

10 km resolution, even at a single time period.

Existing Solutions
In response to the strict computational limits of direct joint

simulation outlined above, a wide range of algorithmic and

mathematical tools have been developed that increase substantially

the maximum number of prediction locations np that can be

feasibly handled.

The most widely used family of joint simulation algorithms in

geostatistics is known as sequential simulation [39–41]. Instead of

simulating the joint distribution across all np prediction locations

simultaneously, sequential simulation evaluates each prediction

location in turn. The properties of the multivariate normal model

are preserved by conditioning each prediction location not only on

the input data, but also on the values simulated at previously

evaluated prediction locations, which are effectively treated as

conditioning data in subsequent simulations. This approach means

the data-to-data covariance matrix Cw(xd ,td ; xd ,td ) gains an

additional row and column after each simulation, ultimately

approaching (npznd )2 elements, which becomes prohibitively

large as np approaches around 10,000 points. In response,

sequential simulation algorithms generally limit the conditioning

data to a small neighbourhood of nw points around each

prediction location, specified either by number or by spatial

proximity. This computational shortcut is justified by the declining

influence of more distant data, which means a simulation

conditioned on nw data approximates asymptotically one condi-

tioned on np data [39]. Whilst allowing potentially very large

prediction grids to be evaluated, the restriction of conditioning

data to local neighbourhoods necessitates that, for each prediction

Geostatistical joint simulation of P. falciparum
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location, these nw data are identified via a search algorithm

[40,42], and bespoke linear algebra systems are evaluated and

solved (Eqs. 3 and 4). The cost of the latter for each pixel is

proportional to n3
w, meaning that as the number of prediction

locations np grows, the size of nw that can be feasibly computed

reduces sharply.

In a disease mapping context, the goal is to generate joint

simulations conditioned by observed prevalence or incidence data.

This precludes the direct use of a wider class of algorithms

developed for unconditional joint simulation [5], where the goal is

simply to realise random fields with correct mean and covariance

properties, unconstrained by any observations. Conditional

simulation can, however, be split into an unconditional joint

simulation and a per-pixel prediction task [42 (p.494),43], as

follows:

f (xp,tp)jf (xd ,td )*fu(xp,tp)

zC(xp,tp; xd ,td )C(xd ,td ; xd ,td ){1(f (xd ,td ){fu(xd ,td ))
ð5Þ

where f (xp,tp) is the target conditioned field. In practical terms,

this decomposition allows generation of the conditioned field in

two stages: unconditional simulation is used to generate the

unconditioned field (the first term above, fu(xp,tp)), which is then

combined with the ‘skeleton’ of the conditioned field at the data

points f (xd ,td ) in a standard per-pixel prediction (the second right-

hand term). The sum of these terms yields a conditioned field with

an identical distribution to one generated directly via conditional

simulation. The advantage in working with unconditional

simulation algorithms arises because, in the absence of irregularly

located data, all computations relate to locations arranged in a

regular grid, a geometric convenience that can be exploited in a

variety of ways [44–47]. An elegant and widely used family of

techniques for grid-based unconditional simulation is based on

spectral decompositions, principally the fast Fourier transform, of

which the ‘circulant embedding’ algorithm is particularly popular

[48–50]. These techniques offer extremely efficient exact simula-

tions but become infeasible for more than around one million

prediction locations [38], due in part to memory requirements

resulting from the necessary replication of large covariance

matrices. Furthermore, such algorithms require the prediction

grid to be regular, that is, for pixels to be arranged in rows and

columns of equal spacing, which is not the case with global grids

defined using spherical coordinates.

Methods

A Model-Based Geostatistical Model for P. falciparum
Parasite Rate

A new global map of P. falciparum endemicity in 2007 has

recently been published [6], the first such enumeration of global

malaria risk in 40 years. This map was generated from an

assembly of 7,953 community parasite surveys collated from 78

countries between 1985 and 2007 used with a Bayesian space-time

MBG model to predict urban-adjusted P. falciparum parasite rate in

the epidemiologically informative 2 up to 10 yr age range, PfPR2–10,

across a regular spherical grid within the limits of stable transmission

[31]. The model form is described in full elsewhere [6]. The original

implementation of this model used an MCMC inference stage to

generate 500 samples from the joint posterior distribution of the

space-time Gaussian process at the 7,953 locations for which input

parasite rate survey data existed f (xd ,td ), and of a 13 element

parameter vector, w. A per-pixel approach was then used to

evaluate, for each realisation, values of the Gaussian process at all

desired prediction locations f (xp,tp), which were then combined

with an independently sampled Gaussian random noise component,

and subjected to an inverse logit transform and multiplication with

an age-correction factor to yield the target quantity PfPR2–10. The

set of realisations of PfPR2–10 for each pixel provided an appropriate

measure of local uncertainty, with which the precision of PfPR2–10

predictions could be assessed at all individual pixel locations

worldwide.

The aim of the current study was to implement the predictions

described above via joint simulation, allowing quantification of

uncertainty in predicted PfPR2–10 over spatially and temporally

aggregated regions. This presented an unprecedented challenge in

geostatistical disease modelling for a number of reasons. Firstly,

the target prediction space was exceptionally large: a grid of

resolution equivalent to 565 km at the equator spanning the

extent of stable P. falciparum transmission in Africa (the largest

contiguous region of interest), evaluated temporally for each of the

276 months of 1985–2007 (the study period of interest,

corresponding to the temporal span of the collated PfPR survey

assembly) constituted approximately 623 million individual

prediction locations, several orders of magnitude larger than any

other MBG disease model extent in the published literature.

Secondly, the model had a relatively complex form, particularly in

the covariance function [51] which was spatiotemporal (covari-

ances were modelled between locations spread across time as well

as space), spatially anisotropic (covariance between spatial

locations was influenced by direction as well as separation

distance), and included a periodic component in the temporal

axis (to address observed seasonality). Finally, spatial locations of

data and predictions were represented on a sphere, with their

separations evaluated using great-circle distance, a geometric

complication that was necessary to avoid the distorting effects of

map projections when dealing with global scale phenomena.

