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In quantum metrology, the parameter estimation accuracy is bounded by quantum Fisher infor-
mation. In this paper, we present coherence measures in terms of (quantum) Fisher information by
directly considering the post-selective non-unitary parametrization process. This coherence mea-
sure demonstrates the apparent operational meaning by the exact connection between coherence
and parameter estimation accuracy. We also discuss the distinction between our coherence measure
and the quantum Fisher information subject to unitary parametrization. The analytic coherence
measure is given for qubit states.

I. INTRODUCTION

Quantum coherence, as a fundamental feature in quan-
tum physics, attracts a lot of attention in recent years.
Many works have investigated the role of coherence in
quantum optics [1–4], quantum thermodynamics [5–7],
quantum phase transitions [8], quantum biology [9, 10],
and quantum information science [11–18]. These re-
searches not only promote the development of related
applications but also the development of the resource the-
ory of coherence [19, 20], where coherence is treated as a
physical resource under some limited conditions. Bene-
fiting from the operational view and axiomatic approach,
one can quantify coherence in a rigorous manner, study
the transformation of coherence, and reveal the connec-
tion between coherence with other fundamental quantum
features [21–32]. In particular, some coherence measures
contain obvious operational meanings, which provide us
with a way to understand (interpret) coherence from the
viewpoint of quantum information processes (QIP) and
find out the potential relation between coherence with
some characteristics in QIP [33–39].
It is shown that the coherence of the probing state

in many quantum metrology processes is often a key in-
gredient [11–13]. For instance, in the usual phase es-
timation for parameter θ with unitary parametrization
Uθ(·) = e−iθH(·)eiθH , coherence with regard to the eigen-
vectors of Hermitian operator H is necessary. Further-
more, the optimal estimation accuracy of an unknown
parameter could be obtained by the state with maximal
coherence in the sequential protocol [13]. The estima-
tion accuracy is bounded by quantum Fisher informa-
tion (QFI), a crucial ingredient in quantum metrology
[40–42]. A simple calculation can show that QFI subject
to unitary parametrization Uθ(·) in the qubit case [43]
is monotonous with some coherence measures (such as l1
norm coherence). Many works have investigated the rela-
tion between quantum coherence with Fisher information
(FI) and QFI [44–53]. Coherence within some particular

settings could be understood by QFI (or FI) [46, 47, 52].
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Significantly, QFI in unitary parametrization is closely
connected with unspeakable coherence [47, 54], a special
case of resource theory of asymmetry [55–57]. In addi-
tion, based on QFI concerning the dephasing parameter,
coherence measure has been given in the sense of strictly
incoherent operations as free operations [46]. However,
up to now the estimation accuracy and FI (or QFI) have
not been used to directly quantify quantum coherence
in general scenarios. An intuitive challenge is that QFI
with unitary parametrization Uθ(·) in the usual sense is
not a coherence measure in the general resource theory
of coherence [20]. For example, 2-dimensional maximally
coherent states (MCS) could be obtained under incoher-
ent operations from 3-dimensional MCS [33, 48, 58], but
the QFI of the former is strictly larger than the latter,
which directly violates the monotonicity of a good mea-
sure. Therefore, it is significant to find an appropriate
parametrization process for establishing coherence mea-
sures and further investigating the role of coherence in
quantum metrology.

In this paper, we successfully establish several equiv-
alent coherence measures in the general resource theory
of coherence by the FI (and QFI) subject to a type of
non-unitary parametrization. Since the optimal estima-
tion accuracy is bounded by FI which is asymptotically
attained with maximum likelihood estimators [40, 41],
our measure naturally inherits the operational meaning
of FI through the optimal estimation accuracy with non-
unitary parametrization. We also show that in the qubit
case, our coherence measure can be equivalently under-
stood through unitary parametrization and the analytic
expression can be obtained. Our coherence measure not
only builds a direct relation between coherence and pa-
rameter estimation accuracy (or FI) but also sheds new
light on the roles of the non-unitary parametrization pro-
cess. The remainder of this paper is organized as follows.
In Sec. II, we first introduce the fundamental concepts
of resource theory of coherence and our parametrization
process, then present several main theorems to build
the coherence measure based on FI. In Sec. III, we
give the analytic result of the coherence measure in the
qubit case and discuss the equivalence with the unitary
parametrization. Finally, we draw our conclusion in Sec.
IV.
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II. COHERENCE IN TERMS OF QFI

In this section, we’d like to first introduce the re-
source theory of coherence established mainly based on
the incoherent (free) operations and incoherent (free)
states [20]. Considering the preferred basis {|n〉}, the
incoherent state is defined by ̺ =

∑

n qn|n〉〈n| with
I denoting the set of incoherent states, and the inco-
herent operations (IO) with the Kraus representation

{Kn :
∑

lK
†
lKl = I} is a special type of completely

positive and trace-preserving (CPTP) map defined by
Kl̺K

†

l

tr(Kl̺K
†

l )
∈ I for ̺ ∈ I. In this sense, a good coherence

measure C(ρ) for any state ρ should satisfy
(A1) Non-Negativity: C(ρ) ≥ 0 is saturated iff ρ ∈ I;
(A2) Monotonicity: C(E(ρ)) ≤ C(ρ) for any incoher-

ent operation E(·);
(A3) Strong Monotonicity:

