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Abstract.—Many questions in evolutionary biology require the quantification and comparison of rates of phenotypic
evolution. Recently, phylogenetic comparative methods have been developed for comparing evolutionary rates on a
phylogeny for single, univariate traits (�2), and evolutionary rate matrices (R) for sets of traits treated simultaneously.
However, high-dimensional traits like shape remain under-examined with this framework, because methods suited for such
data have not been fully developed. In this article, I describe a method to quantify phylogenetic evolutionary rates for
high-dimensional multivariate data (�2

mult), found from the equivalency between statistical methods based on covariance
matrices and those based on distance matrices (R-mode and Q-mode methods). I then use simulations to evaluate the
statistical performance of hypothesis-testing procedures that compare �2

mult for two or more groups of species on a phylogeny.
Under both isotropic and non-isotropic conditions, and for differing numbers of trait dimensions, the proposed method
displays appropriate Type I error and high statistical power for detecting known differences in �2

mult among groups. In
contrast, the Type I error rate of likelihood tests based on the evolutionary rate matrix (R) increases as the number of
trait dimensions (p) increases, and becomes unacceptably large when only a few trait dimensions are considered. Further,
likelihood tests based on R cannot be computed when the number of trait dimensions equals or exceeds the number of
taxa in the phylogeny (i.e., when p≥N). These results demonstrate that tests based on �2

mult provide a useful means of
comparing evolutionary rates for high-dimensional data that are otherwise not analytically accessible to methods based
on the evolutionary rate matrix. This advance thus expands the phylogenetic comparative toolkit for high-dimensional
phenotypic traits like shape. Finally, I illustrate the utility of the new approach by evaluating rates of head shape evolution in a
lineage of Plethodon salamanders. [Evolutionary rates; geometric morphometrics; macroevolution; morphological evolution;
phylogenetic comparative method.].

What is the tempo of evolutionary change, and how
rapidly do phenotypic traits diversify? For decades
evolutionary biologists have examined the tempo of
evolution as one means to understand the accumulation
of phenotypic diversity and the processes responsible for
evolutionary diversification (Simpson 1944; Gingerich
1993; Foote 1997; Sidlauskas 2008; Gingerich 2009).
Numerous hypotheses have been proposed to explain
the observation that lineages differ in their phenotypic
evolutionary rates (e.g., Sepkoski 1978; Blomberg et al.
2003; Butler and King 2004; Collar et al. 2009) and
predict how such differences may result in distinct
macroevolutionary trends across groups of organisms
(e.g., Gingerich 1993; Harmon et al. 2003). Indeed, the
exploration of evolutionary rates has been a perennial
component of macroevolution since the field’s inception.

In recent years a renaissance has occurred in the study
of evolutionary rates which has coincided with rapid
analytical developments in phylogenetic comparative
biology. These analytical approaches estimate the net
rate of phenotype change over time along a phylogeny
(�2), based on some underlying model that characterizes
the evolutionary process (described below). With these
methods, rates of phenotypic evolution can be quantified
and used to identify differences in evolutionary rates
among clades or shifts in evolutionary rates within
clades (O’Meara et al. 2006; Thomas et al. 2006; Revell
2008; Revell and Harmon 2008; Eastman et al. 2011;
Beaulieu et al. 2012; Revell 2012). Methods for comparing
evolutionary rates between traits on a phylogeny have

also been developed (e.g., Adams 2013). Together,
these approaches are part of the ongoing mathematical
unification of evolutionary rates, models of phenotypic
evolution, and evolutionary hypothesis testing. This
union represents the current forefront of phylogenetic
comparative biology.

Most empirical studies examine rates of evolution for
single, univariate traits such as body size (e.g., Thomas
et al. 2009; Harmon et al. 2010), or some composite
measure derived from multiple traits, such as principal
component scores (e.g., Collar et al. 2009; Mahler et al.
2010; Betancur-R et al. 2012). However, organismal
phenotypes can also be characterized multivariately,
either by a set of traits treated simultaneously or by
complex, multi-dimensional traits such as shape. In these
instances, evolutionary change corresponds to a shift in
the position of a species in a multivariate trait space
whose axes correspond to trait dimensions. Figure 1
shows the changes over time for a bivariate trait evolving
along a phylogeny (examples along ancestor-descendant
sequences are found in: Polly 2004; Bookstein 2013).
For multivariate traits, evolutionary rates have been
approximated using Mahalanobis distances between
pairs of extant taxa (Arnegard et al. 2010; Carlson et al.
2011), or by describing the net change per unit time
along ancestor-descendent lineages (Polly 2008; see also
Gingerich 2009). However, these approaches do not
provide a single estimate of the evolutionary rate for an
entire clade of species in a phylogenetic context, as is
found in the univariate case (�2).
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FIGURE 1. Phenotypic changes over time representing the bivariate
trait evolution in 10 species shown in a bivariate trait space. Species
are related by the phylogeny shown in the lower right portion of the
figure. Trait evolution follows a BM model.