Together, these factors precluded the use of the existing

approaches to joint simulation described above. Spectral decom-

position-based algorithms for unconditional simulation would have

required the data-to-data covariance matrix to be reflected along

three axes, exceeding memory limits of currently available

computers. More fundamentally, the incorporation of the

curvature of the earth in the arrangement of prediction locations

meant the matrix could not be considered to be in block Toeplitz

form [38,44,48]. Whilst a standard sequential simulation could, in

principle, have been achieved within available memory con-

straints, the very large number of prediction locations would have

meant limiting conditioning data to insufficiently small prediction

neighbourhoods in space and time in order to achieve computa-

tion in a feasible timescale. Instead, a novel approximate algorithm

for joint simulation was developed that overcame these constraints,

and this is presented in the next section.

Achieving a Very Large Joint Simulation
Sequential simulation algorithms maintain feasible memory and

computation requirements over large grids by limiting condition-

ing data to small local neighbourhoods, but the repeated

identification of local data, evaluation of local covariance matrices,

and subsequent linear algebra calculations are prohibitively

inefficient for very large numbers of prediction locations. The

extremely efficient algorithms developed for unconditional joint

simulation over regular grids, such as circulant embedding, also

reach memory limits for very large prediction tasks, and are not

suited to sphere-based grids. In this study a new algorithm was

developed that adopted and extended the principle of traditional

sequential simulation - that joint simulation over very large areas

can be broken down into many small simulations conditioned on

Geostatistical joint simulation of P. falciparum
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nearby values - but incorporated some of the efficiencies exploited

by unconditional algorithms operating on a grid whilst overcoming

the complications of sphere-based grid systems.

Firstly, the decomposition of a conditional joint simulation into

an unconditional joint simulation and a per-pixel conditioning stage

was exploited (Eq. 5). The bulk of the computational challenge

therefore lay in generating unconditioned realisations of the zero-

mean Gaussian process fu(xp,tp) across the np nodes of the 3-d

space-time prediction grid given only realisations of the scalar

parameter vector w, where np = 6.236108 was the largest individual

prediction task (for the Africa region, with 1718 columns, 1315 rows

and 276 months). Each grid pixel was 0.04165 decimal degrees in

height and width, corresponding to approximately 565 km at the

equator. Defining a regular grid in terms of spherical coordinates

meant that the width of pixels varied with latitude. A second stage

was then required to condition the field fu(xp,tp) given realisations

of the field at the nd data locations f (xd ,td ) These two stages are

now discussed in more detail.

Stage 1: Unconditional simulation of a random field. In

this first stage the principle of sequential simulation was adapted.

Rather than randomly visiting individual prediction locations in

turn, each column of each monthly surface of the 3-d space-time

prediction grid was jointly simulated in sequence, scanning left-to-

right across each monthly surface and from the earliest month

(January 1985) to the latest (December 2007). Each simulated

column then became available for conditioning subsequent

columns. As with conventional sequential simulation, the size of

the conditioning set was prevented from becoming prohibitively

large by limiting conditioning data to a set of local prediction

locations. A key inefficiency in the use of local conditioning

neighbourhoods in conventional sequential simulation algorithms

is that, because the spatial (or spatiotemporal) configuration of

data with respect to the target prediction location in each

neighbourhood is likely to be unique, the data-to-data and data-

to-prediction covariance evaluations must be repeated for every

sequential prediction. In this algorithm, however, the locations of

conditioning data relative to the prediction column were defined a

priori, using a ‘‘conditioning footprint’’. This footprint prescribed

those previously simulated grid locations that were used to

condition subsequent columns, identified by their relative rather

than absolute position in relation to the prediction column. This

allowed a single footprint (once edge-effects had been handled,

discussed later) to be used repeatedly to define the location of

conditioning pixels for every column.

This procedure resulted in a number of computational

advantages over conventional sequential simulation. Firstly, since

the locations of conditioning data, (xd̂d ,td̂d ), (where the ‘‘hat’’

denotes previously simulated values subsequently treated as

conditioning data) were prescribed a priori, there was no

requirement to repeatedly search for and identify conditioning

data proximal to prediction locations. Secondly, because the

relative positions of conditioning data were the same for all

columns, the associated data-to-prediction Cw(xd̂d ,td̂d ; xp,tp), pre-

diction-to-prediction Cw(xp,tp; xp,tp), and data-to-data Cw(xd̂d ,td̂d ;
x

d̂d
,t

d̂d
), covariance matrices only needed to be evaluated once for

each realisation, along with the factorisation of the latter matrix

required in the evaluation of the posterior predictive covariance

(Eq. 3) and mean (Eq. 4). Defining these components a priori meant

that computations to be performed per realisation for each column

were restricted to a single matrix multiplication to complete the

evaluation of the posterior predictive mean (Eq. 4) and the

subsequent joint sampling of the column pixel values from the

multivariate normal posterior predictive distribution (Eq. 2),

resulting in very large savings in memory and computation.

Because the algorithm scanned left-to-right, only columns to

the left of the prediction column could be included from the

same month. Preceding months could include columns both to

the right, directly ‘below’ and to the left. The exact configuration

of the footprint in terms of the number and spacing of preceding

columns and the number and spacing of preceding months could

be varied. Similarly, the density of included columns could be

varied such that pixels from every 2nd, 5th, or 10th row of each

column, for example, could be included rather than from every

row. Analogous to the specification of conditioning neighbour-

hoods in conventional sequential simulation, the success of the

procedure presented here was dependent on a suitable

configuration of the conditioning footprint. This configuration

represented a trade-off between the computational cost of the

algorithm, which scaled sharply with larger and more dense

footprints, and the extent to which the resulting unconditioned

field approximated the hypothetical result obtained using a

direct simulation. The appropriate tool for identifying a suitable

footprint configuration was the extent to which the resulting

simulated field reproduced the required covariance properties

specified by w, and this is discussed further in subsequent

sections.