∑

n pnC(KnρK
†
n/pn) ≤

C(ρ) for any IO {Kn}, with pn = Tr[KnρK
†
n];

(A4) Convexity: C(ρ) ≤
∑

i piC(ρi) for any ρ =
∑

i piρi.
To present a valid coherence measure, we begin with

the following parametrization process. Considering a
state ρ undergoing quantum channel Eθ depending on
parameter θ, the unknown parameter could be estimated
from measurements on Eθ(ρ). Here we are interested in
the “free” parametrization processes Eθ = {Ex(θ)}:

Ex(θ) =
∑

n

bxn(θ)|gx(n)〉〈n|,
∑

x

Ex(θ)
†Ex(θ) = I, (1)

where {|n〉} is the preferred incoherent basis, and gx(·)
is a map from an integer to another.
In order to focus on the role of coherence, we de-

sire that within the parametrization process, the inco-
herent probe can not take effect on parameter estima-
tion. That is, the measurement outcomes Eθ(̺) and
{̺x, px} obtained from incoherent probe (̺ ∈ I) do not
depend on parameter θ, where px = tr[Ex(θ)̺Ex(θ)

†] and
̺x = Ex(θ)̺Ex(θ)

†/px. Thus |bxn(θ)| does not depend on
parameter θ, and Ex(θ) can be rewritten as

Ex(θ) =
∑

n

cxne
ihx

n(θ)|gx(n)〉〈n|, (2)

where cxn is parameter-independent, and hxn is a real func-
tion. In fact, it is very similar to the case of the usual
phase estimation Uθ(·) = e−iθH(·)eiθH mentioned in In-
troduction. One can find that the measurement outcomes
of an incoherent probe in the phase estimation do not de-
pend on parameter θ, either. In addition, Uθ can be ex-
pressed based on e−iHθ =

∑

n e
−ihnθ|n〉〈n| (hn is eigen-

value of H), which is analogous to Eq. (2). In this sense,
parametrization process Eθ can be understood as a gener-
alization of unitary phase estimation to non-unitary case.
In addition, we could restrict ∂θh

x
n(θ) ∈ [0, 1], and the

conclusion in a more general case could be derived from
this case, the detailed discussion is shown in Appendix

A. Based on the Stinespring dilation theorem, the oper-
ations could be implemented by a controlled unitary op-
erator and an operation swapping specified states. The
details are shown in Appendix B. All the operations of
interest (operations in Eq. (2) with ∂θh

x
n(θ) ∈ [0, 1])

comprise a set denoted by G. One will find that IO satis-
fying Rank

[

Ex(θ)
†Ex(θ)

]

= 1 has particular interest in
the paper, so we use G1 to represent the IO set with this
particular property.
If the post-selection is allowed, the IO Eθ performed

on a quantum state ρ will directly lead to the probability
distribution

P E(x|θ) = tr(Ex(θ)ρEx(θ)
†). (3)

If the post-selection isn’t allowed, the state after the IO
will become Eθ(ρ). One can operate a positive operator
value measure (POVM) M = {Mx} on the state Eθ(ρ),
and obtain the probability distribution family as

P E

M
(x|θ) = tr(MxEθ(ρ)), (4)

where the subscript M denotes the general POVM.
The FI of distribution P (x|θ) is given by

F (P, θ0) =
∑

x

P (x|θ0)[
∂ lnP (x|θ)

∂θ

∣

∣

∣

∣

θ0

]2, (5)

and the QFI of P E

M
(x|θ) for any given θ0 can be written

as

FQ(ρ, E , θ0) = max
M

F (P E

M
, θ0). (6)

Based on above FI and QFI, we can establish two coher-
ence measures, respectively, which will be given by the
following two theorems.
Theorem 1.-The coherence of a state ρ can be quan-

tified by the maximal FI for a given parameter θ0 as

Cθ0(ρ) = max
E∈G

F (P E , θ0), (7)

where F (P E , θ0) is FI of distribution in Eq. (3).
Proof : We need to prove Cθ0(ρ) satisfying A1-A4.
(A1) Non-Negativity. If ρ is incoherent, for any E and

x, we have

Ex(θ)ρEx(θ)
†

=
∑

n

bxn(θ)|gx(n)〉〈n|ρ
∑

m

bx∗m (θ)|m〉〈gx(m)|

=
∑

nm

bxn(θ)b
x∗
m (θ)ρnm|gx(n)〉〈gx(m)|

=
∑

n

|bxn(θ)|2ρnn|gx(n)〉〈gx(n)|, (8)

which doesn’t depend on θ due to bxn(θ) = cxne
ihx

n(θ). Thus
P E(x|θ) doesn’t depend on θ either, which means

F (P E , θ0) =
∑

x

[
∂P E(x|θ)

∂θ

∣

∣

∣

∣

θ0

]2
1

P E(x|θ0)
= 0. (9)
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Eq. (9) leads to Cθ0(ρ) = 0.
Conversely, if a d-dimensional ρ has non-zero off-

diagonal entries, without loss of generality, one can let
ρ12 = |ρ12|eiα. There exists an IO {Ei} ∈ G,