Alternatively, one may characterize the tempo of
evolution for multivariate data using the evolutionary
rate matrix (R), which is the algebraic extension
of �2 (Revell and Harmon 2008). However, while
this approach extends the concept of phylogenetic
evolutionary rates to a multivariate context, several
previously unappreciated challenges exist when
implementing rate matrix methods with high-
dimensional data. For instance, when the number
of trait dimensions equals or exceeds the number
of taxa in the phylogeny (p≥N), likelihood tests
based on R cannot be accomplished, because the
matrix computations used to obtain the likelihood
are singular (specifically, (R⊗C)−1 is singular). Thus,
while evolutionary biologists increasingly characterize
organismal phenotypes using highly multivariate data,
likelihood methods cannot be used to evaluate rates
of evolution for these data sets, as the likelihood of
both the null model and its alternative cannot be
determined. Second, as I demonstrate below, Type I
error rates of likelihood tests based on R increase as the
number of trait dimensions (p) increases, and become
unacceptably large when only a few trait dimensions
are considered simultaneously. This severely limits
the utility of rate matrix methods when evaluating
evolutionary hypotheses with multivariate data, as it
is not known whether a significant finding represents
actual differences in evolutionary rate matrices or a
Type I error. Clearly, for high-dimensional phenotypic
data like shape, an alternative procedure is required.

In this article, I propose a method for estimating
the evolutionary rate of change of high-dimensional
phenotypic data in a phylogenetic context. The approach

is developed for phenotypic data derived under
evolutionary models commonly used in phylogenetic
comparative biology (described below), and is found
from the equivalency between statistical methods
based on covariance matrices and those based on
distance matrices. Consistent with this equivalency,
the distance-based approach provides estimates of
evolutionary rates that are numerically identical
to those obtained using standard covariance-based
implementations when implemented on univariate data.
Further, when used on multivariate data, the approach
is not constrained by trait dimensionality as is the case
with rate matrix methods. I provide a hypothesis-testing
procedure for comparing multivariate evolutionary
rates on a phylogeny, and through simulation show
that this procedure has acceptable Type I error and
appropriate statistical power for detecting differences
in rates among groups, under both isotropic and
non-isotropic conditions. Finally, a biological example
is presented which demonstrates the utility of the
approach. Computer code written in R for implementing
the procedures is also provided.

MODELING PHENOTYPIC EVOLUTION ALONG A PHYLOGENY

Statistically evaluating phenotypic trends on a
phylogeny first requires that one specify the underlying
model that describes the evolutionary process that
generated the data. For continuous data, the most
commonly utilized model is Brownian motion
(BM; Edwards and Cavalli-Sforza 1964; Felsenstein
1973; Felsenstein 1981; Felsenstein 1985; Felsenstein
2004). Here, phenotypic changes are assumed to be
independent from time step to time step, with a mean
displacement of zero and a variance (�2) proportional
to time (Felsenstein 1973; Felsenstein 2004). Thus, for
a set of taxa related by a phylogeny, the expected net
evolutionary change in a phenotypic trait from the
ancestral state is zero, and the expected phenotypic
variance among taxa increases linearly with time (�2t).
Because �2 describes the rate at which phenotypic
variation accumulates per unit time (Felsenstein 1985),
it is commonly referred to as the evolutionary rate
parameter (Martins 1994; Garland and Ives 2000;
O’Meara 2012). When multivariate data are considered,
each trait dimension has an expected net change
of zero, but �2 may differ for each trait dimension
(Felsenstein 1988). Additionally, changes at each time
step may be correlated across trait dimensions. Thus,
for multivariate data, the BM process is described
by a covariance matrix (R), whose diagonal elements
represent the evolutionary rate for each trait dimension
(�2), and whose off-diagonal elements express the
covariation in changes among dimensions (Felsenstein
1988). Because R is the multivariate generalization of
�2, it is commonly referred to as the evolutionary rate
matrix (Revell and Harmon 2008; Revell and Collar
2009).
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QUANTIFYING EVOLUTIONARY RATES

Given an evolutionary model, it is possible to estimate
the net rate of phenotypic evolution over time along
a phylogeny for a set of related taxa. For BM models,
several implementations have been proposed. First, one
can utilize phylogenetic generalized least squares to
estimate �2 (PGLS: Grafen 1989; Martins and Hansen
1997). Here, the least-squares estimate is equivalent
to the maximum-likelihood estimate (Felsenstein 1973;
Garland and Ives 2000; O’Meara et al. 2006), and is
found as

�2 =
(
Y−E

(
Y

))t C−1(
Y−E

(
Y

))
N

, (1)

where Y is an N×1 vector of phenotypic values for
the N species, E(Y) is an N×1 vector containing
the phylogenetic mean at the root of the phylogeny
â= (1tC−11)t(1tC−1Y), and C−1 is the inverse of the
N×N phylogenetic covariance matrix. Time is included
in this calculation via the matrix C, whose diagonal
elements contain the phylogenetic distance from the root
of the tree to the tips, and the off-diagonals contain the
phylogenetic distances from the root of the tree to the
most recent common ancestor for each pair of species
(Martins and Hansen 1997; Garland and Ives 2000; Rohlf
2001). Thus, one can view �2 as a phylogenetically
standardized variance. Note that the unbiased estimate
of �2 may be obtained by dividing by (N−1) rather than
N (Garland and Ives 2000; O’Meara et al. 2006). For a set
of traits treated simultaneously, equation (1) results in
an evolutionary rate matrix (R), as described above.