A final algorithmic complication arose from the constraints

placed on the footprint configuration by the spatial and temporal

boundaries of the grid. Clearly a footprint using nc columns to the

left of the prediction column is truncated by the left-hand

boundary of the grid until the algorithm scans to predict the

ncz1’th column. A similar truncation occurs as the algorithm

approaches the right-hand grid boundary and applies also to the

temporal dimension as columns from the preceding nm months are

not available until the prediction month progresses to month

nmz1. These edge effects were handled by simply defining a series

of truncated footprints that gradually became larger as the

algorithm scanned away from the left-hand margin, and from

the early months. Similarly, as the scan-line approached the far

right-hand margin and/or the later months, it again became

progressively constrained. Prediction of the very first column,

which by definition had no previously simulated data on which to

be conditioned, was achieved simply by direct unconditional

simulation. The geometric operation of the algorithm is illustrated

schematically in Figure 1. Each unique footprint resulted in a

corresponding unique data-to-data and data-to-prediction covari-

ance matrix. As with the matrices supporting the non-truncated

footprint, these were evaluated and factorised a priori, and were

stored in memory to be available as the algorithm scanned across

the columns of the grid. The up-front memory requirements of the

algorithm were therefore heavily influenced by the number of

different truncated footprints that needed to be defined, which in

turn was determined by the spatial and temporal extent of the full

footprint.

Stage 2: Generation of a conditioned field. Values of

the unconditioned field fu(xd ,td ) at each of the nd data locations

were defined by assigning the values of the nearest prediction

node in space and time (leading to a maximum spatial

mismatch of ,2.5km which was considered acceptable in the

global-scale model). A standard per-pixel prediction was then

carried out to combine these values with the conditioning data

f (xd ,td ) and the unconditioned field fu(xp,tp), to generate

realisations of the target conditioned field f (xp,tp) as outlined in

Eq. 5.

All code was written in the R [52] and Python [53]

programming languages, incorporating only open-access libraries,

and is available to download freely from http://github.com/

malaria-atlas-project/mbg-world/tree/generic.

Geostatistical joint simulation of P. falciparum
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Predicting Aggregated Uncertainty in P. falciparum
Endemicity Predictions

Having implemented the algorithm described above, the jointly-

simulated conditioned field f (xp,tp) was combined with per-pixel

samples from an uncorrelated Gaussian noise component, subject

to an inverse-logit transform, and multiplied by an age correction

factor to yield realisations of PfPR2–10. Crucially, in contrast to the

original per-pixel implementation [6], each realisation represented

a joint simulation of prevalence, so the back-transformed and age-

corrected space-time cube could be aggregated into any arbitrary

spatial, temporal, or space-time unit, with realisations of the

aggregated quantity representing samples from the posterior

predictive distribution. This was exemplified by generating

realisations of mean PfPR2–10 across the 12 months of 2007 for

three scales of spatial aggregation: continental, national, and at the

first sub-national administrative unit level, quantities that span the

spectrum of information scales required by malaria public-health

decision-makers.

Predicting Aggregated Uncertainty in Populations at Risk
Under Different Strata of P. falciparum Endemicity

Previous approaches to estimating PAR have used modelled

surfaces of P. falciparum prevalence to delineate the boundaries of

various risk strata, and combine these mapped boundaries with

population maps to calculate the population living in each strata

[6]. Because the prevalence modelling in this earlier work was set

in a per-pixel framework, spatial uncertainty in the prevalence

predictions could not be propagated into the PAR estimates since

the latter is a spatially aggregated quantity. This limitation was

removed in the current study since prevalence was modelled using

a joint simulation framework. Population data [54] were obtained

and adjusted to form a 161 km grid surface for 2007, and a

previously defined stratification [31] was used to delineate areas in

which stable transmission of P. falciparum malaria was likely to

occur (defined as areas where incidence is likely to exceed 0.1 case

per 1000 per annum). These inputs are explained further in

Protocol S1. Within these limits of stable transmission, each jointly

simulated realization of PfPR2–10 was converted into a categorical

map identifying pixels where prevalence was predicted as either

low stable (PfPR2–10#5%), medium stable (PfPR2–10.5%#40%)

or high stable (PfPR2–10.40%) transmission. These prevalence

classes have been proposed previously as of particular relevance to

decision-makers when developing optimal strategies for interven-

tion and control [55,56]. Each realized endemicity class map was

downscaled to a 161 km grid and combined with the population

grid and an additional grid identifying national boundaries to

allow calculation of a realization of PAR in each of the three

endemicity classes in each country. Repeating this procedure

across all 500 realizations allowed posterior predictive distributions

to be constructed, from which the posterior mean was extracted as

Figure 1. Progression of footprint algorithm for efficient joint simulation of the space-time Gaussian random field. The sequence of
schematic diagrams shows the algorithm at six different stages. In this schematic, the prediction space is 25 columns by 25 rows by two months. In
each diagram the target column to be predicted is marked in red, pixels already predicted to the left or below the target column are shaded, those
yet to be predicted are left white. The ‘footprint’ of conditioning data used in each prediction is shaded blue. In this example the full footprint extent
is specified to include, in the target month, seven columns to the left of the target column and, in the preceding month, seven columns to the left,
seven to the right and the column directly below the target column. This full extent is thinned to include only every second column and row.
Diagram 1 (lower left) shows the algorithm at an early stage: having already simulated values in the first three columns of the first month, the target
column being simulated is the fourth from left. The full footprint is truncated and consists of only two columns to the left of the target column. As the
algorithm scans across this first month, more columns become available to the left and the footprint grows (diagrams 2 and 3). In diagram 4 the
algorithm has moved to the second month, and the footprint can now begin to include simulated pixels from the preceding month. In diagram 5 the
full footprint is shown, truncated neither to the left nor right. As the algorithm scans further to the right to complete the second month, the footprint
becomes truncated once more, this time by the right-hand margin (diagram 6).
doi:10.1371/journal.pcbi.1000724.g001
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a point estimate for each country-class and the inter-quartile range

was extracted as an accompanying uncertainty metric.

