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While it is an important problem to identify the existence of causal associations between two components of

a multivariate time series, a topic addressed in Runge, Heitzig, Petoukhov, and Kurths [Phys. Rev. Lett. 108,

258701 (2012)], it is even more important to assess the strength of their association in a meaningful way. In the

present article we focus on the problem of defining a meaningful coupling strength using information-theoretic

measures and demonstrate the shortcomings of the well-known mutual information and transfer entropy. Instead,

we propose a certain time-delayed conditional mutual information, the momentary information transfer (MIT),

as a lag-specific measure of association that is general, causal, reflects a well interpretable notion of coupling

strength, and is practically computable. Rooted in information theory, MIT is general in that it does not assume a

certain model class underlying the process that generates the time series. As discussed in a previous paper [Runge,

Heitzig, Petoukhov, and Kurths, Phys. Rev. Lett. 108, 258701 (2012)], the general framework of graphical models

makes MIT causal in that it gives a nonzero value only to lagged components that are not independent conditional

on the remaining process. Further, graphical models admit a low-dimensional formulation of conditions, which

is important for a reliable estimation of conditional mutual information and, thus, makes MIT practically

computable. MIT is based on the fundamental concept of source entropy, which we utilize to yield a notion

of coupling strength that is, compared to mutual information and transfer entropy, well interpretable in that,

for many cases, it solely depends on the interaction of the two components at a certain lag. In particular, MIT

is, thus, in many cases able to exclude the misleading influence of autodependency within a process in an

information-theoretic way. We formalize and prove this idea analytically and numerically for a general class of

nonlinear stochastic processes and illustrate the potential of MIT on climatological data.
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I. INTRODUCTION

Today’s scientific world produces a vastly growing and

technology-driven abundance of data across all research fields

from observations of natural processes to economic data

[1]. To test or generate hypotheses on interdependencies

between processes underlying the data, statistical measures of

association are needed. Recently, Reshef et al. [2] put forward

two key demands such a measure should fulfill in the bivariate

case: (1) generality, i.e., the measure should not be restricted

to certain types of associations like linear measures, and

(2) equitability, which means that the measure should reflect

a certain heuristic notion of coupling strength, i.e., it should

give similar scores to equally noisy dependencies. The latter

is especially important for comparisons and ranking of the

strength of dependencies. In this article, we generalize this

idea to multivariate data as needed to reconstruct interaction

networks in the fields of neuroscience, genetics, climate,

ecology, and many more. For the multivariate case, we propose

to add two more basic properties: (3) causality, which means

that the measure should give a nonzero value only to the

dependency between lagged components of a multivariate

process that are not independent conditional on the remaining

process and (4) coupling-strength autonomy, implying that

also for dependent components we seek for a causal notion

of coupling strength that is well interpretable, in that it is

uniquely determined by the interaction of the two components

alone and in a way autonomous of their interaction with

the remaining process. To understand this, consider a simple

example: Suppose we have two interacting processes, X and

Y , and a third process, Z, that drives both of them. A bivariate

measure of coupling strength between X and Y then will be

influenced by the common input of Z, while our demand is

that the measure should be autonomous of the interactions of

X and Y with Z. In an experimental setting this corresponds to

keeping Z fixed and solely measuring the impact of a change in

X on Y averaged over all realizations of Z. This property can

be regarded as one ingredient of a multivariate extension of the

equitability property. Last, we also demand that the measure

should be defined in a way that is practically computable, in

that the estimation does not, e.g., require somewhat arbitrary

truncations like in the case of transfer entropy [3]. Due to these

properties our approach can be used to reconstruct interaction

networks where the links are not only causal but are also

meaningfully weighted and have the attribute of a coupling

delay. This serves as an important feature in inferring physical

mechanisms from interpreting interaction networks.

The first requirement, generality, is fulfilled by any

information-theoretic measure like mutual information (MI)

and conditional mutual information (CMI) [4]. These measures

also fulfill the axioms for dependency measures proposed in

Ref. [5]. Additionally to generality, the authors in Ref. [2]

demonstrate that their algorithmically motivated maximal

information coefficient fulfills the property of equitability.

However, apart from issues with statistical power [6], a crucial

drawback of their measure is that it is not clear how to extend
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it to the multivariate case. There are few works considering

a concept of coupling strength in the multivariate context

of causality. In Refs. [7,8], this problem is approached in

the linear framework of partial directed coherence and in

Refs. [9,10] using the less restricted, yet still model-based,

concept of Granger causality, all sharing the problem that the

model might be misspecified. Transfer entropy (TE) [3] is the

information-theoretic analog of Granger causality [11] and the

issue of arbitrary truncations has been addressed in Ref. [12]

and in our previous article [13]. Still, the problem with TE is

that it is not lag specific, which can lead to false interpretations

like in the case of feedbacks [14] and, as we will demonstrate

analytically and numerically in this article, it is not uniquely

determined by the interaction of the two components alone

and depends on misleading effects of, e.g., autodependency

and the interaction with other processes. In essence, it does not

fulfill the proposed property of coupling-strength autonomy.

In Ref. [15] another information-theoretic approach, based on

a different set of postulates, is discussed.

Our approach to a measure of a causal coupling strength

is based on the fundamental concept of source entropy [16]

and for the special case of bivariate ordinal pattern time

series the momentary information transfer (MIT) has been

introduced recently in Ref. [17]. In this article we utilize the

concept of graphical models to mathematically formalize and

generalize MIT to the multivariate case. We demonstrate that

MIT is practically computable and fulfills the properties of

generality, causality, and coupling-strength autonomy, while

the more complex property of equitability will only partially

be addressed here.

The determination of a causal coupling strength in our

approach is a two-step process. In the first step, the graphical

model is estimated as detailed in Ref. [13], which is used

to determine the existence or absence of a link and, thus, of

a causality between lagged components of the multivariate

process. The second step—the main topic of the present

paper—is the estimation of MIT as a meaningful weight for

every existing link in the graph.

The article is organized as follows. In Sec. II we define and

review TE and the decomposed transfer entropy introduced in

Ref. [13]. In Sec. III we introduce the important concept of

graphical models and in Sec. IV we define MIT and related

measures. All of these measures are compared analytically

(Sec. V), leading to the coupling-strength autonomy theorem

(Sec. VI), and numerically (Sec. VII). Finally, we discuss limi-

tations (Sec. VIII) and provide an application to climatological

data that shows the potential of our approach (Sec. IX). The

appendices provide proofs and further discussions.

II. TRANSFER ENTROPY AND THE CURSE

OF DIMENSIONALITY

Before introducing MIT, we will discuss the well-known TE

and its shortcomings. We will focus on multivariate time series

generated by discrete-time stochastic processes and use the fol-

lowing notation: Given a stationary multivariate discrete-time

stochastic process X, we denote its uni- or multivariate sub-

processes X,Y,Z,W, . . . and the random variables at time t as

Xt ,Xt , . . . . Their pasts are defined as X−
t ≡ (Xt−1,Xt−2, . . .)

and X−
t ≡ (Xt−1,Xt−2, . . .). For convenience, we will often

treat X, Xt , X−
t , and X−

t as sets of random variables, so,

e.g., X−
t can be considered a subset of X−

t . Now the TE

[see Fig. 1(a)]

ITE
X→Y ≡ I (X−

t ; Yt | X−
t \X−

t ) (1)

is the reduction in uncertainty about Yt when learning the

past of Xt , if the rest of the past of Xt , given by X−
t \X−

t , is

already known (where the backslash denotes the subtraction

of a set). Note that, because of the assumed stationarity, ITE
X→Y

is independent of t . TE measures the aggregated influence of

X at all past lags and is not lag specific. The definition of

TE leads to the problem that infinite-dimensional densities

have to be estimated, which is commonly called the “curse

of dimensionality.” In the usual naive estimation of TE the

infinite vectors are simply truncated at some τmax, leading to

I
TE,τmax

X→Y ≡ I
(

X
(t−1,...,t−τmax)
t ; Yt

∣
∣X

(t−1,...,t−τmax)
t \X−

t

)

, (2)

where X
(t−1,...,t−τmax)
t ≡ (Xt−1, . . . ,Xt−τmax

) (correspondingly

for X) and τmax has to be chosen at least as large as the maximal

coupling delay between X and Y , which can lead to very large

dimensions. In our numerical experiments we will demonstrate

that the choice of a truncation lag τmax, which affects

the estimation dimension via D = Nτmax + 1 (where N is

the number of processes), has a strong influence on the value

of TE and affects the reliability of causal inference. This is a

huge disadvantage because the coupling delay should not have

an influence on the measured coupling strength.

In Ref. [13] the problem of high dimensionality is overcome

by utilizing the concept of graphical models that will be in-

troduced in the next section. In this framework, a decomposed

transfer entropy (DTE) is derived that enables an estimation

using finite vectors

ITE
X→Y ≈ IDTE

X→Y ≡
τ ⋆

∑

τ=1

I
(

Xt−τ ; Yt

∣
∣SYt ,Xt−τ

)

(3)

for a certain finite setSYt ,Xt−τ
⊂ X−

t \X−
t ∪ X−

t−τ [see Fig. 1(b)]

and with τ ⋆ chosen as the smallest τ for which the estimated

remainder is smaller than some given threshold. Another

approach to find a truncation is described in Ref. [12]. While

thereby the somewhat arbitrary truncation lag τmax is avoided

and the estimation dimension is drastically reduced, it can

still be quite high (in the still rather simple model example of

Ref. [13] the maximum dimension was 24).