A second approach for estimating evolutionary rates
is based on independent contrasts (Felsenstein 1985,
Garland 1992; Garland and Ives 2000; Ackerly 2009).
Here, �2 is obtained from the cross product of the vector
containing the phylogenetically independent contrasts
among taxa on a phylogeny, divided by N (Blomberg
et al. 2003). This approach yields numerically identical
estimates to those found using equation (1) above
(Garland and Ives 2000).

Evolutionary rates can also be obtained via
phylogenetic transformation (Blomberg et al. 2003).
Here, the phenotypic data are first transformed by the
phylogeny as

UY =(
Y−E(Y)

)
D, (2)

where Y and E(Y) are N×1 vectors as described above,
and D is obtained from an eigen-decomposition of
phylogenetic covariance matrix C (DCD=I : Garland
and Ives 2000; Blomberg et al. 2003). Equation (2) rotates
the phenotypic data to the principal eigenvectors of
the phylogenetic covariance matrix, and describes them
by a set of scores projected on those axes. From the
transformed data, �2 is then estimated as

�2 =
(

Ut
YUY

)
/N. (3)

Notice that equations (2) and (3) differ slightly from
what was originally presented in Blomberg et al. (2003).

The reason is that the phylogenetic mean (â) must
be used in the transformation step of this procedure
(equation (2)), not in the variance-estimation step as was
originally presented (Ives T., personal communication).
Importantly, for the same phenotypic data, phylogeny,
and evolutionary model (BM), identical estimates of �2

are obtained using PGLS, phylogenetically independent
contrasts, and phylogenetic transformation (see, e.g.,
Garland and Ives 2000).

AN EVOLUTIONARY RATE FOR HIGH-DIMENSIONAL TRAITS

Evolutionary rates quantify the accumulation of
variance in a trait over time while accounting for the
phylogenetic relationships among species. As such,
the variance-based equations described above represent
logical procedures for estimating parameters like �2.
Statistically, methods that summarize data matrices
by their variances and covariances are referred to
as R-mode techniques (sensu Legendre and Legendre
1998). For any centered data matrix, Y, the covariance
matrix may be found from the inner product of (YtY)
divided by N–1 (Krzanowksi 1993; Rencher 1995).
However, data matrices can also be summarized by
the matrix of pairwise distances among objects (Q-
mode techniques), which may be derived from the
outer product of Y: (YYt: Krzanowksi 1993, Rencher
1995). Importantly, for Euclidean data there exists
a relationship between statistical approaches based
on covariance matrices and those based on distance
matrices, such that empirical results from Q-mode
and R-mode techniques may be numerically identical.
One demonstration of this property is found with
multivariate ordination techniques. Here it can be shown
that a principal coordinates ordination based on the
centered distance matrix between objects is identical
to that obtained from a principal components analysis
based on the covariance matrix of the same Euclidean
data (Gower 1966; see also Krzanowksi 1993; Legendre
and Legendre 1998). In addition, it has also been shown
that sums of squares obtained for factors in linear
models are identical when obtained using standard
covariance-based methods (ANOVA and regression), or
when derived from distance-based procedures (for a
mathematical derivation of this property and examples,
see Anderson 2001; McArdle and Anderson 2001). Thus,
when implemented properly, statistical summaries
based on covariances and those based on distances can
yield identical results for Euclidean data sets.

In light of these observations, I propose a Q-mode
approach to estimate multivariate evolutionary rates
(�2

mult) based on distances rather than covariances. The
method is suitable for high-dimensional multivariate
data sets whose evolution is best considered as occurring
in a multivariate trait space (Fig. 1). The method
assumes that variation among species accumulates
over time following a BM model of trait evolution as
described above (Felsenstein 1973; Felsenstein 1988;
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Felsenstein 2004). However, extensions to other
evolutionary models could be envisioned (e.g.,
Ornstein–Uhlenbeck models: Hansen 1997; Butler
and King 2004) by using suitable branch-length
transformations (Butler et al. 2000; Blomberg et al. 2003).

To obtain this estimate, the phenotypic data are first
transformed by the phylogeny (sensu Garland and Ives
2000; Blomberg et al. 2003):

UY =(
Y−E(Y)

)
D. (4)

In this case, Y is an N×p matrix of phenotypic trait
values (N species by p dimensions), and E(Y) is an
N×p matrix of multivariate phylogenetic means. Next,
the Euclidean distance between each phylogenetically
transformed species (the rows of UY) and the origin of
the data space is calculated, and these are concatenated
into an N×1 vector containing the Euclidean distances
from each species mean to the origin (PDU,0). Finally,
an estimate of the evolutionary rate is obtained from the
sum of squared distances between the phylogenetically
transformed data and the origin, PDU,0. This is found
by re-expressing equation (3) as

�2
mult =

PDt
U,0PDU,0

N
. (5)

This value is then divided by the number of trait
dimensions (p) so that �2

mult is expressed as the average
rate across trait dimensions.