E1(θ) =

√
2

2
ei(θ+γ)|1〉〈1|+

√
2

2
|1〉〈2|,

E2(θ) =−
√
2

2
ei(θ+γ)|2〉〈1|+

√
2

2
|2〉〈2|,

E3(θ) =

d
∑

n=3

|n〉〈n|, (10)

with α+ θ0 + γ ∈ [−π/2, 0)⋃(0, π/2], such that

P E(1|θ0) = tr(E1(θ0)ρE1(θ0)
†) 6= 0,

∂θ tr(E1(θ)ρE1(θ)
†)|θ0 6= 0, (11)

which obviously shows Cθ0(ρ) 6= 0 and Cθ0(ρ) > 0.
(A3) Strong monotonicity. Suppose ρ undergoes an

arbitrary IO

Kl =
∑

n

aln|fl(n)〉〈n|, (12)

the post-measurement ensemble {tl, ρl} reads

tl = tr(KlρK
†
l ), ρl = KlρK

†
l /tl. (13)

Let E(l) = {El
x(θ)}x be the optimal IO for ρl such that

Cθ0(ρl) = F (Pl, θ0), (14)

where El
x(θ) =

∑

n b
lx
n (θ)|glx(n)〉〈n| and

Pl(x|θ) = tr(El
x(θ)ρlE

l
x(θ)

†)

= tr(El
x(θ)KlρK

†
l E

l
x(θ)

†)/tl

=P (x, l|θ)/tl. (15)

Above P (x, l|θ) represents the probability distribution
from E ′ = {E′

xl(θ)}xl with

E′
xl(θ) = El

x(θ)Kl =
∑

n

alnb
lx
fl(n)

(θ)|glx[fl(n)]〉〈n|, (16)

which implies E ′ ∈ G. Therefore, one can arrive at

∑

l

tlC
θ0(ρl) =

∑

l

tlF (Pl, θ0)

=
∑

l

tl
∑

x∈Sl

[
∂Pl(x|θ)
∂θ

∣

∣

∣

∣

θ0

]2
1

Pl(x|θ0)

=
∑

l

tl
∑

x∈Sl

[
∂P (l, x|θ)

∂θ

∣

∣

∣

∣

θ0

]2
1

P (l, x|θ0)tl

=
∑

l

∑

x∈Sl

[
∂P (l, x|θ)

∂θ

∣

∣

∣

∣

θ0

]2
1

P (l, x|θ0)

=F (P, θ0) ≤ Cθ0(ρ), (17)

where Sl indicates the region of x in Pl, and the last
inequality is from that E ′ may not be the optimal one for
ρ.

(A4) Convexity. For any ensemble {ti, σi} with the
corresponding mixed state ρ =

∑

i tiσi, let E = {Ex(θ)}
be the optimal IO for ρ in the sense of Cθ0(ρ) = F (P, θ0)
with P (x|θ) = tr(Ex(θ)ρE

†
x(θ)). For the state σi, denote

Pi(x|θ) = tr(Ex(θ)σiE
†
x(θ)), (18)

then

∑

i

tiPi(x|θ) =
∑

i

ti tr(Ex(θ)σiE
†
x(θ))

= tr(Ex(θ)ρE
†
x(θ))

=P (x|θ). (19)

However, E may not be optimal for σi, which implies

Cθ0(σi) ≥ F (Pi, θ0), (20)

so one can immediately get

∑

i

tiC
θ0(σi) ≥

∑

i

tiF (Pi, θ0)

≥F (
∑

i

tiPi, θ0) = F (P, θ0)

=Cθ0(ρ), (21)

where the second inequality is due to the convexity of FI.

Since (A3) and (A4) hold, it is natural that (A2) is
satisfied. The proof is completed.

From Theorem 1, coherence could be quantified by FI
of probability distribution in Eq. (3), in some sense, this
implies the connection between coherence and estimation
accuracy for incoherent non-unitary parametrization. In
fact, G in the definition Eq. (7) could be replaced by its
subset G1 from the lemma below.

Lemma 1.-For any E = {Ex(θ)} ∈ G , there always

exists another E ′ = {Ẽx(θ)} ∈ G1, such that

F (P E , θ0) ≤ F (P E′

, θ0), (22)

where F (P E , θ0) and F (P E′
, θ0) are FI of P E(x|θ) and

P E′
(x|θ) respectively.

Proof: Let E = {Ex(θ)} ∈ G, one can rewrite {Ex(θ)}
as

Ex(θ) =
∑

n

cxne
ihx

n(θ)|gx(n)〉〈n|

=
∑

n

cxn|gx(n)〉〈n|
∑

m

eih
x
m(θ)|m〉〈m|

=AxUx(θ), (23)

where Ax =
∑

n cxn|gx(n)〉〈n|, and Ux(θ) =
∑

m eih
x
m(θ)
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|m〉〈m|. Thus we have

Ex(θ)
†Ex(θ) = Ux(θ)

†A†
xAxUx(θ)

= Ux(θ)
†(
∑

i

|ψx
i 〉〈ψx

i |)Ux(θ)

=
∑

i

Ux(θ)
†|ψx

i 〉〈ψx
i |Ux(θ)