The summands in Eq. (3) can be seen as the contributions of

different lags to TE but should not be interpreted as lag-specific

causal contributions because they can be nonzero also for lags

τ for which there is no link in the graph. Finally, apart from

the issue of high dimensionality and lag-specific causality, we

will demonstrate in Sec. V that TE or DTE also do not fulfill

the proposed coupling-strength autonomy property. In the

next section we introduce the important concept of graphical

models from which we derive MIT and related measures.

III. GRAPHICAL MODELS AND CAUSALITY

In the graphical model approach [18–20] the conditional

independence properties of a multivariate process are visual-

ized in a graph, in our case a time-series graph. This graph thus

encodes the lag-specific causality with respect to the observed
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(a) (b)

FIG. 1. (Color online) TE and DTE for a multivariate example process as given by Eq. (13) that will be analytically analyzed in Sec. V.

The time-series graph is defined in Sec. III. (a) The TE between the infinite past vector X−
t and Yt (black dots) conditioned on the remaining

infinite past X−
t \X−

t (gray dashed open box). (b) The first three summands of DTE given by Eq. (3). For the CMI between Xt−τ and Yt (black

dots), only the finite set SYt ,Xt−τ
(red solid boxes) is needed to satisfy the Markov property (Eq. (2) in Ref. [13]). SYt ,Xt−τ

⊂ X−
t \X−

t ∪ X−
t−τ

(gray dashed open box) must be chosen so it separates the remaining infinite conditions (X−
t \X−

t ∪ X−
t−τ )\SYt ,Xt−τ

from Yt in the graph (for a

formal definition of paths and separation, see Ref. [18]). Since the separating sets depend on paths between X−
t \X−

t ∪ X−
t−τ and Yt , they can

be determined only after the time-series graph has been estimated.

process. As depicted in Figs. 1 and 2(b), each node in that

graph represents a single random variable, i.e., a subprocess,

at a certain time t . Nodes Xt−τ and Yt are connected by a

directed link “Xt−τ → Yt” pointing forward in time if and

only if τ > 0 and

ILINK
X→Y (τ ) ≡ I (Xt−τ ; Yt |X−

t \{Xt−τ }) > 0, (4)

(a)

(b)

FIG. 2. (Color online) (a) Venn diagram that depicts the entropy

H (Y ) at time t (omitting t and τ in the labels) as a segmented

column bar. It is composed of the source entropy H (Y |PY ) (dark

gray shaded) and parts of the source entropy H (X|PX) (light gray

shaded), the entropy H (PX) of the parents of X (red), and the

entropy H (PY \{Xt−τ }) of the remaining parents of Y (blue). Our CMI

IMIT
X→Y (solid framed segment) is the difference between the entropy

H (Y |PY \{X},PX) (dashed segment) that includes transfer from X

and the source entropy of Y that excludes it. (b) An example of a

time-series graph (see definition in text) corresponding to Eq. (46)

that makes the intuitive entropy picture operational. In this graph MIT

is the CMI between Xt−τ at τ = 2 and Yt (marked by the black dots)

conditioned on the parents PXt−τ
(red) and PYt

\{Xt−τ } (blue).

i.e., if they are not independent conditionally on the past of

the whole process, which implies a lag-specific causality with

respect to X. If Y �= X we say that the link “Xt−τ → Yt”

represents a coupling at lag τ , while for Y = X it represents

an autodependency at lag τ . Nodes Xt and Yt are connected by

an undirected contemporaneous link (visualized by a line) [18]

if and only if

ILINK
X−Y ≡ I (Xt ; Yt | X−

t+1\{Xt ,Yt }) > 0, (5)

where also the contemporaneous present Xt\{Xt ,Yt } is in-

cluded in the condition. In the case of a multivariate autore-

gressive process as defined later in Eq. (40), this definition

corresponds to nonzero entries in the inverse covariance

matrix of the innovations ε. Note that stationarity implies that

“Xt−τ → Yt” whenever “Xt ′−τ → Yt ′” for any t ′.
Like TE, the CMIs given by Eqs. (4) and (5) involve infinite-

dimensional vectors and, thus, cannot be computed directly but

only involving truncations. As shown in Sec. VII, this measure

therefore suffers from the problem of high dimensionality

and also theoretically does not fulfill the coupling-strength

autonomy property as analyzed in Sec. V.

On the other hand, one can exploit the Markov property and

use the finite set of parents defined as

PYt
≡ {Zt−τ : Z ∈ X,τ > 0,Zt−τ → Yt } (6)

of Yt [blue box in Fig. 2(b)] which separate Yt from the past

of the whole process X−
t \PYt

. The parents of all subprocesses

in X together with the contemporaneous links comprise the

time-series graph. In Ref. [13] an algorithm for the estimation

of these time-series graphs by iteratively inferring the parents is

introduced. In the supplementary material of Ref. [13] we also

describe a suitable shuffle test and a detailed numerical study

on the detection and false positive rates of the algorithm. The

Markov properties hold for models sufficing the very general

condition (S) in Ref. [18].

The determination of a causal coupling strength now is a

two-step procedure. In the first step, the time-series graph is

estimated as detailed in Ref. [13] to determine the existence

or absence of a link and, thus, of a causality between lagged

components of X. The second step is the determination of

a meaningful weight for every existing link in the graph. The
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MIT introduced in the next section is intended to serve this aim

by attributing a well-interpretable coupling strength solely to

the inferred links of the time-series graph.

IV. MOMENTARY INFORMATION TRANSFER

AND SOURCE ENTROPY

The parents of a subprocess Y at a certain time t are key

to understanding the underlying concept of source entropy.

Each univariate subprocess X of a stationary multivariate

discrete-time stochastic process X will at each time t yield

a realization xt . The entropy of Xt measures the uncertainty

about xt before its observation, and it will in general be reduced

if a realization of the parents PXt
⊂ X−

t is known. But for a

nondeterministic process, and most real data will contain at

least some random noise, there will always be some “surprise”

left when observing xt . This surprise gives us information

and the expected information is called the source entropy

H (Xt |PXt
) of X. Now the MIT between X at some lagged

time t − τ in the past and Y at time t is the CMI that measures

the part of the entropy of Y that is shared with the source

entropy of X,

IMIT
X→Y (τ ) ≡ I

(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ },PXt−τ

)

= H
(

Yt

∣
∣PYt

\{Xt−τ },PXt−τ

)

− H
(

Yt

∣
∣PYt

)

. (7)

This approach of “isolating source entropies” is sketched in

a Venn diagram in Fig. 2(a). The attribute momentary [17] is

used because MIT measures the information of the “moment”

t − τ in X that is transferred to Yt . This “momentariness” is

closely related to the property of coupling-strength autonomy

as we will show in the next sections. Similarly to the definition

of contemporaneous links in Eq. (5), we can also define a

contemporaneous MIT,

IMIT
X−Y ≡ I

(

Xt ; Yt |PYt
,PXt

,NXt
\{Yt },NYt

\{Xt },
P
(

NXt
\{Yt }

)

,P
(

NYt
\{Xt }

))

, (8)

where N denotes the contemporaneous neighbors given by

NYt
≡ {Xt : X ∈ X,Xt−Yt } (9)

and correspondingly for X and their parents. Due to Markov

properties, the contemporaneous MIT is equivalent to the

formula defining contemporaneous links Eq. (5). This is,

however, not the case for the lagged MIT. Like any (C)MI,

MIT is sensitive to any kind of statistical association and,

therefore, guarantees the property of generality. Because MIT

uses the parents PYt
as conditions, it also fulfills the property

of lag-specific causality in that it is nonzero only for lagged

processes that are not independent conditional on X−
t .

As related measures, we can also choose either one of

the parents as a condition, which, dropping the attribute

“momentary,” leads to the information transfers ITY and ITX,

I ITY
X→Y (τ ) ≡ I

(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ }
)

, (10)

I ITX
X→Y (τ ) ≡ I

(

Xt−τ ; Yt

∣
∣PXt−τ

)

. (11)

ITY isolates only the source entropy of Y . Like MIT it

is nonzero only for dependent nodes (and therefore fulfills

the properties of generality and causality) and used in the

algorithm to estimate the time-series graph [13]. ITX measures

the part of source entropy in Xt−τ that reaches Yt on any path

and is, thus, not a causal measure, yet in many situations we

might only be interested in the effect of X on Y , no matter

how this influence is mediated. For τ > 0 these three CMIs

are related by the inequality

I ITX
X→Y (τ ) � IMIT

X→Y (τ ) � I ITY
X→Y (τ ), (12)

which holds under the “no sidepath” constraint as specified in

Sec. VI. The proof is given in the appendix. The very definition

of MIT, ITY, and ITX already leads to a low-dimensional

estimation problem without arbitrary truncation parameters.

Further, the underlying theory of time-series graphs allows for

an analytical evaluation of the properties of these measures as

we will demonstrate in the following section. See Ref. [21] for

software to compute the time-series graph, MIT, and related

measures.

To clarify, each of the CMIs introduced in the preceding

sections are intended to measure a different aspect of the

coupling between X and Y . In the following analytical analysis

of simple models we will discuss the interpretability of the

different measures.