For univariate data, it can be shown that estimates
of evolutionary rates obtained using this Q-mode
procedure are numerically identical to those obtained
from the variance-based methods typically used. A
demonstration of this property is found in Appendix 1.
Thus, for univariate data, the distance—covariance
equivalency has been preserved, since estimates of �2

and �2
mult are identical. When used on multivariate data,

the Q-mode formulation yields a single evolutionary
rate that describes the net overall tempo of phenotypic
evolution per unit time in the multi-dimensional trait
space. This is conceptually similar to methods that use
Mahalanobis distances (Polly 2008; Arnegard et al. 2010;
Carlson et al. 2011), but provides a single estimate of the
evolutionary rate of change for the entire clade of species
along their phylogeny, as in �2.

Further, the Q-mode approach alleviates the
analytical challenges found when methods based
on the evolutionary rate matrix are implemented on
high-dimensional data. Specifically, when the number of
trait dimensions equals or exceeds the number of taxa in
the phylogeny (p≥N), likelihood calculations based on
R will be singular. Indeed, such situations are likely to be
common when examining phenotypic traits like shape,
as the number of dimensions required to adequately
represent the phenotypic trait can be quite large, and
can easily exceed the number of species in a lineage
(e.g., McPeek et al. 2008; Klingenberg and Gidaszewski
2010). In contrast, �2

mult and hypothesis tests based on it
(below) can always be performed because the number of

taxa, and thus the number of distances to be calculated,
remains the same regardless of trait dimensionality.
Therefore, the Q-mode approach proposed here
provides a means of testing evolutionary hypotheses of
rate shifts for high-dimensional phenotypic data that
are not possible to evaluate if methods based on the
evolutionary rate matrix are utilized.

HYPOTHESIS-TESTING PROCEDURES

Having developed a means of estimating multivariate
evolutionary rates, it is now of interest to determine
whether evolutionary rates differ for two or more groups
of taxa. Addressing this question requires two things;
a test statistic for comparing evolutionary rates and a
procedure for statistically evaluating it. In phylogenetic
comparative biology, a number of statistical procedures
have been implemented for comparing evolutionary
rates and rate matrices. Frequently, likelihood methods
are used, where the fit of the data to the phylogeny
under a model with a single evolutionary rate is
compared with the fit of a model containing multiple
evolutionary rates (e.g., O’Meara et al. 2006; Thomas
et al. 2006; Revell 2008). Bayesian MCMC methods
(Eastman et al. 2011; Revell 2012), and modified t-tests
of phylogenetically independent contrasts (Garland
1992; McPeek 1995) have also been proposed. More
broadly, evolutionary hypotheses can be evaluated using
a null distribution of possible outcomes generated
by phylogenetic permutation (Blomberg et al. 2003;
Klingenberg and Gidaszewski 2010) or phylogenetic
simulation (Garland et al. 1993; Boettiger et al. 2012).
Here I use phylogenetic simulation to test hypotheses
that compare multivariate evolutionary rates among
groups.

To determine if two groups of species on a
phylogeny display distinct evolutionary rates, the
following procedure is used. First, the phenotypic
data for all species are transformed by the phylogeny
using equation (4), and the Euclidean distances of
each species to the origin are obtained (PDU,0). Next,
multivariate evolutionary rates (�2

mult) are estimated
for each group of taxa with equation (5), using
the subset of PDU,0 corresponding to each group
divided by the number of taxa in that group. The
rates are then rank-ordered, and the ratio between
them is obtained (�2

mult.A/�2
mult.B) such that: �2

mult.A >

�2
mult.B. This ratio represents the relative difference in

evolutionary rates between groups and serves as the
test statistic for hypothesis testing. The observed ratio
of evolutionary rates is then statistically compared with
a distribution of possible ratios obtained under the
null hypothesis of no rate difference between groups
(i.e., under the hypothesis that a single evolutionary
rate exists for the entire phylogeny). To obtain this
distribution, the multivariate evolutionary rate for the
entire phylogeny (�2

mult.Tot) is found for the observed
data. Next, phenotypic data sets are simulated along
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the phylogeny, where �2
mult.Tot is used as the input rate

for stochastic simulations. For each simulated data set,
�2

mult is estimated for both groups, and the ratio between
them is then obtained. The proportion of simulated
ratios greater than the observed is the probability
that the two evolutionary rates differ statistically
from one another (for implementation details, see
Appendix 2 and the Supplemental Material available on
Dryad (http://dx.doi.org/10.5061/dryad.41hc4) upon
publication).

If more than two groups of taxa are to be compared,
the method can be generalized in the following manner.
First, �2

mult is obtained for all groups of taxa, and the
N(N−1)/2 ratios of evolutionary rates are obtained for
each pair of groups. Next, the average ratio is obtained
and treated as the observed test statistic for the data set.
Phylogenetic simulations proceed exactly as described
above to generate a distribution of possible average
evolutionary rate ratios. The proportion of simulated
ratios greater than the observed is the probability that
the evolutionary rate of at least one group differs from
the rest. Thus, for three or more groups, a statistically
significant result is interpreted in a manner equivalent
to that found in ANOVA. Computer code in R for
implementing these procedures is found in Appendix 2.