=
∑

i

|φxi (θ)〉〈φxi (θ)| =
∑

i

Ẽx,i(θ)
†Ẽx,i(θ), (24)

where
∑

i |ψx
i 〉〈ψx

i | denotes the eigen-decomposition of
A†

xAx (the eigenvalue is absorbed in |ψx
i 〉), |φxi (θ)〉 =

Ux(θ)
†|ψx

i 〉 and Ẽx,i(θ) = |i〉〈φxi (θ)|. It is obvious that

E ′ = {Ẽx,i(θ)}xi ∈ G1. From Cauchy-Schwarz inequality
(|〈v|w〉|2 ≤ 〈v|v〉〈w|w〉) [59], one can obtain

[∂θP (x|θ)|θ0 ]2 ≤
∑

i

[∂θPi(x|θ)|θ0 ]2
Pi(x|θ0)

∑

i

Pi(x|θ0), (25)

where P (x|θ) = tr(ρE†
xEx), Pi(x|θ) = tr(ρẼ†

x,iẼx,i), thus

[∂θP (x|θ)|θ0 ]2
P (x|θ0)

≤
∑

i

[∂θPi(x|θ)|θ0 ]2
Pi(x|θ0)

, (26)

the inequality holds for every x, which implies
F (P E , θ0) ≤ F (P E′

, θ0).

From the lemma, maximizing the FI over the set G can
be realized by the optimization over the set G1, which
effectively reduces the range of the optimized IO.

Theorem 1 mainly focuses on the FI with the related
probability distribution generated via the post-selective
IO on a state. Next, we would build another coherence
measure defined by QFI with respect to parametrization
in G,

Cθ0
Q
(ρ) = max

E∈G
FQ(ρ, E , θ0). (27)

To do this, we would first give a lemma.

Lemma 2.- The maximal QFI subject to parametriza-
tion in G is upper bounded by the FI directly induced
by the optimal post-selective IO parametrization process,
namely,

max
E∈G

FQ(ρ, E , θ0) ≤ max
E∈G

F (P E , θ0), (28)

where P E is the distribution in Eq. (3).

Proof: Suppose Ẽ and M are the optimal
parametrization and measurement for the optimal FQ

respectively, from Eq. (4), we have P Ẽ

M
(x|θ) =

tr(
∑

i |ψx
i 〉〈ψx

i |Ẽθ(ρ)) =
∑

i Pi(x|θ) where
∑

i |ψx
i 〉〈ψx

i |
represents the eigen-decomposition of Mx. In particu-

lar, Pi(x|θ) = 〈ψx
i | Ẽθ(ρ) |ψx

i 〉, which can be rewritten as

Pi(x|θ) = tr(|i〉 〈ψx
i | Ẽθ(ρ) |ψx

i 〉 〈i|)
=

∑

ynn′

tr(|i〉 〈ψx
i | byn(θ)|gy(n)〉〈n|ρ|n′〉〈gy(n′)|by∗n′ (θ) |ψx

i 〉 〈i|)

=
∑

ynn′

tr(bixyn (θ) |i〉 〈n|ρ|n′〉 〈i| bixy∗n′ (θ))

=
∑

y

tr(Eixy(θ)ρEixy(θ)
†) =

∑

y

P (ixy|θ), (29)

where bixyn (θ) = 〈ψx
i | byn(θ)|gy(n)〉 and Eixy(θ) =

∑

n b
ixy
n (θ) |i〉 〈n|. It is obvious that E ′

θ = {Eixy(θ)} ∈ G,
then

max
E

FQ(ρ, E , θ0) = F (P Ẽ

M
, θ0)

=
∑

x

[∂θP
Ẽ

M
(x|θ)|θ0 ]2

P Ẽ
M
(x|θ0)

=
∑

x

[
∑

i ∂θPi(x|θ)|θ0 ]2
∑

i Pi(x|θ0)

≤
∑

ix

[∂θPi(x|θ)|θ0 ]2
Pi(x|θ0)

=
∑

ix

[
∑

y ∂θP (ixy|θ)|θ0 ]2
∑

y P (ixy|θ0)

≤
∑

ixy

[∂θP (ixy|θ)|θ0 ]2
P (ixy|θ0)

= F (P, θ0) ≤ max
E

F (P E , θ0),

(30)

where P is distribution from E ′
θ , the first two inequality

could be derived based on Cauchy-Schwarz inequality,
and the derivation process is similar as Eq. (25) and
(26), namely, from

[
∑

i

∂θPi(x|θ)|θ0 ]2 ≤
∑

i

[∂θPi(x|θ)|θ0 ]2
Pi(x|θ0)

∑

i

Pi(x|θ0)

we could obtain the first inequality, and from

[
∑

y

∂θP (ixy|θ)|θ0 ]2 ≤
∑

y

[∂θP (ixy|θ)|θ0 ]2
P (ixy|θ0)

∑

y

P (ixy|θ0)

we could reach the second inequality. Thus one can com-
plete the proof.
Next, we show that Cθ0

Q (ρ) in Eq. (27) is equivalent to
Cθ0(ρ), and can also quantify the quantum coherence of
ρ.
Theorem 2.-For a given density matrix ρ,

Cθ0
Q
(ρ) = Cθ0(ρ). (31)

Proof: From Lemma 1, Cθ0(ρ) could be written as

Cθ0(ρ) = max
E∈G1

F (P E , θ0). (32)

Suppose E = {Ez(θ)} is the optimal operation in G1,
such that

Cθ0(ρ) = F (P E , θ0), (33)
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here