Testing and Validation
Generating aggregated sets for validation. In the original

implementation of the global P. falciparum map [6], two aspects of

the model performance were tested: the ability (i) to accurately

predict PfPR2–10 at individual pixel locations and, (ii) crucially, to

provide posterior predictive distributions of PfPR2–10 that

represented appropriate measures of local uncertainty for each

pixel. Correspondingly, the joint simulation implemented in the

current study was tested for the ability to (i) accurately predict

mean PfPR2–10 over aggregated sets of pixels and (ii) generate

appropriate posterior predictive distributions of these aggregated

means. A hold-out set of 10% of the data was selected using a

spatially-declustered stratified random sampling procedure

described previously [6], and the modelling procedure was re-

run using the remaining 90% of data to predict, via joint

simulation, values at the hold-out locations. Aggregated sets of

different sizes were made from this set of jointly simulated

predictions. The ideal aggregated sets for testing would have

consisted of complete spatial and temporal regions. Such test sets

cannot exist, however, since it is both practically and theoretically

impossible to measure PfPR2–10 continuously over large spatial

regions and time periods. As an alternative, sets were made by

aggregating non-contiguous pixels from the hold-out set dispersed

through space and time. These sets were made by simple random

sampling from the full hold-out set and consisted of 1000 sets each

of sizes between 2 and 100 pixels. Sets made in this way were

dispersed in both space and time and this was preferred to an

alternative strategy of defining spatial or temporal-only sets so that

the full space-time functionality of the algorithm could be assessed.

Additionally, very few long time series of data existed at the same

spatial location, preventing the definition of time-only validation

sets. For each set, the true arithmetic mean PfPR2–10 was

extracted, along with the corresponding posterior predictive

distribution of the mean generated via joint simulation.

Testing point predictions of aggregated mean PfPR2–10. For

each simulated set, a point estimate of the mean PfPR2–10 was derived

using the mean of the posterior predictive distribution, and the error

between this prediction and the observed true mean PfPR2–10 was

calculated. A plot was constructed that plotted for each set the error

value on the y-axis and the set size (number of aggregated pixels) on the

x-axis, allowing a visualisation of the spread of errors associated with

sets of different sizes. Additionally, the mean error and mean absolute

error were calculated for each set size and overlaid for reference on the

same plot.

Testing posterior predictive distributions of aggregated

mean PfPR2–10. The following procedure was implemented to

assess the fidelity of the posterior predictive distributions of mean

PfPR2–10 for each set as models of uncertainty. Firstly, each

distribution was summarised using 100 equally spaced quantiles.

Secondly, each quantile was considered in turn and the proportion

of true mean PfPR2–10 values, across all the aggregated sets, that

exceeded the corresponding predicted mean PfPR2–10 value for

that quantile was calculated. This proportion was interpreted as an

‘‘observed’’ probability threshold and was plotted against the

‘‘predicted’’ probability threshold associated with that quantile. In

a perfect model it would be expected, for example, that 50% of the

true set means would exceed the values predicted by the

corresponding 0.5 quantile of each posterior predictive

distribution, 90% would exceed the values predicted by the 0.1

quantile, and 99% the value predicted by the 0.01 quantile. By

calculating the actual proportions of true means exceeding each of

the 100 quantiles, a ‘‘coverage’’ plot was generated that compared

these observed and predicted probability thresholds across the

range of probabilities from zero to one. In a perfect model, all

plotted values would lie on the 1:1 line indicating an exact

correspondence between predicted and observed probability

thresholds, and an exact representation of the uncertainty in

aggregated predictions. This procedure was carried out for 1000

sets each of size 1, 2, 5, 10, 15, 20, 30, 40, and 50 pixels drawn by

simple random sampling from the full space-time hold-out set.

Results

Testing and Validation
Testing point predictions and posterior predictive

distributions of aggregated mean PfPR2–10. Figure 2(A)

shows the errors in the predicted mean PfPR2–10 values of many

simulated sets of different sizes. The mean error, shown by the

green line, was effectively zero for all set sizes, indicating that the

model produces unbiased predictions with no overall tendency to

over- or under-predict mean PfPR2–10. As would be expected, the

dispersion of these errors reduced with set size, as did their mean

magnitude (shown by the mean absolute error line in red). Mean

absolute error for sets of size 1, 25, 50 and 100 pixels was 11.4, 2.7,

1.9 and 1.3 PfPR2–10 respectively. Figure 2(B) shows the coverage

plots for sets of different sizes. Comparison of predicted and

observed probability thresholds revealed a similar pattern for

aggregated sets regardless of their size. For probability thresholds

between 0 and 0.5, the predicted and observed probabilities

corresponded closely. Between thresholds of 0.5 and 1, the

predicted probabilities tended to under-predict slightly the

observed probability. This meant, for example, that around 80%

of the true mean PfPR2–10 values exceeded the predicted 0.7

probability threshold, rather than the 70% predicted by the model.

This suggested that the rising limb of the posterior predictive

distributions tended to rise too gently towards the peak, thus

underestimating slightly the probability of a given prediction

taking values smaller than its point estimate. Taken as a whole, the

coverage plot suggested that posterior predictive distributions were

likely to represent predictive uncertainty reasonably well, albeit

with slight deviations from a perfect model discussed above.

Predicting Aggregated Uncertainty in P. falciparum
Endemicity Predictions

Figure 3 provides examples of five of the 500 jointly simulated

realisations of PfPR2–10 within the global limits of stable

transmission, aggregated temporally across the 12 months of

2007. None of these maps, taken individually, are intended to

represent the true pattern of global prevalence. Each is driven

by the underlying data but represents a random draw from a

universe of possible maps given the model specification, the

information in the data, and the resultant modelled uncertainty.