STATISTICAL PERFORMANCE

To evaluate the statistical performance of the
hypothesis-testing procedure proposed above, I
executed a series of computer simulations. The
multivariate data used in these simulations were
generated using two different patterns of error
covariance: isotropic error and non-isotropic error.
Initial simulations were conducted on a balanced
phylogeny containing 32 species, divided into two
monophyletic groups (subclades) of 16 species each.
For each simulation, the number of trait dimensions
was first selected (P = 2, 3, 4, 5, 7, 10). Next, input error
covariance matrices of dimension p×p were constructed
for each group, which were used to generate the
phenotypic data. For simulations assuming isotropic
error, the evolutionary rate for the first group was set to
�2

1 =1.0 for each trait dimension. For the second, group,
the evolutionary rate for all trait dimensions was set to
a fixed proportional difference relative to that in the
first group. These varied across simulations such that
the initial rate difference was known between groups
(�2

2 = 1.0, 1.5, 2.0, 3.0, 4.0). For simulations assuming
non-isotropic error, the evolutionary rate for the first
group was drawn from a normal distribution (�=1.0;
�=0.1) for each trait dimension. The evolutionary rates
for all traits for the second group were then obtained
by multiplying these values by a constant (k = 1.0, 1.5,
2.0, 3.0, 4.0) to obtain a known initial rate difference
between groups.

From these initial covariance matrices, 1000
phenotypic data sets were obtained for each

monophyletic group by evolving multi-dimensional
traits along the phylogeny following a BM model of
evolution. For each data set, evolutionary rates (�2

mult)
were then estimated for each phylogenetic group, and
compared with one another using the hypothesis-
testing procedure described above. The proportion of
significant results (out of 1000) was then treated as an
estimate of the Type I error (when �2

2 =�2
1) or statistical

power (when �2
2 >�2

1) of the test. Finally, for simulations
evaluating Type I error (�2

2 =�2
1), rate comparisons were

also performed using likelihood methods based on the
evolutionary rate matrix (R) to evaluate the effect of
trait dimensionality on the performance of this test.

Simulations were also performed across a wider
set of conditions to evaluate the robustness of the
method proposed here. These simulations evaluated
the effect of the number of taxa in the phylogeny (N
= 16, 32, 64, 128), as well as the effect of randomly
generated phylogenies on statistical performance (N
= 16, 32, 64, 128). In addition, simulations were
also performed on random phylogenies containing
three groups of taxa, to evaluate the performance of
the method for comparing more than two groups.
Additional implementation details and results from all
simulations are found in the Supplementary Material,
available at http://dx.doi.org/10.5061/dryad.41hc4.

Results: For all simulations, hypothesis tests based on
�2

mult displayed appropriate Type I error rates near the
nominal value of � = 0.05 when initial error covariance
matrices for the two groups were identical (�2

2 =�2
1).

This pattern remained consistent across the range of
trait dimensionality examined in this study (Fig. 2). In
contrast, tests based on the evolutionary rate matrix (R)
had unacceptably high Type I error rates under these

FIGURE 2. Simulation results evaluating the Type I error of
hypothesis-testing procedures that compare evolutionary rates on
a phylogeny. Data were simulated under isotropic conditions on a
balanced phylogeny containing 32 species. Evolutionary rates between
two groups within the phylogeny were compared. Type I error rates for
methods based on the evolutionary rate matrix R and �2

mult are shown
relative to increasing levels of trait dimensionality.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/63/2/166/1646098 by guest on 20 August 2022



[19:44 28/1/2014 Sysbio-syt105.tex] Page: 171 166–177

2014 ADAMS—EVOLUTIONARY RATE FOR SHAPE EVOLUTION 171

FIGURE 3. Simulation results evaluating the statistical power of hypothesis-testing procedures that compare evolutionary rates on a
phylogeny. Data were simulated on a balanced phylogeny containing 32 taxa, and evolutionary rates between two groups within the phylogeny
were compared. a) Statistical power curves for methods based on �2

mult for data generated under isotropic conditions. Relative rate differences in
initial rate matrices between groups are shown on the abscissa, and power is on the ordinate. Curves for increasing levels of trait dimensionality
are shown. b) Statistical power curves for data generated under non-isotropic conditions. All other variables as described in panel a).

conditions, and Type I error of these tests increased as a
function of trait dimensionality (Fig. 2). With the latter
approach, Type I error rates were over 8% for tests on
bivariate traits, nearly 14% when p=4, and exceeded
50% when p=10. Prior individual-based simulations
evaluating this approach yielded Type I error rates
significantly higher than �=0.05 (Revell and Harmon
2008), though those simulations did not investigate
data sets as highly dimensional (p=10) as the ones
examined here. It should also be recalled that when
the number of trait dimensions equals or exceeds the
number of taxa in the phylogeny (p≥N), likelihood
tests based on R cannot be executed because the matrix
computations for estimating the likelihood are singular.
Together, these findings reveal that methods based on
the evolutionary rate matrix may not be the optimal
approach to utilize for detecting shifts in evolutionary
rates in highly dimensional multivariate data sets.