P E(z|θ) = tr(Ez(θ)ρEz(θ)
†). (34)

and Rank[Ez(θ)
†Ez(θ)] = 1, without lose of generality,

Ez(θ) could be written as

Ez(θ) = |z〉〈φz(θ)|. (35)

Denote

P E

P
(z|θ) = tr(|z〉〈z|Eθ(ρ)|z〉〈z|), (36)

where P indicates the projective measurements on the
parameterized state. Note that

P E(z|θ) = tr(EzρE
†
z)

= tr(|z〉〈z|(
∑

z′

Ez′ρE†
z′)|z〉〈z|)

= tr(|z〉〈z|Eθ(ρ)|z〉〈z|) = P E

P
(z|θ), (37)

thus

Cθ0(ρ) = F (P E , θ0) = F (P E

P
, θ0) ≤ max

M
F (P E

M
, θ0)

=FQ(ρ, E , θ0) ≤ max
E∈G

FQ(ρ, E , θ0) = Cθ0
Q (ρ). (38)

Conversely, from Lemma 2, we can immediately reach
that

Cθ0(ρ) ≥ Cθ0
Q
(ρ), (39)

thus one can get the Cθ0
Q (ρ) = Cθ0(ρ), which finishes the

proof.
We have shown that the coherence measures based on

QFI and FI subject to the post-selective parametriza-
tion are equivalent to each other. The most distinct
advantage of this type of coherence measure is that it
can be straightforwardly connected with the parameter
estimation process in terms of the Cramér-Rao bound
[41, 42, 60].
Let’s consider an incoherent non-unitary parametriza-

tion E = {Ex(θ)} ∈ G on ρ as introduced previously,
then one will obtain a probability distribution P E

M
(x|θ)

through a POVM on ρθ or obtain P E(x|θ) directly
through post-selection of E . With maximum likelihood

estimators θ̂M with respect to P E

M
or θ̂ with respect to P E ,

the Cramér-Rao bound can be asymptotically attained.

That is, the mean square error (δθ̂M)2 = E[(θ̂M−θ)2] and
(δθ̂)2 = E[(θ̂−θ)2] approach 1

nF in the asymptotic sense,
where E indicates the expectation value, θ is the true
value and n denotes the runs of detection. Thus in the
asymptotic limit, the estimation accuracy 1

n(δθ̂M)2
ap-

proaches F (P E

M
, θ), which is naturally bounded by Cθ

Q
(ρ)

based on Eq. (26). In particular, the bound Cθ
Q
(ρ) can be

asymptotically achieved with the optimal parametriza-
tion process and optimal POVM. Similarly, 1

n(δθ̂)2
ap-

proaches F (P E , θ) in the asymptotic scenario, and simul-
taneously reach Cθ(ρ) in an asymptotic sense with an

optimal parametrization process. Note that the two mea-
sures are equivalent, therefore our coherence measure can
be understood as the optimal accuracy through two dif-
ferent estimation processes as well as the corresponding
incoherent non-unitary parametrization.
In fact, the optimized M in Cθ0

Q (Eq. (27)) can be
replaced by P , the projective measurement on the pre-
ferred basis. In this sense, the above two coherence
measures have an equivalent expression as Cθ0

P (ρ) =
max
E∈G

F (P E

P
, θ0). This can be understood as follows. We

first have Cθ0(ρ) ≤ Cθ0
P (ρ) from the second equality in

Eq. (38). Note that M in Cθ0
Q (ρ) contains projective

measurement, which implies Cθ0
Q (ρ) ≥ Cθ0

P (ρ). Combine
the above two inequalities with Theorem 2, one can reach
Cθ0

P (ρ) = Cθ0(ρ) = Cθ0
Q (ρ). Although they are identical

in value, they imply different details of operational mean-
ings and give us different ways to understand coherence.

III. CONNECTION WITH QFI BASED ON

UNITARY PARAMETRIZATION

Although the coherence measure has obvious opera-
tion meaning based on quantum metrology, an analyti-
cally computable expression seems not to be easy. Next,
we will show that for a 2-dimensional quantum state, the
analytic result could be obtained, and the coherence mea-
sure can be realized by FI with unitary parametrization.
However, our measure is not equivalent to that based on
unitary parametrization in high-dimensional cases, which
is proved later.
Theorem 3.-For a 2-dimensional state ρ, the coher-

ence based on Theorem 1 can be given as

Cθ0(ρ) = FQ(ρ, Uθ, θ0), (40)

where FQ is QFI of ρ subject to unitary parametrization
Uθ = eiθ|1〉〈1|+ |2〉〈2|.
Proof: For qubit states ρ, let the IO {Ex} ∈ G read