Whilst the large-scale regional patterns of endemicity are similar

in each realisation, small scale heterogeneity exists between

each, and this variation across the 500 realisations defined the

form of the posterior predictive distribution of the global

surface. The validation procedures explained above provided

evidence of the suitability of these surfaces to be aggregated

spatially or temporally to provide appropriate posterior

predictive distributions of mean PfPR2–10 within spatiotemporal

units of different sizes. Figure 4 provides examples of this

functionality: posterior predictive distributions are shown for

mean PfPR2–10 across the entire African continent, across three

individual countries (Ghana, Democratic Republic of Congo

(DRC) and Kenya), and across a first level administrative unit in

Geostatistical joint simulation of P. falciparum
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each of these countries (Ashanti Region, Ghana; Kinshasa

Province, DRC; Nyanza Province, Kenya). As would be

expected, the dispersion of the distributions, which can be

interpreted directly as the modelled uncertainty in the predicted

mean PfPR2–10, tended to decrease as aggregated predictions

were made over progressively larger regions, such that the

continent-wide mean was predicted with lower uncertainty than

were national-level means which, in turn, were less uncertain

than first-level administrative unit means. Dispersion was also

moderated, however, by predictive uncertainty influenced by

the availability of input survey data in different regions. This

explains why the posterior predictive distribution for DRC, a

country with very few available survey data, is substantially

more dispersed than that for Kenya, for which many survey

points exist, despite constituting a much larger spatial unit of

aggregation. These example plots also illustrate in general terms

why joint-simulation is necessary when predicting aggregated

prevalence. Under a standard per-pixel implementation with all

locations simulated independently, the variance of the aggre-

gated mean PfPR2–10 would decline in proportion to the square-

root of the number of pixels in the aggregated unit. At even the

first administrative unit level, this would result in artificially

small variances for the posterior predictive distributions. At

national and continental levels the predicted uncertainty would

effectively be zero. Under the joint simulation approach

presented here, the space-time variance structure is preserved

and this resulted in even the continent-wide prediction retaining

a non-negligible level of uncertainty.

Figure 2. Validation results. A validation procedure generated many
sets of aggregated pixels for which a posterior predictive distribution
and point estimate of the set-mean PfPR2–10 could be compared to the
true value. In (A) the error between the point estimate and true value is
plotted against the size (number of pixels) of each aggregated set
(black dots). Also shown are smoothed moving averages of the mean
error (green line) and mean absolute error (red line) in relation to set
size. (B) is a coverage plot comparing, for aggregated sets of different
sizes, the correspondence between predicted probability thresholds (as
provided by the modelled posterior predictive distributions of mean
PfPR2–10 in the validation sets) and actual probability thresholds
(defined as the observed proportions of true set means exceeding
the predicted threshold values).
doi:10.1371/journal.pcbi.1000724.g002

Figure 3. Simulated global surfaces of PfPR2–10. Examples of five
of the 500 realisations of PfPR2–10 generated via the joint simulation
algorithm. Each of these maps represents an equally possible ‘reality’
and the full set of 500 provides a model of the probable prevalence at
all locations. Because each map is jointly simulated, pixels within any
spatial region can be aggregated together to define a regional mean,
and the 500 different versions of that mean across the set of maps
provides a model of the uncertainty for that mean value. Simulation is
constrained to the global limits of stable transmission.
doi:10.1371/journal.pcbi.1000724.g003
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Predicting Aggregated Uncertainty in Populations at Risk
under Different Strata of P. falciparum Endemicity

Estimated 2007 populations living under low, medium, and high

stable transmission risk are presented by country in Protocol S1 along

with accompanying posterior inter-quartile ranges. Figure 5(A)

provides an example of mapped national PAR estimates for the high

stable transmission risk class (PfPR2–10.40%). Figure 5(B) shows a

ranking of each country in terms of model-based uncertainty,

quantified by comparing the width of the posterior inter quartile

range associated with each PAR estimate. Figure 5(C) shows an

equivalent uncertainty ranking for relative PAR (percentages of each

country’s population living under high stable conditions). Further

details on the methods and interpretation of the presented results can

be found in Protocol S1.

Discussion

Numerous algorithms exist that seek to increase the efficiency of

joint simulation, including the widely-used family of sequential

simulation algorithms, and those based on spectral decompositions

operating on regular lattices. Whilst these elegant algorithms

expand considerably the magnitude of joint simulation tasks that

can be achieved relative to a direct calculation, none of them could

produce simulations on arbitrary input grids on the scale required

for global-scale disease maps as addressed in this study. We have

overcome these limitations using a practical elaboration of

standard sequential simulation that is empirically highly efficient

but does not put any special requirements on the input grid or

covariance function. The approach represents an important

increase in the feasibility of aggregated uncertainty assessment

over very large prediction spaces, expanding the scope of

geostatistical models in global scale epidemiology.

The current study builds on a modelling framework for the

global mapping of P. falciparum prevalence defined in an earlier

study [6]. Like many large-scale MBG disease mapping studies

published to date, this earlier work presented prevalence maps

with per-pixel uncertainty metrics that could not be used to define

uncertainty around aggregated prevalence predictions. Similarly,

this per-pixel approach did not support the evaluation of

uncertainty around important derived aggregate quantities such

as populations at risk. By setting this earlier model in a joint

simulation framework, the current study allows the formal

prediction of aggregated P. falciparum prevalence and national

populations under different prevalence strata with appropriate

measures of uncertainty. Figure 5 shows these national PAR

estimates for populations living under conditions of high stable

transmission. A prevalence threshold of PfPR2–10.40% has been

proposed as separating lower transmission settings, where

universal coverage of insecticide treated bed-nets could interrupt

transmission [56], from higher transmission settings where this

coverage alone would be insufficient and scale-up of additional

interventions would be required to achieve elimination [55,56].