When �2
2 >�2

1, the statistical power of tests based
on �2

mult increased rapidly as the relative difference
in evolutionary rates between groups increased.
This was the case when data were simulated
under both isotropic (Fig. 3a) and non-isotropic
conditions (Fig. 3b). Statistical power also increased
with increasing trait dimensionality, attaining very
high power (>0.8) when p=5, even for relatively
small relative rate differences (�2

2/�
2
1 =2.0). Similar

results were obtained on phylogenies with different
numbers of taxa, on random phylogenies, and for the
comparison of evolutionary rates for three groups
of species (Supplementary Material, available at
http://dx.doi.org/10.5061/dryad.41hc4.). Power curves
were not generated for likelihood tests based on R
because power estimates are not interpretable for
methods with high Type I error rates. Overall these
simulations reveal that hypothesis tests based on �2

mult

provide a powerful means of detecting differences in
evolutionary rates for high-dimensional phenotypic
traits under both isotropic and non-isotropic conditions,
and that �2

mult represents an important analytic advance
over existing approaches when used on multivariate
data sets.

A BIOLOGICAL EXAMPLE

To illustrate the method described above, I provide
a biological example comparing evolutionary rates for
a high-dimensional trait (head shape) in a lineage
of Plethodon salamanders. Salamanders of the genus
Plethodon are long-lived terrestrial species found in
North American forests (Highton 1995). Considerable
ecological and behavioral work has demonstrated that
interspecific competition plays an important role in
dictating species ranges and community composition
at local scales (e.g., Jaeger 1970; Jaeger 1971; Hairston
1980; Anthony et al. 1997), and affects community
structure at regional scales (Adams et al. 2007). Further,
competitive interactions often result in evolutionary
shifts in morphology within and between species,
particularly in head shape (e.g., Adams et al. 2007;
Arif et al. 2007; Adams 2010; Deitloff et al. 2013).
Head shape also displays a strong genetic component
(Adams 2011), enabling selection to generate heritable
microevolutionary changes. Within Plethodon, the
P. cinereus subclade comprises several small-bodied
species, distributed throughout eastern North America
(Fig. 4a). Several of these species are threatened or
endangered, and have restricted distributions that
limit them to high-elevation habitats (e.g., P. hubrichti,
P. nettingi, P. shenandoah, P. sherando: Highton 1999;
Highton 2004). Work in other taxa has shown that
species with restricted distributions can display elevated
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FIGURE 4. a) Geographic distributions of species in the P. cinereus subclade (data from Global Amphibian Assessment). b) Positions of 11
anatomical landmarks used to quantify head shape in Plethodon salamanders (image from Adams et al. 2007). c) Fossil-calibrated molecular
phylogeny displaying the estimated phylogenetic relationships among species in the P. cinereus subclade (from Wiens et al. 2006). d) Plot of
phylomorphospace viewed as the first two principal component axes of tangent space.

rates of morphological evolution (e.g., Millien 2006;
Harmon et al. 2008). Thus it is of interest to
determine whether these species display elevated rates
of morphological evolution as compared with other
species in the lineage.

To test this prediction I quantified head shape from
478 adult specimens, representing all species in the
P. cinereus subclade (data from previously published
studies). Head shape was quantified using geometric
morphometric methods (Bookstein 1991; Adams 2013).
First, 11 two-dimensional landmark coordinates were
digitized from images of the left-lateral side of each
head (Fig. 4b), and variation in the position of the jaw
relative to the skull was standardized mathematically
by rotating the jaw so that the articulation angle was
invariant among specimens. A Generalized Procrustes
analysis was then performed to align the specimens to
a common coordinate system (Rohlf and Slice 1990),
and to obtain a set of Procrustes tangent coordinates.

These coordinates describe the shape of each specimen,
which is represented as a point in a high-dimensional
trait space. For each species, the mean head shape
was obtained, and the rate of head shape evolution
was then evaluated using a time-calibrated molecular
phylogeny for Plethodon, which contained 9 of the 10
members of this subclade (Wiens et al. 2006: Fig. 4c).
Using this phylogeny, I obtained two evolutionary
rates: one for the geographically restricted species (not
including P. sherando which was not represented in the
phylogeny), and a second for the remaining species
in the clade. The ratio of the two evolutionary rates
was then obtained as describe above, and evaluated
using phylogenetic simulation with 9999 iterations.
In addition, because several alternative phylogenetic
hypotheses exist for the P. cinereus subclade (Highton
1999; Sites et al. 2004), evolutionary rates for each
group of taxa were estimated and evaluated using these
alternative phylogenetic hypotheses for comparison.
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Finally, phenotypic evolution was visualized in
phylomorphospace (Sidlauskas 2008), where the
extant taxa and the phylogeny were projected into the
morphological trait space, and visualized along the
first two axes of this space using principal components
analysis. All analyses were performed in R 3.0.1 (R Core
Development Team 2013) using routines in the library
geomorph (Adams and Otárola-Castillo 2012; Adams
and Otárola-Castillo 2013), and new routines written by
the author (Appendix 2).