Ex(θ) = a′x1 e
ih′x

1 (θ)|fx(1)〉〈1|+ a′x2 e
ih′x

2 (θ)|fx(2)〉〈2|,
(41)

where a′x1 or a′x2 may be zero. The Kraus operator could
be written as

Ex(θ) = ax1e
ihx

1 (θ)|fx(1)〉〈1|+ ax2e
ihx

2 (θ)|fx(2)〉〈2|, (42)

where axj = a′xj e
ih′x

j (θ0) and hxj (θ) = h′xj (θ) − h′xj (θ0) for
j = 1, 2. According to Lemma 1 and its proof, the opti-
mal IO can be rank-1 with the form {|i〉 〈ψx

i (θ)|}, which
means fx(1) = fx(2) for any x. Then we have

P (x|θ)
= tr(|ax1 |2ρ11|fx(1)〉〈fx(1)|+ |ax2 |2ρ22|fx(2)〉〈fx(2)|
+ρ12a

x
1a

x∗
2 ei[h

x
1(θ)−hx

2 (θ)]|fx(1)〉〈fx(2)|
+ρ21a

x∗
1 ax2e

−i[hx
1(θ)−hx

2(θ)]|fx(2)〉〈fx(1)|)
=|ax1 |2ρ11 + |ax2 |2ρ22 + ρ12a

x
1a

x∗
2 ei[h

x
1 (θ)−hx

2(θ)]

+ρ21a
x∗
1 ax2e

−i[hx
1(θ)−hx

2(θ)], (43)
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thus

F (P, θ0) =
∑

x

[2Im(ρ12a
x
1a

x∗
2 )]2[∂θh

x
1(θ)|θ0 − ∂θh

x
2(θ)|θ0 ]2

|ax1 |2ρ11 + |ax2 |2ρ22 + 2Re(ρ12ax1a
x∗
2 )

≤
∑

x

[2Im(ρ12a
x
1a

x∗
2 )]2

|ax1 |2ρ11 + |ax2 |2ρ22 + 2Re(ρ12ax1a
x∗
2 )

, (44)

where the inequality could be saturated by the function
taken as hx1(θ) = θ, hx2(θ) = 0, and the corresponding IO
reads Ex(θ) = KxUθ with

Kx =ax1 |fx(1)〉〈1|+ ax2 |fx(2)〉〈2|,
Uθ =eiθ|1〉〈1|+ |2〉〈2|, (45)

where fx(1) = fx(2) and {Kx} ∈ G1. In this sense, the
probability distribution can be rewritten as

P E(x|θ) = tr(Ex(θ)ρEx(θ)
†) = tr(KxUθρU

†
θK

†
x)

= tr(UθρU
†
θK

†
xKx) = PM(x|θ). (46)

above PM can be understood as distribution generated
by a unitary parametrization Uθ followed by a rank-1
POVM M = {K†

xKx}. Considering the above optimal
IO, one can arrive at

Cθ0(ρ) = max
E∈G1

F (P E , θ0)

= max
M

F (PM, θ0) = FQ(ρ, Uθ, θ0), (47)

which finishes the proof.
In fact, in general high-dimensional case, Cθ0 is distinct

from FI with unitary parametrization. To demonstrate
the difference, we will give a concrete example. Consider
a state with maximal coherence,

|φ〉 = (
1√
3
,
1√
3
,
1√
3
)T , (48)

and the parametrization E = {Ex(θ)} expressed as

Ex(θ) =a
x
1e

ihx
1θ|fx(1)〉〈1|+ ax2e

ihx
2θ|fx(1)〉〈2|

+ax3e
ihx

3θ|fx(1)〉〈3|, (49)

with axn and hxn (x = 1, · · · , 9) to be given at the end.
Denote ρ = |φ〉〈φ|. The probability distribution is

P (x|0) = tr(Ex(θ)|φ〉〈φ|Ex(θ)
†)

=ρ11|ax1 |2 + ρ22|ax2 |2 + ρ33|ax3 |2
+2Re[ρ12a

x
1a

x∗
2 + ρ12a

x
2a

x∗
3 + ρ31a

x
3a

x∗
1 ], (50)

and

∂θP (x|θ)|0 =2 Im[ρ12a
x
1a

x∗
2 (hx1 − hx2) + ρ23a

x
2a

x∗
3 (hx2 − hx3)

+ρ31a
x
3a

x∗
1 (hx3 − hx1)]. (51)

Therefore, the corresponding FI reads

F (P E , 0) =
∑

x

[∂θP (x|θ)|0]2
P (x|0) = 0.9410. (52)

From the definition, we have C0(ρ) ≥ F (P E , 0).
To compare our measure with QFI subject to the

optimal unitary parametrization in G, we calculate
max
Uθ∈G

FQ(|φ〉, Uθ , 0), where Uθ is the unitary operator ex-

pressed as

Uθ =
∑

n

eihn(θ)|n〉〈n| (53)

with ∂θhn(θ) ∈ [0, 1] (based on Appendix A, other cases
with different range of ∂θhn(θ) lead the same conclusion).

When eigenvalues of the parameterized state UθρU
†
θ are

parameter-independent, QFI could be calculated from
the following equation [43, 61],

FQ(ρ, Uθ, θ0) =
∑

ij

2(Pi − Pj)
2

Pi + Pj
|〈ϕi|∂θϕj〉|2, (54)

where {Pi} and {|ϕi〉} denote the eigenvalues and eigen-

vectors of UθρU
†
θ respectively, and we use |∂θϕj〉 to briefly

express the partial derivative
∂|ϕj〉
∂θ |θ0 . Besides, the terms

with Pi = Pj = 0 are not included in the summation. In
addition, for a pure state ρ = |ψ〉〈ψ|, let {|ψi〉} be the
basis vectors satisfying |ψ〉 = |ψ1〉, then the correspond-
ing P1 = 1 and residual eigenvalues Pi (i 6= 1) are zero.