V. ANALYTICAL COMPARISON

To motivate our choice of a measure of coupling strength

and to clarify the important coupling-strength autonomy

property, we discuss an analytically tractable model of a

multivariate Gaussian process,

Zt = cXZXt−1 + ηZ
t ,

Xt = aXXt−1 + ηX
t ,

(13)
Yt = cXY Xt−2 + cWY Wt−1 + ηY

t ,

Wt = ηW
t ,

with independent Gaussian white noise processes η·
t with

variances σ 2
· . The corresponding time-series graph is depicted

in Fig. 1 and the parents are PYt
= {Xt−2,Wt−1} and PXt−2

=
{Xt−3}. Generally, the conditional entropy H (Y |Z) of a DY -

dimensional Gaussian process Y conditional on a (possibly

multivariate) process Z is given by

H (Y |Z) =
1

2
ln

(

(2πe)DY
|ŴYZ|
|ŴZ|

)

, (14)

where |ŴYZ| is the determinant of the covariance matrix of

(Y,Z). In our case, Y is univariate and, thus, DY = 1. The

variances and covariances needed to evaluate the determinants

and detailed derivations for the following formulas are given

in the appendix.

First, we analyze TE given by Eq. (1). TE can be written as

the difference of conditional entropies

ITE
X→Y = H (Yt | X−

t \X−
t ) − H (Yt | X−

t ), (15)

where the latter entropy, conditioned on the whole infinite

past, is actually the source entropy of Y and can be much

easier computed by exploiting the Markov property

H (Yt | X−
t ) = H

(

Yt

∣
∣PYt

)

, (16)
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which yields, using Eq. (14),

H
(

Yt

∣
∣PYt

)

=
1

2
ln

(

2πe

∣
∣ŴYtXt−2Wt−1

∣
∣

∣
∣ŴXt−2,Wt−1

∣
∣

)

=
1

2
ln
(

2πeσ 2
Y

)

. (17)

The source entropy of Y is, therefore, given by the entropy

of the innovation term ηY . In the first entropy term, on the

other hand, the infinite vector cannot be treated that easily and

we have to evaluate the determinants of infinite-dimensional

matrices in

H (Yt |Y−
t ,W−

t ,Z−
t ) =

1

2
ln

(

2πe

∣
∣ŴYtY

−
t W−

t Z−
t

∣
∣

∣
∣ŴY−

t W−
t Z−

t

∣
∣

)

. (18)

However, for the special case of cXZ = cWY = 0, i.e., no input

processes apart from the autodependency in X, the quotient

of these matrices can be simplified to the quotient of infinite

Toeplitz matrices. As shown in the appendix, we can then

apply Szegö’s theorem [22,23] and get

ITE
X→Y

cXZ=cWY =0=
1

2
ln

[

1 +
(

c2
XY σ 2

X

)/(

1−a2
X

)

σ 2
Y

]

. (19)

Another tractable case is aX = 0, for which the blocks of the

covariance matrix ŴYtY
−
t W−

t Z−
t

become diagonal and

ITE
X→Y

aX=0=
1

2
ln

[

1 +
c2
XY σ 2

Xσ 2
Z

σ 2
Y

(

c2
XZσ 2

X + σ 2
Z

)

]

. (20)

Thus, in the first case, the value of TE for our model depends

on the autodependency coefficient and in the second case

on the coupling coefficient and variance of Z. But why

should a measure of coupling strength between X and Y

depend on internal dynamics of X and, even more so, on

the interaction of X with another process Z? While it can be

information-theoretically explained, it seems rather unintuitive

for a measure of coupling strength between X and Y .

We next compute the CMI ILINK
X→Y that defines links in a

time-series graph. Writing Eq. (4) for τ = 2 as a difference

of conditional entropies, the second term is again the source

entropy as given by Eq. (17) and in this case also the first

entropy can be simplified using the Markov property

H (Yt |X−
t \Xt−2) = H

(

Yt

∣
∣X

(Xt−1,...,Xt−3)
t \{Xt−2}

)

(21)

to arrive at a finite covariance matrix from which a lengthy

computation yields

ILINK
X→Y =

1

2
ln

[

1 +
c2
XY σ 2

Xσ 2
Z

σ 2
Y

(

c2
XZσ 2

X +
(

1+a2
X

)

σ 2
Z

)

]

. (22)

Again, also this measure of coupling strength depends on the

coefficients belonging to other coupling and autodependency

links.

We now turn to the measures that solely use the parents as

conditions, which has the analytical and numerical advantage

of low-dimensional computations. The resulting expressions

for the CMI with no conditions, i.e., the mutual information

(MI), and for either one of the parents as a condition for τ = 2

are

IMI
X→Y =

1

2
ln

[

1 +
(

c2
XY σ 2

X

)/(

1 − a2
X

)

c2
WY σ 2

W + σ 2
Y

]

, (23)

I ITY
X→Y =

1

2
ln

[

1 +
(

c2
XY σ 2

X

)/(

1 − a2
X

)

σ 2
Y

]

, (24)

I ITX
X→Y =

1

2
ln

(

1 +
c2
XY σ 2

X

c2
WY σ 2

W + σ 2
Y

)

. (25)

Thus, MI depends on the coefficients and variances of the

input processes, while ITX and ITY still depend at least on the

coefficient and variance of the process that is not conditioned

on. Contrary to TE and LINK, though, neither of the three

measures depends on the interaction with Z. In our model the

inputs to X and Y , i.e., the autodependency with Xt−3 and the

external input from Wt−1, are independent, which makes the

formulas much simpler.

Finally, the MIT for τ = 2 is

IMIT
X→Y =

1

2
ln

(

1 +
c2
XY σ 2

X

σ 2
Y

)

, (26)

which solely depends on the model coefficients that govern the

source entropies, i.e., the variances σ 2
X, σ 2

Y , and the coupling

coefficient cXY .

This equation can be proven to hold for arbitrary multivari-

ate linear autoregressive processes under the “no sidepath”

constraint specified in the next section. More generally, for a

class of additive models MIT depends only on the coupling

coefficient cXY and the source variances of ηX and ηY as will

be proven in the coupling-strength autonomy theorem in the

next section.

But can a coupling strength always be associated with only

one coupling coefficient cXY ? In the following—still linear—

example model visualized in Fig. 3(a) this is not the case,

Xt = ηX
t ,

Wt = cXWXt−1 + ηW
t , (27)

Yt = cXY Xt−2 + cWY Wt−1 + ηY
t ,

(a) (b)

FIG. 3. (Color online) Two examples of couplings that cannot

be related to one single coefficient cXY . Black dots mark Xt−τ and

Yt , and the red and blue boxes their parents. (a) A sidepath, i.e., if

there exists a path from Xt−2 to some parent of Yt . The coupling then

cannot be related to one single link but additionally to the path via

Wt−1. (b) Visualization of a nonlinear coupling between Xt−1 and

Yt . In this case, the entropies of Xt−1 and its parents “mix” and the

coupling should be considered as emanating from (Xt−1,PXt−1
) rather

than Xt−1 alone.
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where the influence of Xt−2 on Yt has two paths: One via

the direct coupling link “Xt−2 → Yt” and one via the path

“Xt−2 → Wt−1 → Yt” such that we can rewrite

Yt = cXY Xt−2 + cWY

(

cXWXt−2 + ηW
t−1

)

+ ηY
t , (28)

from which we see that the coupling cannot be unambiguously

related to one coefficient. Here, MIT at τ = 2 is

IMIT
X→Y =

1

2
ln

[

1 +
c2
XY σ 2

Xσ 2
W

σ 2
Y

(

c2
XWσ 2

X + σ 2
W

)

]

(29)

and depends not only on cXY but also on the coefficient cXW

of the link “Xt−2 → Wt−1” and on the variance of W . In this

case it might be more appropriate to “leave open” both paths

and exclude Wt−1 from the conditions, which—only in this

case—reduces the modified MIT to the MI,

I (Xt−2; Yt ) =
1

2
ln

[

1 +
(cXY + cXW cWY )2σ 2

X

c2
WY σ 2

W + σ 2
Y

]

. (30)

Here the sum cXY + cXW cWY is the covariance along both

paths, which can also vanish for cXY = −cXW cWY , and seems

like a more appropriate representation of the coupling between

Xt−2 and Yt .

Another example where one cannot unambiguously relate

the coupling strength to one coefficient is for a nonlinear

dependency between X and Y [Fig. 3(b)],

Zt = ηZ
t ,

Xt = cZXZt−1 + ηX
t , (31)

Yt = cXY (Xt−1)2 + ηY
t .

If we express Yt explicitly in terms of the source variance of

X and the parent of X

Yt = cXY c2
ZX(Zt−2)2 + 2cZXcXY Zt−2η

X
t−1

+ cXY

(

ηX
t−1

)2 + ηY
t , (32)

we note that, due to the term 2cZXcXY Zt−2η
X
t−1, the effect

of Zt−2 is not additively separable from the source process

ηX
t−1. In the Venn diagram of Fig. 2(a) this “mixing” of

entropies implies that the parts of the entropies H (X|PX) and

H (PX) that overlap with H (Y ) are no longer distinguishable,

which could be visualized by the red and light gray shadings

bleeding into one another. Therefore, the coupling should be

considered as emanating from (Xt−1,PXt−1
) rather than Xt−1

alone [visualized by a thick arrow in Fig. 3(b)]. For this

nonlinear model we have not found an analytical expression

for MIT, but the more general case of this model is studied

numerically in the appendix.