Results: Phylogenetic simulation revealed that the
net evolutionary rates over time for the two groups
differed significantly (�2

mult.A/�2
mult.B = 1.8381; psim =

0.0052). Specifically, the rate of head shape evolution
was nearly two times faster in the geographically
restricted species than in the remaining species in
the clade (�2

restricted =7.268×10−5; �2
rest =3.954×10−5).

Concordant patterns were obtained using alternative
phylogenetic hypotheses for the group (results not
shown). When viewed in phylomorphospace, patterns
of head shape appeared to evolve in a diversifying
fashion, where the morphology of extant taxa emanated
from a central morphological point as exemplified by
the hypothesized ancestors (Fig. 4d). Further, there was
little evidence of repeated or convergent evolution in
head shape, as phylogenetic branches did not cross one
another, and more distantly related taxa were not found
in close proximity when viewed in the multivariate
trait space. Biologically, these observations suggest that
the geographically restricted species have elevated rates
of morphological evolution as compared with their
more wide-ranging congeners. This finding is consistent
with the hypothesis that morphological evolution may
be more accelerated in populations and species with
reduced ranges (see, e.g., Millien 2006; Harmon et al.
2008). Finally, it should be noted that for this example
the number of species (9) was less than the number of
trait dimensions (18). Thus, this interesting biological
observation could only be obtained by using the Q-mode
rate method (�2

mult) described here.

DISCUSSION

A common feature in macroevolution is that rates
of phenotypic evolution differ among clades and
among traits. In this article, I described a Q-mode
approach for estimating phylogenetic evolutionary
rates for multivariate data (�2

mult) using distances,
and proposed hypothesis tests for comparing two or
more multivariate evolutionary rates on a phylogeny.
The approach complements existing phylogenetic
comparative methods by allowing high-dimensional
data sets like shape to be evaluated in a phylogenetic
framework. Using simulations, I demonstrated that the
method has appropriate Type I error rates and high
statistical power for detecting known differences in
�2

mult among groups, for data simulated under both

isotropic and non-isotropic conditions. Further, I showed
that likelihood methods based on the evolutionary rate
matrix display unacceptably high Type I error rates for
these same data conditions, and in some circumstances
cannot be analytically completed (when p≥N). These
results have several important implications for the study
of evolutionary rates and how they should be evaluated.

First, the evolutionary rate parameter developed here
greatly expands the scope of phylogenetic comparative
biology by allowing a much wider class of phenotypic
attributes to be investigated. Because current methods
were largely developed in a univariate context, nearly
all studies of phylogenetic evolutionary rates for clades
have been restricted to the analysis of single univariate
traits (e.g., Collar et al. 2009; Thomas et al. 2009;
Mahler et al. 2010; Price et al. 2010; Valenzuela and
Adams 2011), or in a few cases, sets of traits (Revell
and Collar 2009; Kozak and Wiens 2010; Rabosky and
Adams 2012; see also Martin and Wainwright 2011).
However, many evolutionarily important phenotypic
attributes are also highly dimensional; yet evolutionary
rates for these traits cannot be reliably compared with
standard approaches, because hypothesis tests based
on the evolutionary rate matrix have unacceptably high
Type I error rates or cannot be algebraically computed.
In contrast, hypothesis tests based on �2

mult are not
adversely affected by trait dimensionality, and have
appropriate power to detect differences in evolutionary
rates for such traits when such differences are present.
Therefore, using �2

mult allows evolutionary rates for
traits such as shape, coloration, thermal performance
curves, ontogenetic growth trajectories, and other highly
multivariate data sets to be examined and compared in
a manner analogous to univariate data sets.

Second, deriving �2
mult from a distance-based

perspective illustrates that the distance–covariance
statistical equivalency also holds for analytical methods
used for evolutionary questions. Typically in the
biological sciences, this mathematical property is
leveraged for analytical tools that assess patterns in
contemporary data sets, and for methods that do not
account for shared evolutionary history (for example, see
Legendre and Legendre 1998; McArdle and Anderson
2001). By applying this equivalency in an evolutionary
context, the approach developed here provides a
framework for merging macroevolutionary theory with
the analysis of high-dimensional data sets like shape.
As such, it is possible that other evolutionary methods
developed for univariate data may also be generalized
for the analysis of high-dimensional phenotypic data.

Finally, the approach developed here could
be additionally extended (in theory) to provide
a framework for comparing evolutionary rates
among traits that differ in their dimensionality.
Currently, likelihood methods may be used to compare
evolutionary rates between two or more traits on the
same phylogeny (Adams 2013), but this approach is only
implemented for univariate data. Unfortunately, many
comparisons evolutionary biologists wish to make are
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between traits that could be quantified using a different
number of dimensions (e.g., does body size evolve at a
faster rate than body shape?). The methods developed
here could be extended to address such questions,
because the ratio between evolutionary rates for size
and shape could be quantified, and then statistically
evaluated via simulation. Thus, using methods based
on �2

mult may provide a way forward in testing this,
and other long-standing evolutionary hypotheses,
so that we may better decipher how changes in the
pace of evolution translate into large-scale patterns of
phenotypic diversification within and among lineages.
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APPENDIX 1

Worked Example Demonstrating the Equivalency of �2 and
�2

mult for Univariate Data

In this example, five hypothetical species are related
by the following phylogeny and have the following
phenotypic values (Y):

The phylogenetic covariance matrix (C) representing
these evolutionary relationships under the hypothesis of
BM is

C=

A B C D E
A
B
C
D
E

⎡
⎢⎢⎢⎣

3 0 0 0 0
0 3 2 1 1
0 2 3 1 1
0 1 1 3 2
0 1 1 2 3

⎤
⎥⎥⎥⎦ .