Under these recommendations, the quantification of PAR in this

high stable transmission class has direct implications for national

resource requirements as very large numbers of people in these

nations will require more than universal coverage of bed-nets to

interrupt transmission.

The direct practical utility to decision-makers of accompanying

uncertainty metrics is less well established since they have not

been available previously. Uptake by decision-makers will be

aided by the packaging of uncertainty measures into easily

understood information and the ranked uncertainty maps

presented in Figure 5 (B and C) highlight one such approach.

Recognising those countries where high-risk populations can be

identified with least certainty provides a basis for rational

deployment of global surveying, monitoring, and evaluation

efforts for populations that will carry the largest burden of global

malaria morbidity. Figure 5(B) illustrates that the least certain

countries are, as would be expected, those which include areas of

high transmission risk in conjunction with very large human

populations, such as India, Myanmar, DRC and Nigeria.

Figure 5(C) considers population proportions at risk and therefore

standardises for absolute population size. This removes, amongst

others, India, Nigeria and DRC from the set of least certain

countries and adds some smaller high risk nations such as Togo,

Liberia and Sierra Leone.

Figure 4. Simulated posterior predictive distributions of PfPR2–10

at different spatial scales. The crucial feature of the jointly simulated
realisations of PfPR2–10 was that they could be aggregated over arbitrary
spatial and/or temporal regions to generate posterior predictive
distributions of mean PfPR2–10, constituting appropriate models of
regional uncertainty. In this example, such predicted distributions are
provided at three different scales, predicting mean PfPR2–10 for the entire
African continent (i); across the nations of Ghana (ii), Democratic Republic
of Congo (iv) and Kenya (vi); and across a first administrative level unit of
those countries (Ashanti Region, Ghana(iii); Kinshasa Province, DRC (v);
Nyanza Province, Kenya (vii)).
doi:10.1371/journal.pcbi.1000724.g004
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Figure 5. Predicted national populations at risk of high stable transmission and associated ranked uncertainty metrics. Map A shows
the estimated population at risk of high stable transmission (PfPR2–10.40%) for each of the 80 P. falciparum malaria endemic countries considered,
based on the mean of each posterior predictive distribution. Map B shows the ranked uncertainty associated with each of these national estimates,
quantified using the width of each posterior inter-quartile range, and ordered into quintiles such that countries in quintile one have the largest
uncertainty and quintile five the smallest. Map C presents the same uncertainty metric but based on national population proportions in this risk class
rather than absolute numbers.
doi:10.1371/journal.pcbi.1000724.g005
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In this study we have presented the extension of a jointly

simulated prediction framework for P. falciparum prevalence to

estimates of PAR. The framework could readily be extended to the

prediction of related aggregate quantities of substantial public

health significance. An important example is the prediction of P.

falciparum clinical case incidence which can be estimated

empirically as a function of prevalence [25] and the underlying

population density [54]. By basing these estimates on the jointly

simulated prevalence predictions presented here, incidence

estimates can be summed to provide national or continental-level

estimates with appropriate credible intervals. A second important

measure is the basic reproductive number, R0, which provides

biological insight into the intensity of malaria transmission and is

particularly useful when assessing the effect of current or future

interventions [57–59]. Again, R0 can be estimated as a function of

prevalence [59,60] and the jointly simulated surfaces presented

here can be incorporated with these models to provide country

level estimates of R0 useful for strategic planning.

The approach presented in this study can be applied readily to

any large-scale MBG prediction of infectious disease prevalence

and corresponding populations at risk. An important caveat for

further applications, however, is that the algorithm cannot be

treated as a black-box that will generate appropriate output

without user supervision. The algorithm relies on a key

assumption: that the use of a relatively small proportion of

conditioning data proximate to each target prediction column

generates predicted values that are sufficiently similar to a

theoretical (although infeasible) direct joint simulation based on

all locations simultaneously. In reality, the footprint-based

predictions will approach the theoretical ‘‘true’’ values asymptot-

ically, such that the use of progressively more conditioning data in

the footprint will result in progressively smaller increases in

convergence between the two sets of values. This leads to a delicate

trade-off between feasible computational demand and appropriate

predictive precision. Suitable resolutions of this trade-off cannot be

prescribed a priori since they rely on factors that will vary between

settings. On one hand, the sparsest permissible footprint will be

determined by the space-time covariance structure of the disease

measure under study. On the other, the computational demand

will scale non-linearly with the size of the study area and the

spatial and temporal resolution at which it is to be modelled. In

this study, appropriate footprint configurations were identified by

systematically evaluating the empirical covariance functions of

realisations generated under progressively sparser footprint

configurations, and the necessary diagnostic scripts are freely

available from the authors. In principle, appropriate configura-

tions could be approximated in advance using the target

covariance structure parameters, although the implications of the

latter on the appropriateness of different configurations is likely to

be complex and non-linear. Users of the algorithm should

recognise that failure to consider these factors appropriately could

lead to misleading or erroneous results.

Automatic optimization of the footprint would be a useful area

for future research. Approaches to this problem, based on

evaluation of the Markov properties of 2-d fields, have been

proposed [61–63] although as yet these have not been extended to

the 3-d setting necessary for space-time simulation. A number of

recent advances in computational infrastructure have emerged

that also warrant further investigation in the context of efficient

joint simulation over very large grids. In particular the re-

purposing of graphic processing units (GPUs) to support extremely

efficient parallel processing, and their application to matrix

calculations, offers potential decreases in processing time of

several orders of magnitude [64] for the current rate-limiting

steps of the algorithms presented here: the population and

factorisation of large covariance matrices.

The expansion of MBG in epidemiology has been rapid and led

to major advances in the handling of uncertainty in disease risk

maps. To date, fundamental computational constraints have

precluded the use of such models for predictions of aggregated

prevalence and populations at risk required by decision-makers

across national and continental spatial scales. In this study we have

designed, implemented and tested a new algorithm that overcomes

the prohibitive computational barriers of large scale joint

simulation allowing, for the first time, appropriate handling of

aggregated uncertainty in global scale disease maps. This

epidemiological insight has been extended to defining national

populations at risk with appropriate confidence intervals which are

released here in the public domain to support informed efforts in

disease burden estimation.