These two examples point to constraints under which full

coupling-strength autonomy can be reached. In the next section

we will formalize these constraints to general conditions in a

theorem of coupling-strength autonomy.

VI. COUPLING-STRENGTH AUTONOMY THEOREM

AND MODIFICATIONS OF MIT

Let X, Y be two subprocesses of some multivariate

stationary discrete-time process X sufficing condition (S) in

Ref. [18] with time-series graph G as defined in Sec. III

and coupling link “Xt−τ → Yt” for τ > 0. The following

derivations also hold for more than one link at lags τ ′ �= τ

between X and Y . As before, we denote their parents PYt

and PXt
. For the link “Xt−τ → Yt” we define the following

conditions:

(i) Additivity means that the dependence of Xt on its source

process ηX
t and parents PXt

and of Yt on its source process ηY
t ,

Xt−τ and the remaining parents PYt
\{Xt−τ } is additive, i.e.,

they can be written as

Xt = gX(PXt
) + ηX

t , (33)

Yt = f (Xt−τ ) + gY

(

PYt
\{Xt−τ }

)

+ ηY
t , (34)

for possibly multivariate random variables PXt
and

PYt
\{Xt−τ }, univariate independent and identically distributed

(i.i.d.) random variables ηX and ηY with arbitrary, not neces-

sarily identical distributions, and arbitrary functions gY , gX, f .

(ii) Linearity in f: The dependence of Yt on Xt−τ is linear,

i.e., f (x) = cx with real c.

(iii) “No sidepath” constraint, i.e., in the time-series graph

G the node Xt−τ is separated from (PYt
\PXt−τ

)\{Xt−τ } given

PXt−τ
(for a formal definition of paths and separation, see

Ref. [18]). Since, due to condition (S) in Ref. [18], separation

implies conditional independence, this means

I
((

PYt
\PXt−τ

)

\{Xt−τ }; Xt−τ

∣
∣PXt−τ

)

= 0. (35)

Theorem (coupling-strength autonomy). MIT defined in

Eq. (7) for the coupling link “Xt−τ → Yt” for τ > 0 of

a multivariate stationary discrete-time process X sufficing

condition (S) in Ref. [18] has the following dependency

properties:

(i) If all three conditions (1)–(3) hold, then MIT can be

expressed as an MI of the source processes,

IMIT
X→Y (τ ) = I

(

ηX
t−τ ; cηX

t−τ + ηY
t

)

. (36)

Since ηY
t and ηX

t−τ are assumed to be independent, the

probability density of their sum is given by their convolution.

The MIT thus depends solely on c and the joint and marginal

distributions of ηX
t−τ and the convolution of cηY

t with ηX
t−τ .

(ii) If only conditions (1) and (2) hold, i.e., there exists a

sidepath between Xt−τ and some nodes in PYt
\PXt−τ

, then

MIT depends additionally on the distributions of at least the

“sidepath parents” in PYt
and their functional dependence on

Yt ,

IMIT
X→Y (τ ) = I

(

ηX
t−τ ; cηX

t−τ + ηY
t

∣
∣PYt

\{Xt−τ }
)

. (37)

This relation can be further simplified if gY (PYt
\{Xt−τ }) is

additive in some parents.

(iii) If only the additivity condition (1) holds, i.e., f (x) is

nonlinear and mixes ηX
t−τ with the parents PXt−τ

, then MIT

depends additionally on f , the distributions of variables in

PXt−τ
, as well asPYt

\{Xt−τ }, and their functional dependencies

on Yt ,

IMIT
X→Y (τ ) = I

(

ηX
t−τ ; f

[

ηX
t−τ + gX

(

PXt−τ

)]

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

. (38)

This relation can be further simplified if some parents in

PYt
\{Xt−τ } are independent of f [ηX

t−τ + gX(PXt−τ
)].
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For a contemporaneous link “Xt − Yt ,” the contemporane-

ous MIT defined in Eq. (8) under the condition (1) is

IMIT
X−Y = I

(

ηX
t ; ηY

t

∣
∣NXt

\{Yt },NYt
\{Xt }

)

. (39)

A contemporaneous link cannot have sidepaths. For X = Y ,

MIT measures the autodependency strength. The proofs are

given in the appendix.

We now discuss some remarks on the theorem and possible

modifications of MIT as follows.

(i) For the special case of multivariate linear autoregressive

processes of order p [24] defined by

Xt =
p
∑

s=1

	(s)Xt−s + εt , εt ∼ N (0,
), (40)

with the coupling coefficient cXY at lag τ corresponding to

the connectivity matrix entry 	(τ )YX, and with no sidepaths,

Eq. (36) leads to

IMIT
X→Y (τ ) =

1

2
ln

(

1 +
c2
XY σ 2

X

σ 2
Y

)

, (41)

generalizing the MIT for our analytical model in Eq. (26).

For an autodependency at lag τ with coefficient aY and no

sidepaths, the MIT is IMIT
Y→Y (τ ) = 1

2
ln(1 + a2

Y ), independent of

the source variance σ 2
Y .

(ii) The form Eq. (41) is reminiscent of the Shannon-

Hartley theorem in communication theory [4]. There the

coupling strength corresponds to the communication channel

capacity C, which is given by the maximum MI over all

possible input sources: C = max{P (X)} I (X; Y ). The Shannon-

Hartley theorem for Gaussian channels then reads

C = B log

(

1 +
S

N

)

(42)

with bandwidth B and signal-to-noise ratio S/N , which in

Eq. (41) corresponds to c2
XY σ 2

X/σ 2
Y . The difference to our

measure of coupling strength is that we cannot manipulate the

input sources and thus cannot measure the channel capacity

alone. We also expressed the various other CMIs occuring

above in this form, where the quotient can be interpreted as a

signal-to-noise ratio. For example, in Eq. (25), c2
XY σ 2

X is the

signal strength and c2
WY σ 2

W + σ 2
Y is the noise strength.

(iii) For sidepaths, i.e., under the conditions (1) and (2) only,

the example of MIT and the modified MIT for the case of our

model example Eq. (27) point to the suggestion, that it might be

more appropriate to “leave open” all paths from Xt−τ to Yt by

excluding those parents of Yt that are depending on Xt−τ . Then

the possible paths of entropy transfer are either via the direct

link “Xt−τ → Yt” or via the sidepaths “Xt−τ
→
− · · · → · · · →

Yt” (the symbol “→
− ” denotes that the sidepath can start from

Xt−τ either directed or contemporaneous, while the subsequent

links of the path can only be directed). To isolate all of these

paths, we suggest to additionally condition on the parents of

the intermediate nodes on these sidepaths. These nodes can be

characterized by

A
⋆
Yt

≡
{

W k
t−τk

∈ AYt
\
{

Xt−τ ,PXt−τ

}

:

I
(

W k
t−τk

; Xt−τ |PXt−τ

)

> 0
}

, (43)

where AYt
denotes the ancestors of Yt , i.e., the set of nodes

with a directed path towards Yt [18]. We call the modified MIT

MITS, where “S” stands for “sidepath,”

IMITS
X→Y (τ ) ≡ I

(

Xt−τ ; Yt |
{

PYt
,P
(

A⋆
Yt

)}

\
{

A⋆
Yt

,Xt−τ

}

,PXt−τ

)

.

(44)

(iv) For nonlinear dependencies f , one could modify MIT

to the CMI between Yt and the joint vector (Xt−τ ,PXt−τ
),

leading to MITN, where “N” stands for “nonlinear,”

IMITN
X→Y (τ ) ≡ I

((

Xt−τ ,PXt−τ

)

; Yt

∣
∣PYt

\
(

Xt−τ ,PXt−τ

))

. (45)

These modifications will be studied in a separate paper.

The theorem implies that under the conditions (1)–(3) the

MIT is independent of other coefficients belonging to other

links. If this holds for all coupling strengths of all links in

the model, then the MITs are independent in a functional

sense. Note, however, that all coupling strengths of links

emanating from the same process X will depend on the source

variance of ηX. Thus, MIT somewhat disentangles the coupling

structure, which is exactly the coupling-strength autonomy

that makes MIT well interpretable as a measure that solely

depends on the “coupling mechanism” between X at lag t − τ

and Yt , autonomous of other processes. One such possible

misleading input “filtered out” by MIT is autocorrelation,

or, more generally, autodependency, as will be shown in the

numerical experiments and the application to climatological

data. In the next section we investigate the coupling-strength

autonomy property numerically.