Then the eigenvectors of UθρU
†
θ are {Uθ|ψi〉}. Denote

Hθ =
∑

n

∂θhn(θ)|n〉〈n|, (55)

we have

FQ(|ψ〉, Uθ, θ0)

=
∑

i

2(1− Pi)
2

1 + Pi
〈ψ|U †

θ0
Uθ0Hθ0 |ψi〉〈ψi|Hθ0U

†
θ0
Uθ0 |ψ〉

+
∑

i

2(Pi − 1)2

Pi + 1
〈ψi|U †

θ0
Uθ0Hθ0 |ψ〉〈ψ|Hθ0U

†
θ0
Uθ0 |ψi〉

=4〈ψ|Hθ0

∑

i

|ψi〉〈ψi|Hθ0 |ψ〉 − 4〈ψ|Hθ0 |ψ〉〈ψ|Hθ0 |ψ〉

=4〈ψ|H2
θ0 |ψ〉 − 4〈ψ|Hθ0 |ψ〉2. (56)

This result does not depend on the choice of |ψi〉 as long
as |ψ〉 = |ψ1〉, and the optimal QFI max

Uθ∈G
FQ(|φ〉, Uθ, 0)

can be calculated as

max
Uθ∈G

FQ(|φ〉, Uθ, 0) =max
H∈S

4〈φ|H2|φ〉 − 4〈φ|H |φ〉2

=8/9, (57)

where |φ〉 is the 3−dimensional MCS in Eq. (48), S is
the set of operator H = h1|1〉〈1| + h2|2〉〈2| + h3|3〉〈3|
(hi ∈ [0, 1]). Thus C0(ρ) > max

Uθ∈G
F (|φ〉, Uθ, 0), which

indicates that Cθ0 is different from FI with unitary
parametrization.
Finally, we’d like to present all the coefficients of Ex

in above calculation by defining Ax = [ax1 , a
x
2 , a

x
3 ], where

A1 = [0,
√
0.4,

√
0.6]/

√
3,
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A2 = [0,
√
0.4e−i2π/3,

√
0.6ei2π/3]/

√
3,

A3 = [0,
√
0.4e−i4π/3,

√
0.6ei4π/3]/

√
3,

A4 = [
√
0.4,

√
0.6, 0]/

√
3,

A5 = [
√
0.4,

√
0.6ei2π/3, 0]/

√
3,

A6 = [
√
0.4,

√
0.6ei4π/3, 0]/

√
3,

A7 = [
√
0.6, 0,

√
0.4]/

√
3,

A8 = [
√
0.6, 0,

√
0.4ei2π/3]/

√
3,

A9 = [
√
0.6, 0,

√
0.4ei4π/3]/

√
3. (58)

In addition,

hx1 = 0, hx2 = 1, hx3 = 0, x = 1, 2, 3

hx1 = 1, hx2 = 0, hx3 = 0, x = 4, · · · , 9. (59)

IV. CONCLUSIONS

In this paper, we have established coherence mea-
sures based on FI subject to the incoherent non-unitary
parametrization process. The coherence measure could
be defined by two forms based on FI or QFI, which
both imply the direct operational meaning by the con-
nection with the parameter estimation accuracy. In ad-
dition, we compare our measure with QFI in unitary
parametrization and find that in the qubit case, our co-
herence measure can be equivalently understood through
unitary parametrization, and can be analytically calcu-
lated. Our coherence also sheds new light on the roles of
the non-unitary parametrization process.
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Appendix A: Region of ∂θh(θ)

In the previous sections, Cθ0
Q and Cθ0 are defined un-

der a certain condition
∂hx

n(θ)
∂θ ∈ [0, 1]. In fact, measures

defined under other conditions can be transformed to the
original Cθ0 .

We first consider the case that
∂hx

n(θ)
∂θ is finite, and

suppose max
n,x

|∂h
x
n(θ)
∂θ | ≤ k (k is finite). Denote C̃θ0

k as the

function defined in a similar way as Cθ0 (in Theorem 1)

but with the different condition max
n,x

|∂h
x
n(θ)
∂θ | ≤ k, and

G(k) as the set of the corresponding channels, namely,

C̃θ0
k (ρ) = max

E∈G(k)
F (P̃ E , θ0), (A1)

where

P̃ E(x|θ) = tr(Ẽx(θ)ρẼx(θ)
†),

Ẽx(θ) =
∑

n

axne
ihx

n(θ)|fx(n)〉〈n|, (A2)

and max
n,x

|∂h
x
n(θ)
∂θ | ≤ k.

We find that C̃θ0
k has a connection with the previous co-

herence measure.
Lemma 3.-The function C̃θ0

k satisfies that

Cγ0(ρ) =
1

4k2
C̃θ0

k (ρ), (A3)

where γ0 = 2kθ0.