Supporting Information

Protocol S1 Populations at risk under different levels of

Plasmodium falciparum malaria intensity.

Found at: doi:10.1371/journal.pcbi.1000724.s001 (0.41 MB

DOC)

Acknowledgments

The data used in this paper were critically dependent on the contributions

made by a large number of people in the malaria research and control

communities and these individuals are listed on the MAP website (http://

www.map.ox.ac.uk/acknowledgements.html). The authors thank Anja

Bibby, Drs Archie Clements, David Smith, Andrew Tatem, Simon

Brooker, and Abdisalan Noor and Professor Robert Snow for their helpful

comments on earlier drafts of this manuscript. We thank three anonymous

referees and an Associate Editor for their detailed reviews of an earlier

version of this manuscript which have helped to refine the current paper.

We are also grateful to Amazon Web Services for supporting our use of

their Elastic Compute Cloud facility (URL: http://aws.amazon.com/ec2).

Author Contributions

Conceived and designed the experiments: PWG SIH. Performed the

experiments: PWG. Analyzed the data: PWG APP. Contributed reagents/

materials/analysis tools: PWG APP. Wrote the paper: PWG APP SIH.

References

1. Hay SI, Graham AJ, Rogers DJ (2006) Global mapping of infectious diseases:

methods, examples and emerging applications. London: Academic Press. pp 446.

2. Hay SI, Snow RW (2006) The Malaria Atlas Project: developing global maps of

malaria risk. PLoS Med 3: e473.

3. Snow RW, Marsh K, LeSueur D (1996) The need for maps of transmission

intensity to guide malaria control in Africa. Parasitol Today 12: 455–457.

4. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J Roy Stat

Soc C-App 47: 299–326.

5. Diggle P, Ribeiro PJ (2007) Model-based Geostatistics. New York: Springer. 228 p.

6. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, et al. (2009) A

world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6: e1000048.

7. Gosoniu L, Vounatsou P, Sogoba N, Smith T (2006) Bayesian modelling of

geostatistical malaria risk data. Geospatial Health 1: 127–139.

8. Diggle P, Moyeed R, Rowlingson B, Thomson MC (2002) Childhood malaria in

The Gambia: a case-study in model-based geostatistics. J Roy Stat Soc C-App

51: 493–506.

9. Gemperli A, Vounatsou P, Sogoba N, Smith T (2006) Malaria mapping using

transmission models: application to survey data from Mali. Am J Epidemiol 163:

289–297.

10. Gosoniu L, Vounatsou P, Sogoba N, Maire N, Smith T (2009) Mapping malaria

risk in West Africa using a Bayesian nonparametric non-stationary model.

Comput Stat Data An 53: 3358–3371.

Geostatistical joint simulation of P. falciparum

PLoS Computational Biology | www.ploscompbiol.org 11 April 2010 | Volume 6 | Issue 4 | e1000724



11. Gemperli A, Sogoba N, Fondjo E, Mabaso M, Bagayoko M, et al. (2006)

Mapping malaria transmission in West and Central Africa. Trop Med Int
Health 11: 1032–1046.

12. Noor AM, Clements ACA, Gething PW, Moloney G, Borle M, et al. (2008)

Spatial prediction of Plasmodium falciparum prevalence in Somalia. Malaria J 7:
159.

13. Raso G, Vounatsou P, Singer BH, N’Goran EK, Tanner M, et al. (2006) An
integrated approach for risk profiling and spatial prediction of Schistosoma

mansoni-hookworm coinfection. Proc Natl A Sci USA 103: 6934–6939.

14. Clements ACA, Moyeed R, Brooker S (2006) Bayesian geostatistical prediction
of the intensity of infection with Schistosoma mansoni in East Africa. Parasitology

133: 711–719.
15. Beck-Wörner C, Raso G, Vounatsou P, N’Goran EK, Rigo G, et al. (2007)

Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte
d’Ivoire using a remotely-sensed digital elevation model. Am J Trop Med Hyg

76: 956–963.

16. Brooker S, Clements ACA (2009) Spatial heterogeneity of parasite co-infection:
determinants and geostatistical prediction at regional scales. Int J Parasitol 39:

591–597.
17. Diggle PJ, Thomson MC, Christensen OF, Rowlingson B, Obsomer V, et al.

(2007) Spatial modelling and the prediction of Loa loa risk: decision making

under uncertainty. Ann Trop Med Parasitol 101: 499–509.
18. Clements ACA, Pfeiffer DU, Martin V, Pittliglio C, Best N, et al. (2007) Spatial

risk assessment of Rift Valley fever in Senegal. Vector-Borne Zoonot 7: 203–216.
19. Raso G, Matthys B, N’Goran EK, Tanner M, Vounatsou P, et al. (2005) Spatial

risk prediction and mapping of Schistosoma mansoni infections among schoolchil-
dren living in western Cote d’Ivoire. Parasitology 131: 97–108.

20. Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, et al. (2006)

Improving imperfect data from health management information systems in
Africa using space-time geostatistics. PLoS Med 3: e271.

21. Luo W, Taylor MC, Parker SR (2007) A comparison of spatial interpolation
methods to estimate continuous wind speed surfaces using irregularly distributed

data from England and Wales. Int J Climatol 28: 947–959.

22. Eckstein BA (1989) Evaluation of spline and weighted average interpolation
algorithms. Comput Geosci 15: 79–94.

23. Cibulskis RE, Bell D, Christophel EM, Hii J, Delacollette C, et al. (2007)
Estimating trends in the burden of malaria at country level. Am J Trop Med

Hyg 77: 133–137.
24. W.H.O. (2008) World malaria report 2008.WHO/HTM/GMP/2008.1.

Geneva: World Health Organization. 190 p.