VII. NUMERICAL COMPARISON

In the following we compare MI, TE, MIT, and related

measures numerically to investigate the properties of gener-

ality and coupling-strength autonomy for a general class of

nonlinear discrete-time stochastic multivariate processes,

Zt = aZZt−1 + ηZ
t ,

Xt = aXXt−1 + cZXg(Zt−1) + ηX
t ,

Yt = aY Yt−1 + cWY g(Wt−1) + cXY f (Xt−2) + ηY
t ,

Wt = aWWt−1 + ηW
t , (46)

with independent Gaussian white-noise processes η·
t with

all variances σ 2
· = 1. The corresponding time-series graph

is depicted in Fig. 2(b). We estimate the various coupling

measures for fixed cXY and aZ = aW = 0.5 and vary the input

coefficients,

aX = cZX ∈ {0.0, 0.1, . . . ,0.8},
aY = cWY ∈ {0.0, 0.1, . . . ,0.8},

and functional dependencies of inputs

linear g(x) = x,

squared g(x) = 0.3x2,

stochastic g(x) = 2xεt with uniform i.i.d. εt ∈ [0,1],

exponential g(x) = 0.3 × 2x,

sinusoidal g(x) = sin 4x.

Here we depict results for linear f (x) = x such that the

dependencies of the multivariate process suffice all three

conditions; a nonlinear dependency type is discussed in the

appendix. The ensemble E then consists of all combinations
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(a)

(b)

FIG. 4. (Color online) Numerical experiments with the model

Eq. (46) using time-series length T = 1000. In (a) we plot the

ensemble average 〈I 〉E for fixed cXY = 0.6 for all measures as

specified in the main text. In (b) we show the ensemble densities of all

measures for different coupling coefficients cXY = 0.0, 0.3, 0.6, 0.9

(from left to right: red, yellow, green, and blue solid lines). The

densities are estimated using Gaussian kernel smoothing according to

Scott’s rule, showing only the 90% most probable ensemble members.

of input coefficients and functional forms, each combination

run with 120 trials. The CMIs are estimated using a nearest-

neighbor (kNN) estimator [25,26] with parameter k = 1 (small

values of k lead to a lower estimation bias but higher variance

[25,26]).

In the top panel of Fig. 4(a) we plot the ensemble average

〈Î 〉E for fixed cXY = 0.6 for the following measures with

τ = 2: MI I (Xt−τ ; Yt ) (gray with dotted line), ITY according

to Eq. (10) (green with dash-dotted line), ITX according to

Eq. (11) (blue with dashed line), and MIT according to Eq. (7)

(red with solid line). The parents are shown in Fig. 2(b).

MIT is largely invariant to changes of the remaining

coefficients and g(x) and approximately attains the analytical

value for zero input coefficients [given by Eq. (26) for

cXY = 0.6 and σ 2
X = σ 2

Y = 1]: I ≈ 0.15. This implies that

the MIT of the coupling link is autonomous of the MITs

corresponding to the input links “Z→X” for Z ∈ PX and

“W→Y ” for W ∈ PY \{X} which scale with these coefficients.

Note, however, that all coupling strengths of links emanating

from the same process will depend on its variance σ 2
· like in

Eq. (26). Further, MI is mostly larger but also can be smaller

than MIT, which can be explained with the entropy diagram in

Fig. 2(a): Larger MIs occur if the entropy is increased due to

a larger input of H (PX) and smaller MIs occur if the relative

shared part of H (X) in H (Y ) decreases due to a larger input

of H (PY ). For zero inputs, MI approaches the analytical value

I ≈ 0.15, to where all four measures converge. ITY can at

least exclude input to Y and ITX can exclude input to X. Note,

however, that the dependence of ITX and ITY on the input

coefficients can differ in other models. The average of ITX

(ITY) is always smaller (larger) equal than MIT, confirming

the inequality Eq. (12).

In the bottom panel of Fig. 4(a) we compare MIT (red

with solid line) to TE according to Eq. (2) truncated at

τmax = 4 (gray with dotted line), the CMI ILINK
X→Y defining

links in the time-series graph according to Eq. (4) truncated at

τmax = 4 (green with dash-dotted line) and DTE according to

Eq. (3) with τ ⋆ = 3 (blue with dashed line). TE and LINK

have a much larger estimation dimension of 17 (as much

as 25 for τmax = 6) compared to 6 for MIT and between 5

and 12 for the summands of DTE. Compared to DTE this

leads to a negative relative bias in TE of about 50% for the

analytically known value for zero input coefficients I ≈ 0.15.

Apart from this bias, TE and DTE scale similarly with the

input coefficients. LINK is dependent on aX as we expect

from our analytical considerations [Eq. (22)]. The MIT shows

some slight dependence for strong inputs due to estimation

problems for short samples, but otherwise, also numerically,

we demonstrate here that only MIT fulfills the proposed

property of coupling-strength autonomy.

In Fig. 4(b) we show the whole densities of E of all

measures for different coupling coefficients cXY . The aim

of this experiment is to measure how well the measures can

distinguish the coupling strength for different cXY as demanded

by the property of equitability. The dashed lines show the

densities of the ensemble for aX = cZX = aY = cWY = 0, i.e.,

if both X and Y are independent of their parents.

As we now already expect, MI takes a whole range of

values for the same cXY . ITY is broadly peaked towards

higher I values and ITX towards lower values, confirming

the inequality Eq. (12). Note, that this relation holds only on

average. The different coupling coefficients cXY can be well

distinguished only with MIT. DTE tends to slightly higher

values for larger autodependencies within X, as expected from

our analytical results. Additionally, the variance of the DTE

estimate is higher because each summand’s variance adds up

to the total variance of the DTE estimate. The remaining four

plots demonstrate that TE and the CMI of Eq. (4) strongly

suffer from the negative bias associated with high-dimensional
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estimation depending on the chosen τmax. Therefore, TEs or

LINKs estimated with different τmax cannot be compared with

each other.

For the “unperturbed” case of zero inputs, the ensemble

distributions of MI [dashed lines in Fig. 4(b)] are—as

expected—similar to the one for MIT with “conditioned-out”

inputs (solid lines) apart from a small bias and smaller

variance related to slightly higher dimensional estimation. For

conditionally independent variables (cXY = 0, red lines), all

measures have almost no bias, i.e., Î ≈ 0, which is a property

of the kNN estimator and holds also for short samples [25]. It

may seem that, apart from the bias, at least the variance is much

smaller for the high-dimensional measures TE and LINK, but

the relative variance 〈Î 2〉/〈Î 〉 actually increases, leading to a

worsened distinguishability.

Summarizing, our experiments provide numerical evidence

that MIT acts as an information-theoretic “filter” that excludes

undesired effects of autodependency or other misleading

inputs. The MIT is, thus, specific only to the interaction of

the two lagged subprocesses and can disentangle the measured

coupling strengths of the different links in a time-series graph.

The commonly used measures MI and TE, on the other hand,

are possibly affected also by the interactions that X and Y have

with other processes. In this respect MIT is more intuitive and

better interpretable than TE or MI. Thus, the coupling-strength

autonomy property can be regarded as one ingredient of a

multivariate extension of the equitability property.

VIII. DISCUSSION AND LIMITATIONS

Let us here discuss some limitations of our approach.

(i) Our notion of causality is to be understood only with

respect to the observable processes included in the parents,

while the general notion of causality [27] requires exclusion

of the influence of the whole universe.

(ii) The graphical model imposes a discrete description of

causal interactions. Regarding the source entropy, we face

the problem that if a time-continuous process is sampled at

some interval �s, there is an infinite set of unobserved nodes

in between every Xt and Xt−1 for X ∈ X in the time-series

graph. We will, therefore, not be able to access the source

entropy solely at time t but only the aggregated information

in the interval [t − �s,t]. But for discrete processes graphical

models are applicable to the large class of models sufficing

condition (S) in Ref. [18].

(iii) Although the graphical model approach reduces the

estimation dimension to a minimum, the dimension can still

be relatively high, leading to biased estimates for shorter

samples. A study on the effects of high-dimensional estimation

is subject to further research. Generally, there are problems

with entropy estimation for highly skewed distributions which

need to be resolved by improved estimators of CMI.

(iv) Our two-step approach first necessitates the estimation

of the time-series graph which comes with the associated

problems of false positive detections due to multiple testing

and missed causal links. These problems are analyzed in the

supplementary material in Ref. [13].

(v) As discussed in the coupling-strength autonomy the-

orem, a coupling strength cannot be attributed to only one

single coefficient in all cases. Only if this is the case, i.e.,

under the conditions (1)–(3), can MIT filter out all influences

from the parents of X and Y . If the dependency is nonlinear

or sidepaths exist, one could use modifications of MIT like

IMITS
X→Y [Eq. (44)] and IMITN

X→Y [Eq. (45)] for a more appropriate

measure of coupling strength. Although for full coupling-

strength autonomy the link “Xt−τ → Yt” needs to be linear,

the remaining dependencies can still be nonlinear and the

source processes can have arbitrary distributions. The process

can, therefore, not easily be estimated using model-based

regressions.

(vi) Regarding equitability, a desired property of a coupling

measure would be that it scales linearly with the coupling

parameter cXY like the partial correlation approximately in

the Gaussian case. As can be seen from the analytical

derivations and the numerical example in Fig. 4(b), MIT scales

∝ ln(1 + cXY · · · ) for Gaussian dependencies, but a scaling

like the partial correlation in this case can be attained by

the transformation I →
√

1 − e−2I [4]. For more complex

dependencies improved estimators that are more adapted to

the distributions might help.

IX. APPLICATION TO CLIMATOLOGICAL TIME SERIES

We now analyze monthly air-temperature anomalies in the

tropics at two different altitudes in a NCEP/NCAR reanalysis

data set [28]. To investigate the upwelling of heat from the

sea surface towards the upper troposphere in a height of about

12 km, we measure the coupling strength between the surface

pressure level (X in Fig. 5) and the 200-hPa pressure level (Y )

for all tropical (latitudes between 30oS and 30oN) grid points.