In this sense, investigation under condition
∂hx

n(θ)
∂θ ∈

[0, 1] could cover all other situations where k is finite.
Next, we give a brief proof.
Proof: Suppose {Ex} are Kraus operators of channel

in G( 1
2 ), namely,

Ex(γ) =
∑

n

axne
iux

n(γ)|fx(n)〉〈n|, (A4)

where |∂γuxn| ≤ 1
2 . Denote

Êx(γ) = eiγ/2Ex(γ) =
∑

n

axne
ivx

n(γ)|fx(n)〉〈n|, (A5)

where vxn(γ) = uxn(γ) + γ/2, thus ∂γv
x
n ∈ [0, 1]. The two

channels lead to identical effects, that is

Êx(γ)ρÊx(γ)
† =eiγ/2Ex(γ)ρe

−iγ/2Ex(γ)
†

=Ex(γ)ρEx(γ)
†, (A6)

from this, we have

Cγ0(ρ) = C̃γ0
1/2(ρ). (A7)

Consider Ẽx in Eq. (A2), denote Sx
l as the set satisfying

fx(n) = l when n ∈ Sx
l , then

P̃ (x|θ) =
∑

l

∑

n,n′∈Sx
l

ρnn′axna
x∗
n′ ei[h

x
n(θ)−hx

n′(θ)], (A8)
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and

∂θP̃ (x|θ)|θ0 =
∑

l

∑

n,n′∈Sx
l

{ρnn′axna
x∗
n′ ei[h

x
n(θ0)−hx

n′(θ0)]

× i[∂θh
x
n(θ)|θ0 − ∂θh

x
n′(θ)|θ0 ]}. (A9)

Denote γ = 2kθ, then

P̃ (x|θ) =
∑

l

∑

n,n′∈Sx
l

ρnn′axna
x∗
n′ ei[h

x
n(

γ
2k )−hx

n′(
γ
2k )], (A10)

thus P̃ (x|θ) could be rewritten as P (x|γ). Define gxn(γ) =

hxn(
γ
2k ), then ∂γg

x
n(γ) =

∂θh
x
n(θ)
2k , thus |∂γgxn(γ)| ≤ 1

2 . In
addition,

∂γP (x|γ)|γ0

=
∑

l

∑

n,n′∈Sx
l

{ρnn′axna
x∗
n′ ei[h

x
n(

γ0
2k )−hx

n′(
γ0
2k )]

×i[∂γhxn(
γ

2k
)|γ0 − ∂γh

x
n′(

γ

2k
)|γ0 ]}

=
1

2k

∑

l

∑

n,n′∈Sx
l

{ρnn′axna
x∗
n′ ei[h

x
n(θ0)−hx

n′(θ0)]

×i[∂θhxn(θ)|θ0 − ∂θh
x
n′(θ)|θ0 ]}

=
1

2k
∂θP̃ (x|θ)|θ0 , (A11)

where γ0 = 2kθ0. Thus

F (P, γ0) =
∑

x

[∂γP (x|γ)|γ0 ]
2

P (x|γ0)

=
∑

x

[∂θP̃ (x|θ)|θ0 ]2
4k2P̃ (x|θ0)

=
F (P̃ , θ0)

4k2
, (A12)

combine it with Eq. (A7), we have

Cγ0(ρ) =
1

4k2
C̃θ0(ρ). (A13)

Above proof shows that if ∂θh
x
n(θ) is finite, the in-

vestigation under condition ∂θh
x
n(θ) ∈ [0, 1] could cover

all other general cases. However, if ∂θh
x
n(θ) is infinite,

FI and Cθ0(ρ) will be infinite. Besides, physical mod-
els generally lead to a finite ∂θh

x
n(θ), for example, the

parametrization Ramsey interferometer could be written
as Uθ = exp(−iθJz), the corresponding ∂θh

x
n(θ) is finite

(Jz is the z−component of the total angular momentum).
Thus we could focus on finite case.

Appendix B: Dilation of the Optimal Channel in G

For the estimation process in Eq. (3), the optimal
channel in G1 could be written as

Ex(θ) =
∑

n

bxn(θ)|1〉〈n|, (B1)

denoteHA (d-dimension) as the space for it. Assume |xB〉
are basis vectors in another spaceHB (L-dimension), and
we construct the following states in HB,

|ψn
B
〉 =

L
∑

x=1

bxn(θ)|xB〉, n = 1, 2, . . . , d. (B2)

From
∑

xE
†
xEx = I, we have 〈ψm

B
|ψn

B
〉 = δnm. With

states in Eq. (B2), one can always find the other |ψx
B〉

(x = d+ 1, . . . , L) to form a set of basis together in HB.
Denote

UB =
∑

x

|ψx
B
〉〈xB |, (B3)

clearly, UB†UB = UBUB† = IB. Then we can construct
a controlled unitary in HA ⊗HB,

UAB = |1A〉〈1A| ⊗ UB + I
A
1 ⊗ I

B , (B4)

where IA1 is the identity operator in the residual subspace
of HA. Obviously, UAB is an unitary operator in HA ⊗
HB. Denote

V =
∑

n

(|1A〉〈nA| ⊗ |nB〉〈1B|+ |nA〉〈1A| ⊗ |1B〉〈nB |)

−|1A〉〈1A| ⊗ |1B〉〈1B |, (B5)

and

W = V + I2, (B6)

where I2 is the identity operator from the residual sub-
space which eliminates V V † in HA ⊗HB, and W is an
unitary operator swapping specified states. It is easy to
see that

Ex(θ) = 〈xB |UABW |1B〉, (B7)

based on Stinespring dilation theorem, {Ex(θ)} could be
implement by an unitary UABW on ρ ⊗ |1B〉〈1B| and
projective measurement {|xB〉〈xB |}.
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