25. Patil A, Okiro E, Gething P, Guerra C, Sharma S, et al. (2009) Defining the
relationship between Plasmodium falciparum parasite rate and clinical disease:

statistical models for disease burden estimation. Malaria J 8.
26. Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science.

Geoderma 103: 3–26.

27. Johansson EW, Newby H, Renshaw M, Wardlaw T (2007) Malaria and
children. Progress in intervention coverage. New York, USA/Geneva,

Switzerland: United Nations Children’s Fund (UNICEF)/The Roll Back
Malaria Partnership (RBM). 69 p.

28. Snow RW, Guerra CA, Mutheu JJ, Hay SI (2008) International funding for
malaria control in relation to populations at risk of stable Plasmodium falciparum

transmission. PLoS Med 5: e142.

29. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global
distribution and population at risk of malaria: past, present, and future. Lancet

Infect Dis 4: 327–473.
30. Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, et al. (1999)

Climate change and future populations at risk of malaria. Global Environ Chang

9: S89–S107.
31. Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, et al. (2008) The

limits and intensity of Plasmodium falciparum transmission: implications for malaria
control and elimination worldwide. PLoS Med 5: e38.

32. Hay SI, Guerra CA, Snow RW (2004) Determination of country populations at

malaria risk of different endemicities: report on agreement to perform work
(APW) for WHO/Roll Back Malaria.

33. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global
distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434.

34. Abrahamsen P (1997) A review of Gaussian random fields and correlation
functions. Oslo: Norwegian Computing Centre. 64 p.

35. Williams CKI (2002) Gaussian processes. In: Arbib MA, ed. The handbook of

brain theory and neural networks. CambridgeMA: The MIT Press. pp 466–470.

36. West M, Harrison J (1997) Bayesian forecasting and dynamic models. New

York: Springer-Verlag. 680 p.
37. Golub GH, Van Loan CF (1996) Matrix computations (Johns Hopkins studies in

mathematical sciences). Baltimore: The Johns Hopkins University Press. 694 p.

38. Gneiting T, Sevcikova H, Percival DB, Schlather M, Jiang YD (2006) Fast and
exact simulation of large Gaussian lattice systems in R-2: Exploring the limits.

J Comput Graph Stat 15: 483–501.
39. Goovaerts P (1997) Geostatistics for natural resource evaluation. New York:

Oxford University Press. 483 p.

40. Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s
guide. New York: Oxford University Press. 369 p.

41. Oz B, Deutsch CV, Tran T, Xie Y (2003) DSSIM-HR: A FORTRAN 90
program for direct sequential simulation with histogram reproduction. Comput

Geosci 29: 39–51.
42. Journel AG, Huijbregts CJ (1978) Mining geostatistics. New York: Academic

Press. 600 p.

43. Gething PW, Noor AM, Gikandi PW, Hay SI, Nixon MS, et al. (2008)
Developing geostatistical space-time models to predict outpatient treatment

burdens from incomplete national data. Geogr Anal 40: 167–188.
44. Dietrich CR (1995) A simple and efficient space domain implementation of the

turning bands method. Water Resour Res 31: 2861–2869.

45. Stein ML (2002) Fast and exact simulation of fractional Brownian surfaces.
J Comput Graph Stat 11: 587–599.

46. Davis MW (1987) Production of conditional simulations via the lu triangular
decomposition of the covariance-matrix. Math Geol 19: 91–98.

47. Mantoglou A, Wilson JL (1982) The turning bands method for simulation of
random-fields using line generation by a spectral method. Water Resour Res 18:

1379–1394.

48. Dietrich CR, Newsam GN (1993) A fast and exact method for multidimensional
gaussian stochastic simulations. Water Resour Res 29: 2861–2869.

49. Chan G, Wood ATA (1997) An algorithm for simulating stationary Gaussian
random fields. J Roy Stat Soc C-App 46: 171–181.

50. Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary

Gaussian processes through circulant embedding of the covariance matrix.
SIAM J Sci Comput 18: 1088–1107.

51. Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:
310–321.

52. R Development Core Team (2008) R: a language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing, URL:

http://www.R-project.org.

53. Van Rossum G (2008) Python Programming Language - Official Website.
Website: URL http://www.python.org.

54. Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, et al. (2006) Determining
global population distribution: methods, applications and data. Adv Parasitol 62:

119–156.

55. Smith DL, Hay SI, Noor AM, Snow RW (2009) Predicting changing malaria
risk after expanded insecticide-treated net coverage in Africa. Trends Parasitol

25: 511–516.
56. Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from

intense to interrupted transmission. Lancet Infect Dis 8: 369–378.
57. Smith DL, Hay SI (2009) Endemicity response timelines for Plasmodium falciparum

elimination. Malaria J 8: 87.

58. Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the basic
reproductive number for malaria and its implications for malaria control. PLoS

Biol 5: e42.
59. Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation

rate and Plasmodium falciparum infection in African children. Nature 438:

492–495.
60. Smith DL, Smith TA, Hay SI (2009) Measuring malaria for elimination. In:

Feachem RGA, Phillips AA, Targett GA, eds. San Fransisco: The Global Health
Group/UCSF Global Health Sciences. pp 108–126.

61. Cressie N, Verzelen N (2008) Conditional-mean least-squares fitting of Gaussian

Markov random fields to Gaussian fields. Comput Stat Data An 52: 2794–2807.
62. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent

Gaussian models by using integrated nested Laplace approximations. J Roy Stat
Soc B Met 71: 319–392.

63. Rue H, Tjelmeland H (2002) Fitting Gaussian Markov random fields to
Gaussian fields. Scand J Stat 29: 31–49.

64. Buttari A, Langou J, Kurzak J, Dongarra J (2009) A class of parallel tiled linear

algebra algorithms for multicore architectures. Parallel Comput 35: 38–53.

Geostatistical joint simulation of P. falciparum

PLoS Computational Biology | www.ploscompbiol.org 12 April 2010 | Volume 6 | Issue 4 | e1000724