First, we estimated the time-series graph using the algo-

rithm introduced in Ref. [13] separately for each surface-

troposphere pair at each grid point using a significance

threshold estimated with the shuffle test as in Ref. [13]. We

found, on average, the parentsPXt
= {Xt−1} andPYt

= {Yt−1},
i.e., lag-1 autodependencies, and the contemporaneous link

“Xt − Yt .”

With these parents, the spatial average of all lag functions of

MIT in the left panel of Fig. 5(a) shows the contemporaneous

link “Xt − Yt” as a significant peak, indicating that the time

scale of the coupling is below the lag of 1 month. The MI,

on the other hand, is significant for a wide range of lags,

making an assessment of a physical coupling delay difficult.

While the contemporaneous link cannot be interpreted as a

directed coupling, we can still assess its strength. The MIT of

a linear Gaussian process with the same time-series graph is

IMIT
X−Y = 1

2
ln(

σ 2
Xσ 2

Y

σ 2
Xσ 2

Y −σ 2
XY

), while MI additionally depends on the

autodependency coefficients.

Figure 5(b) shows a large (compared to the extra tropics)

IMI
X−Y all across the tropics. Significant IMIT

X−Y values, on the

other hand, are more confined and largest between 90oE

and 170oW. Larger MIT values indicate a stronger coupling

between the surface and upper tropospheric level in an area

that actually corresponds to a region of strong upwelling

in the Walker circulation [29]. The difference between MI

and MIT is largest in the eastern Pacific where also the

increased autodependency in surface air temperatures is ap-

parent (IMIT
X→X). This strong persistence thus leads to a spurious

increase in MI, which cannot differentiate the effects of
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(a)

(b)

FIG. 5. (Color online) Analysis of air-temperature anomalies at

the surface (X) and the upper troposphere (Y ), T = 1008 months

(1927–2011). (a) The spatial average and standard deviation of

coupling (left plot) and autodependency (middle plot for X, right

plot for Y ) lag functions for MI (dashed lines in light colors) and

MIT (solid lines in dark colors). In (b) we spatially resolve the

coupling strengths of the contemporaneous link “Xt − Yt” and the

autodependency “Xt−1 → Xt” for MI (upper two panels) and MIT

(lower two panels). IMI
Y→Y and IMIT

Y→Y (not shown) are almost the same

all across the tropics. For the contemporaneous link values below the

98% significance level are in white. CMIs estimated with k = 10.

increased autodependencies and increased contemporaneous

coupling like MIT. With our measure of coupling strength

we are, thus, able to infer a more reasonable picture of

the physical interactions in the Walker circulation. This

preliminary example underlines the importance of having a

meaningfully interpretable coupling measure.

X. CONCLUSIONS

To conclude, we have analytically and numerically shown

that the commonly used measures MI and TE can be rather

unintuitive as measures of coupling strength. To overcome this

limitation, we propose a two-step approach, where in the first

step the existence of lag-specific couplings, i.e., the causal

links, and contemporaneous links in a multivariate process

are determined as discussed in Ref. [13]. For the second

step addressed in the present article, we have generalized the

information-theoretic MIT as a lag-specific measure that has a

property which we call coupling-strength autonomy. It allows

for a well-interpretable coupling strength reminiscent of an

experimentally manipulable setting. As we prove analytically

and numerically, the coupling-strength autonomy property is

useful for models of processes where the coupling strength

can be attributed to one single coefficient, while for other

cases we suggest modifications of MIT as more appropriate

measures. Compared to TE, our MIT has the advantage of

being practically computable without the need for arbitrary

truncations. Besides our example from climatology, also in

other fields of science our two-step approach promises to

not only extract the causal direct (rather than the indirect)

connectivity among processes, but also to assess a meaningful

coupling strength, that—together with the coupling delay—

assists a physical interpretation.
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APPENDIX

Here we give the proofs of the inequality relation among

MIT, ITX, and ITY in Eq. (12), the coupling-strength auton-

omy theorem, and further discussions regarding the property of

coupling-strength autonomy for processes violating linearity

condition (2).

1. Proof of inequality relation Eq. (12)

The MIT IMIT
X→Y (τ ) ≡ I (Xt−τ ; Yt |PYt

\{Xt−τ },PXt−τ
) be-

tween two uni- or multivariate subcomponents X,Y of a

stationary multivariate discrete-time stochastic process X with

time-series graph G and parents P , as defined in the main

article, is bounded by the two CMIs with condition on either

parents [Eq. (12)]

I
(

Xt−τ ; Yt

∣
∣PXt−τ

)

� IMIT
X→Y (τ ) � I

(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ }
)

,

(A1)

where τ > 0. The right inequality holds for all processes,

sufficing the very general condition (S) in Ref. [18] and the

left inequality if, additionally, the “no sidepath” constraint for

the coupling “Xt−τ → Yt” holds, that is, if Xt−τ is separated

from PYt
\ PXt−τ

by its parents PXt−τ
in the time-series graph.

For a definition of separation see Ref. [18].

To prove the right inequality, let P̃Xt−τ
be the set of

parents of Xt−τ that is not already included in PYt
, i.e.,

P̃Xt−τ
= PXt−τ

\PYt
. It then holds that I (P̃Xt−τ

; Yt |PYt
) = 0

because the parents PYt
separate Yt from any subset of X−

t \PYt

and separation in the time-series graph implies conditional

independence between the subprocesses [18], Theorem 4.1].

We now apply the chain rule on the (multivariate) CMI

I (Xt−τ ,P̃Xt−τ
; Yt |PYt

\{Xt−τ }) twice,

I
(

Xt−τ ,P̃Xt−τ
; Yt

∣
∣PYt

\{Xt−τ }
)

= I
(

Xt−τ ; Yt |PYt
\{Xt−τ }

)

+ I
(

P̃Xt−τ
; Yt

∣
∣PYt

)

︸ ︷︷ ︸

=0
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= I
(

P̃Xt−τ
; Yt

∣
∣PYt

\{Xt−τ }
)

︸ ︷︷ ︸

�0

+ I
(

Xt−τ ; Yt |PYt
\{Xt−τ },P̃Xt−τ

)

⇒ I
(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ },PXt−τ

)

� I
(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ }
)

.

Note, that (conditional) mutual information is always non-

negative.

For the left inequality we now define P̃Yt
to be the set

of parents of Yt that is not already included in PXt−τ
, i.e.,

P̃Yt
= PYt

\PXt−τ
. Then, under the “no sidepath” constraint, it

holds that I (P̃Yt
\{Xt−τ }; Xt−τ |PXt−τ

) = 0. Note that all paths

emanating from Xt−τ towards the past are surely blocked by

PXt−τ
because they contain the motifs “→ Zt−τ ′ → Xt−τ ” or

“−Zt−τ ′ → Xt−τ ,” which are both blocked as Zt−τ ′ ∈ PXt−τ
.

The “no sidepath” constraint further demands that there are

no unblocked paths to P̃Yt
emanating towards the present or

future. Again, we apply the chain rule on the (multivariate)

CMI I (Xt−τ ; Yt ,P̃Yt
\{Xt−τ }|PXt−τ

) twice,

I
(

Xt−τ ; Yt ,P̃Yt
\{Xt−τ }

∣
∣PXt−τ

)

= I
(

Xt−τ ; Yt

∣
∣PXt−τ

)

+ I
(

Xt−τ ; P̃Yt
\{Xt−τ }

∣
∣PXt−τ

,Yt

)

︸ ︷︷ ︸

�0

= I
(

P̃Yt
\{Xt−τ }; Xt−τ

∣
∣PXt−τ

)

︸ ︷︷ ︸

=0

+ I
(

Xt−τ ; Yt

∣
∣P̃Yt

\{Xt−τ },PXt−τ

)

⇒ I
(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ },PXt−τ

)

� I
(

Xt−τ ; Yt |PXt−τ

)

.

2. Derivations for analytical model Eq. (13)

Defining variances and covariances by

Ŵij (τ ) ≡ E
[

Xi
t+τ X

j
t

]

, (A2)

for model Eq. (13) the variances are

ŴX =
σ 2

X

1−a2
X

,

ŴZ = c2
XZŴX + σ 2

Z,

ŴW = σ 2
W ,

ŴY = c2
XY ŴX + c2

WY ŴW + σ 2
Y .

Further, autocovariances are

ŴXX(τ ) = a
|τ |
X ŴX,

ŴYY (τ ) = cXY ŴXX(τ ),

ŴZZ(τ ) = cXZŴXX(τ ),

ŴWW (τ ) = 0,

with ŴXX(τ = 0) ≡ ŴX. The covariances for τ � 0 are given

by

ŴYX(τ ) = cXY ŴXX(τ − 2),

ŴXY (τ ) = aXcXY ŴXX(τ + 1),

ŴZX(τ ) = cXZŴXX(τ − 1),

ŴXZ(τ ) = aXcXZŴXX(τ ),

ŴXW (τ ) = ŴWX(τ ) = 0,

ŴZY (τ ) = cXY cXZŴXX(τ + 1),

ŴYZ(τ ) = cXY cXZŴXX(τ − 1),

ŴZW (τ ) = ŴWZ(τ ) = 0,

ŴYW (τ ) = cWY δ(τ − 1)ŴW ,

ŴYW (τ ) = 0,

with the Kronecker δ δ(s) = 1 for s = 0 and δ = 0 otherwise.