Under this model of evolution, the expected value at
the root of the phylogeny (or phylogenetic mean) is
estimated as â= (1tC−11)−1(1tC−1Y) where 1 is a vector
of ones, and C and Y are as defined above (Rohlf 2001;
Revell and Harmon 2008). In this case, â=3.684211. The
maximum-likelihood estimate of the evolutionary rate
parameter under a BM model of evolution (O’Meara
et al. 2006) may then be found using the standard
variance-based equation:

�2 =
(
Y−E

(
Y

))t C−1(
Y−E

(
Y

))
N

.

For this example, the estimate of �2 =0.877193.
To obtain the distance-based estimate (�2

mult), Y is first
transformed by the phylogeny as

UY =(
Y−E(Y)

)
D,

where E(Y) is the phylogenetic mean and D is found
from an eigen-decomposition of phylogenetic covariance
matrix (Garland and Ives 2000; Blomberg et al. 2003). The
distances between UY and the origin are then obtained,
which for this example are:

PDU,0 =

⎡
⎢⎢⎢⎣

0.1823211
0.7809499
1.2190501
0.6416998
1.3583002

⎤
⎥⎥⎥⎦.

Finally, �2
mult is obtained as

�2
mult =

PDt
U,0PDU,0

N
.

For this example, the distance-based evolutionary rate
is estimated as �2

mult =0.877193, which identical to the
univariate value obtained above.

APPENDIX 2

Computer Code for R
The function below estimates the phylogenetic

evolutionary rate parameter (�2
mult) for multi-

dimensional traits for two or more groups as specified
on a phylogeny. For two groups a test-ratio is obtained,
while for more than two groups the average test-ratio is
utilized as the test statistic. This value is then evaluated
statistically using phylogenetic simulations based on a
single evolutionary rate for all taxa in the phylogeny.
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Some calculations adapted from “evol.vcv” in phytools
(Revell 2012).

CompareRates.sigma.d<-function(phy,x,gp,iter=499 ){
library(geiger)
p<-ncol(x)

#function to obtain sigma.d and test-ratios
sigma.d<-function(phy,x,gp){

x<-as.matrix(x)
x<-prcomp(x)$x
gp<-as.factor(gp)
gp<-gp[rownames(x)]
ngps<-nlevels(gp)
gpsz<-table(gp)
N<-length(phy$tip.label)
ones<-array(1,N)
C<-vcv.phylo(phy)
C<-C[rownames(x),rownames(x)]
a.obs<-colSums(solve(C))%*%x/sum(solve(C))
eigC<-eigen(C)
D.mat<-solve(eigC$vectors %*% diag(sqrt(eigC$values))%*%

t(eigC$vectors))
dist.adj<-as.matrix(dist(rbind((D.mat%*%

(x-(ones%*%a.obs))),0)))
vec.d2<-dist.adj[N+1,1:N]ˆ2
sigma.d<-tapply(vec.d2,gp,sum)/gpsz/p
sigma.d.all<-sum(vec.d2)/N/p
if (ngps==2){sigma.d.rat<-max(sigma.d)/min(sigma.d)}
if (ngps>2){

sigma.d.rat.gp<-array(0, dim=c(ngps, ngps))
for (i in 1:(ngps - 1)) {

for (j in 2:ngps) {
tmp<-c(sigma.d[i],sigma.d[j])
sigma.d.rat.gp[i, j]<-max(tmp)/min(tmp)

diag(sigma.d.rat.gp)<-0
}

}
sigma.d.rat<-sum(sigma.d.rat.gp)/(ngps/2 * (ngps - 1))

}
return(list(sigma.all=sigma.d.all,

ratio=sigma.d.rat,sigma.d.all=sigma.d))
}

#Observed test values
sigmad.obs<-sigma.d(phy,x,gp)

#Hypothesis testing via phylogenetic simulation
rate.mat<-diag(sigmad.obs$sigma.all,p)
x.sim<-sim.char(phy,rate.mat,nsim=iter) #simulate data
sig.sim<-1
for (ii in 1:iter){

sigmad.sim<-sigma.d(phy,x.sim[„ii],gp)
sig.sim<-ifelse(sigmad.sim$ratio>=sigmad.obs$ratio,

sig.sim+1,sig.sim)
}
sig.sim<-sig.sim/(iter+1)
return(list(sigma.d.all=sigmad.obs$sigma.d.all,

sigma.dratio=sigmad.obs$ratio, significance=sig.sim))
}
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