These covariances form the entries of the covariance matrices

that are needed to compute the conditional entropies.

a. Derivations of TE

For the derivation of TE,

ITE
X→Y = H (Yt |Y−

t ,W−
t ,Z−

t ) − H (Yt |X−
t Y−

t ,W−
t ,Z−

t ),

we know from Markov properties that the latter term is the

source entropy H (Yt |PYt
) = 1

2
ln 2πeσ 2

Y . For the first entropy

H (Yt |Y−
t ,W−

t ,Z−
t ) =

1

2
ln

(

2πe
|ŴYtY

−
t W−

t Z−
t
|

|ŴY−
t W−

t Z−
t
|

)

(A3)

we can write the covariance as a block matrix

ŴYtY
−
t W−

t Z−
t

=

⎛

⎜
⎜
⎜
⎜
⎝

ŴYt
ŴYt ;Y

−
t

ŴYt ;W
−
t

ŴYt ;Z
−
t

Ŵ⊤
Yt ;Y

−
t

ŴY−
t

ŴY−
t ;W−

t
ŴY−

t ;Z−
t

Ŵ⊤
Yt ;W

−
t

Ŵ⊤
Y−

t ;W−
t

ŴW−
t

ŴW−
t ;Z−

t

Ŵ⊤
Yt ;Z

−
t

Ŵ⊤
Y−

t ;Z−
t

Ŵ⊤
W−

t ;Z−
t

ŴZ−
t

⎞

⎟
⎟
⎟
⎟
⎠

,

(A4)

where, e.g., ŴYt ;W
−
t

is an infinite vector with entries of the

covariances of Yt with Wt−1,Wt−2, . . ., and

ŴY−
t ;W−

t
≡

⎛

⎜
⎜
⎝

ŴYW (0) ŴYW (1) . . .

ŴWY (1) ŴYW (0) . . .

...
...

. . .

⎞

⎟
⎟
⎠

.

The quotient in Eq. (A3) of these infinite-dimensional matrices

is difficult, if not impossible, to evaluate in the general case.

Here, we will consider only two simple cases.

a. cXZ = cWY = 0. For the case of cXZ = cWY = 0, i.e., as

inputs solely an autodependency in X, the covariance matrix

takes the simple form

ŴYtY
−
t W−

t Z−
t

=

⎛

⎜
⎜
⎜
⎝

ŴYt
ŴYt ;Y

−
t

0 0

Ŵ⊤
Yt ;Y

−
t

ŴY−
t

0 0

0 0 ŴW−
t

0

0 0 0 ŴZ−
t

⎞

⎟
⎟
⎟
⎠

, (A5)

where the top left block is an infinite-dimensional Toeplitz

matrix, i.e., a Toeplitz operator. The quotient in Eq. (A3) then

can be simplified to
∣
∣ŴYtY

−
t

∣
∣
∣
∣ŴW−

t Z−
t

∣
∣

∣
∣ŴY−

t

∣
∣
∣
∣ŴW−

t Z−
t

∣
∣

=
∣
∣ŴYtY

−
t

∣
∣

∣
∣ŴY−

t

∣
∣

, (A6)

where ŴYtY
−
t

and ŴY−
t

are the symmetric Toeplitz matrices

Gτ and Gτ−1 with diagonal elements ŴY and off-diagonal
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elements gτ ,

g0 = ŴY = c2
XY

σ 2
X

1 − a2
X

+ σ 2
Y , (A7)

gτ = a
|τ |
X

c2
XY σ 2

X

1 − a2
X

, for τ � 1. (A8)

The desired TE is then given by

ITE
X→Y = lim

τ→∞

1

2
ln

1

σ 2
Y

|Gτ |
|Gτ−1|

. (A9)

To obtain the limit of the ratio of Toeplitz matrices we can

utilize Szegö’s theorem [22,23], which relates the limit to the

geometric mean of a function f (λ),

lim
τ→∞

|Gτ (f )|
|Gτ−1(f )|

= exp

[
1

2π

∫ 2π

0

ln f (λ)dλ

]

, (A10)

which requires that the Toeplitz matrix is in the Wiener

class, i.e., the entries must be absolutely summable, which

we assume here. The function f (λ) is the Fourier series with

the entries of the Toeplitz matrix being the coefficients

f (λ)=
∞
∑

τ=−∞
gτ e

iτλ = ŴY + 2

∞
∑

τ=1

gτ e
iτλ, (A11)

= c2
XY

σ 2
X

1 − a2
X

+ σ 2
Y + 2

c2
XY σ 2

X

1 − a2
X

∞
∑

τ=1

a
|τ |
X eiτλ

︸ ︷︷ ︸

aXeiλ

1−aXeiλ

, (A12)

=

α
︷ ︸︸ ︷
[

c2
XY σ 2

X − σ 2
Y

(

1 − a2
X

)]

aX eiλ+

β
︷ ︸︸ ︷

c2
XY σ 2

X + σ 2
Y

(

1 − a2
X

)

(

1 − a2
X

)

(1 − aXeiλ)
,

(A13)

with α < β for |aX| < 1. The TE then is

ITE
X→Y = lim

τ→∞

1

2
ln

1

σ 2
Y

|Gτ |
|Gτ−1|

= lim
τ→∞

1

2
ln

|Gτ |
|Gτ−1|

−
1

2
ln σ 2

Y , (A14)

=
1

2
ln lim

τ→∞

|Gτ |
|Gτ−1|

−
1

2
ln σ 2

Y , (A15)

=
1

2
ln exp

[
1

2π

∫ 2π

0

ln f (λ)dλ

]

−
1

2
ln σ 2

Y , (A16)

=
1

4π

∫ 2π

0

ln f (λ)dλ −
1

2
ln σ 2

Y , (A17)

=
1

4π

⎡

⎢
⎢
⎢
⎣

∫ 2π

0

ln(αeiλ + β)dλ

︸ ︷︷ ︸

(⋆)

− ln(1 − a2
X)

∫ 2π

0

dλ

︸ ︷︷ ︸

2π

−
∫ 2π

0

ln(1 − aXeiλ)dλ

︸ ︷︷ ︸

(⋆⋆)

⎤

⎥
⎥
⎥
⎦

−
1

2
ln σ 2

Y , (A18)

where the integrals (⋆) and (⋆⋆) can be evaluated using contour

integration to

(⋆) = 2π ln β = 2π ln
[

c2
XY σ 2

X + σ 2
Y

(

1−a2
X

)]

for α � β,

(A19)

(⋆⋆) = 2π ln 1 = 0 for aX � 1. (A20)

The TE is, thus,

ITE
X→Y =

1

2
ln

[

1 +
(

c2
XY σ 2

X

)/(

1 − a2
X

)

σ 2
Y

]

(A21)

and depends on the autodependency strength of X.

b. aX = 0. Now the process “decouples in time” since no

autodependencies are present. The covariance matrix is

ŴYtY
−
t W−

t Z−
t

=

⎛

⎜
⎜
⎜
⎜
⎝

ŴYt
0 ŴYt ;W

−
t

ŴYt ;Z
−
t

0 ŴY−
t

ŴY−
t ;W−

t
ŴY−

t ;Z−
t

Ŵ⊤
Yt ;W

−
t

Ŵ⊤
Y−

t ;W−
t

ŴW−
t

0

Ŵ⊤
Yt ;Z

−
t

Ŵ⊤
Y−

t ;Z−
t

0 ŴZ−
t

⎞

⎟
⎟
⎟
⎟
⎠

,

(A22)

with the blocks being

ŴYt
= c2

WY σ 2
W + c2

XY σ 2
X + σ 2

Y ,

ŴYt ;W
−
t

=
(

cWY σ 2
W ,0,0, . . .

)

,

ŴYt ;Z
−
t

=
(

cXY cXZσ 2
X,0,0, . . .

)

,

ŴY−
t

=
(

c2
WY σ 2

W + c2
XY σ 2

X + σ 2
Y

)

I,

ŴY−
t ;W−

t
= cWY σ 2

W S,

ŴY−
t ;Z−

t
= cXY cXZσ 2

XS,

ŴW−
t

= σ 2
W I,

ŴZ−
t

=
(

c2
XZσ 2

X + σ 2
Z

)

I,

where I is the identity matrix and S is the shift matrix with

ones on the superdiagonal, i.e., the first upper off-diagonal,

and zeros everywhere else. The quotient in Eq. (A3) can be

simplified by expressing the block matrix in terms of the Schur

complement of the covariance block ŴY−
t W−

t Z−
t

∣
∣ŴYtY

−
t W−

t Z−
t

∣
∣

∣
∣ŴY−

t W−
t Z−

t

∣
∣

=

∣
∣
∣
∣
∣
∣
∣

ŴYt
−
(

ŴYt ;Y
−
t
,ŴYt ;W

−
t
,ŴYt ;Z

−
t

)(

ŴY−
t W−

t Z−
t

)−1

⎛

⎜
⎝

Ŵ⊤
Yt ;Y

−
t

Ŵ⊤
Yt ;W

−
t

Ŵ⊤
Yt ;Z

−
t

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

.

(A23)

Since the vector (ŴYt ;Y
−
t
,ŴYt ;W

−
t
,ŴYt ;Z

−
t

) contains only two

nonzero elements, we do not have to take the infinite limit

and do not need to invert the whole matrix ŴY−
t W−

t Z−
t

. A simple

calculation yields
∣
∣ŴYtY

−
t W−

t Z−
t

∣
∣

∣
∣ŴY−

t W−
t Z−

t

∣
∣

= c2
WY σ 2

W + c2
XY σ 2

X + σ 2
Y

−
c2
WY σ 4

W

σ 2
W

−
c2
XY c2

XZσ 4
X

c2
XZσ 2

X + σ 2
Z

, (A24)
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from which we get

ITE
X→Y =

1

2
ln

[

1 +
c2
XY σ 2

Xσ 2
Z

σ 2
Y

(

c2
XZσ 2

X + σ 2
Z

)

]

. (A25)

Here, the TE depends on the coupling strength of X with

Z, which seems rather unintuitive. This formula could have

also been derived by exploiting separation properties of the

corresponding time-series graph (i.e., Markov properties of

the process), from which a much smaller set of conditions can

be inferred.

b. MIT and related measures

The measures based on the parental sets are much easier

to derive because they involve only finite and very low

dimensional covariance matrices. As an example, for the

entropy H (Yt |Wt−1,Xt−3) needed to compute the MIT, the

covariance matrix of (Yt ,Wt−1,Xt−3) is
⎛

⎜
⎜
⎝

c2
WY σ 2

W + c2
XY σ 2

X

1−a2
X

+ σ 2
Y cWY σ 2

W

aXcXY σ 2
X

1−a2
X

cWY σ 2
W σ 2

W 0

aXcXY σ 2
X

1−a2
X

0
σ 2

X

1−a2
X

⎞

⎟
⎟
⎠

. (A26)

3. Proof of the coupling-strength autonomy theorem

To compute MIT,

IMIT
X→Y (τ ) ≡ I

(

Xt−τ ; Yt

∣
∣PYt

\{Xt−τ },PXt−τ

)

= H
(

Yt |PYt
\{Xt−τ },PXt−τ

)

− H
(

Yt

∣
∣PYt

)

,

we need the source entropy H (Yt |PYt
) and the conditional

entropy H (Yt |PYt
\{Xt−τ },PXt−τ

). For the following steps we,

first, use the independence of the i.i.d. variables ηX
t−τ and ηY

t

of processes in the past, i.e., I (ηY
t ; X−

t ) = 0, and, further, due

to the data processing inequality [4], also

I
(

ηY
t ; f̃

(

X−
t

))

= 0 (A27)

and, correspondingly, I (ηX
t−τ ; g̃(X−

t−τ )) = 0 for arbitrary func-

tions f̃ , g̃. This implies in particular I (ηY
t ; f̃ (PYt

)) = 0 and

I (ηX
t−τ ; g̃(PXt−τ

)) = 0. Second, we use that generally for

random variables Y and W and an arbitrary function f ,

H (Y + f (W )|W ) =
∫

p(w)H (Y + f (W )|W = w)dw

=
∫

p(w)H (Y |W = w)dw

= H (Y |W ), (A28)

because f (W ) for W = w is a fixed constant and entropies are

translationally invariant.

Then, for f̃ (PYt
) = f (Xt−τ ) + gY (PYt

\{Xt−τ }), the source

entropy is

H
(

Yt

∣
∣PYt

)

= H
(

f̃
(

PYt

)

+ ηY
t

∣
∣PYt

)

, (A29)

= H
(

ηY
t

∣
∣PYt

)

, (A30)

= H
(

ηY
t

)

, (A31)

and depends only on the distribution of the source process ηY
t .

This relation holds generally if Yt additively depends on its

parents.

Next, to compute the other conditional entropy, we insert

Eq. (33) in (34) and get

H
(

f
[

ηX
t−τ + gX

(

PXt−τ

)]

+ gY

(

PYt
\{Xt−τ }

)

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

= H
(

f
[

ηX
t−τ + gX

(

PXt−τ

)]

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

,

(A32)

also due to translational invariance. If we only as-

sume condition (1), this relation cannot be much further

simplified.

To arrive at a CMI again, we need to expand the source

entropy using Eqs. (A28) and (A27). First, we add the same

conditions as in Eq. (A32), which is possible since ηY
t is

independent of all past processes,

H
(

ηY
t

)

= H
(

ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

. (A33)

Next, we insert the term f [ηX
t−τ + gX(PXt−τ

)] and “condition

it out again” using Eq. (A28) by adding ηX
t−τ to the conditions

(PXt−τ
is already included),

H
(

ηY
t

)

= H
(

ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

= H
(

f
[

ηX
t−τ + gX

(

PXt−τ

)]

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ
,ηX

t−τ

)

. (A34)

Then, via

IMIT
X→Y (τ )

= H
(

f
[

ηX
t−τ + gX

(

PXt−τ

)]

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

−H
(

f
[

ηX
t−τ + gX

(

PXt−τ

)]

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ
,ηX

t−τ

)

,

we arrive at Eq. (38).

If we assume conditions (1) and (2), we can further simplify

Eq. (A32) since f (ηX
t−τ + gX(PXt−τ

)) = cηX
t−τ + cgX(PXt−τ

)

and therefore

H
(

cηX
t−τ + cgX

(

PXt−τ

)

+ ηY
t

∣
∣PYt

\{Xt−τ },PXt−τ

)

= H
(

cηX
t−τ + ηY

t

∣
∣PYt

\{Xt−τ }
)

, (A35)

where we used Eq. (A28) and the fact that I (cηX
t−τ + ηY

t ;

PXt−τ
|PYt

\{Xt−τ }) = 0 (also holds without the condition on

PYt
\{Xt−τ } because PXt−τ

lies in the past of both ηX
t−τ and ηY

t ).

Extending the source entropy again we arrive at Eq. (37). If the

“sidepath”-parents are additively separated from the remaining

parents, MIT can be further simplified.

If, additionally, condition (3) holds, then Eq. (35) leads

to I (cηX
t + ηY

t ;PYt
\{Xt−τ }) = 0, and we, therefore, can drop

PYt
\{Xt−τ } from the conditions from which Eq. (36) follows.

For the contemporaneous MIT,

IMIT
X−Y ≡ I

(

Xt ; Yt

∣
∣PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P
(

NXt
\{Yt }

)

,P
(

NYt
\{Xt }

))

,
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we only need condition (1), for which the entropy in the first

term is

H
(

ηY
t + gY

(

PYt

)∣
∣PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P
(

NXt
\{Yt }

)

,P
(

NYt
\{Xt }

))

(A36)

= H
(

ηY
t

∣
∣PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P
(

NXt
\{Yt }

)

,P(NYt
\{Xt }

))

(A37)

= H
(

ηY
t

∣
∣NXt

\{Yt },NYt
\{Xt }

)

, (A38)

again due to translational invariance of entropy [Eq. (A28)]

and the independence of ηY
t of past processes [Eq. (A27)]. For

the same reasons, the entropy in the second term becomes

H
(

ηY
t + gY

(

PYt

)∣
∣PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P(NXt
\{Yt }

)

,P
(

NYt
\{Xt }

)

,Xt

)

= H
(

ηY
t

∣
∣PYt

,PXt
,NXt

\{Yt },NYt
\{Xt },

P
(

NXt
\{Yt }

)

,P
(

NYt
\{Xt }

)

,ηX
t + gX

(

PXt

))

= H
(

ηY
t

∣
∣NXt

\{Yt },NYt
\{Xt },ηX

t

)

, (A39)

because knowing ηX
t + gX(PXt

) and PXt
is equivalent to

knowing ηX
t and PXt

. Equation (39) then follows, which

finishes the proof.

Similarly, MITS and MITN can be simplified if the

dependency gY is additive in the parents.

4. Further numerical experiments

In Fig. 6 we show results of our numerical experiments

for the model class Eq. (46) with a nonlinear dependency

f (x) = x2 of the link “Xt−2 → Yt” using the same ensemble

setup E as before. As discussed in Sec. V, the source process

ηX
t−τ then mixes with its parents and it does not make sense to

attribute the coupling strength to one single coefficient. As a

result, the average of MIT in Fig. 6(a) tends to larger values for

increased aX = cZX; thus, the inputs are not entirely “filtered

out.” Still, MIT is much less affected than MI.

Regarding the inequality relation Eq. (12), a nonlinear

dependency does not affect at least the right side IMIT
X→Y (τ ) �

I ITY
X→Y (τ ) as demonstrated in Figs. 6(a) and 6(b). Although

the left side of the inequality relation I ITX
X→Y (τ ) � IMIT

X→Y (τ )

should hold under the same general condition (S) in Ref. [18]

and the “no sidepath” constraint, it seems to be violated for

large aX = cZX (and small aY = cWY ). This could be related

to highly skewed distributions for nonlinear f (x).

(a)

(b)

FIG. 6. (Color online) Numerical experiments with the model

Eq. (46) with the setup as before but for squared dependency

f (x) = x2 with cXY = 0.6.

In the bottom plot of Fig. 6(a) it might seem that TE and

LINK are less affected, but, actually, the relative variance is

much higher.
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