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Quantifying defects in thin films using machine vision
Nina Taherimakhsousi1,5, Benjamin P. MacLeod 1,2,5, Fraser G. L. Parlane 1,2, Thomas D. Morrissey1,2, Edward P. Booker 1,

Kevan E. Dettelbach 1 and Curtis P. Berlinguette 1,2,3,4✉

The sensitivity of thin-film materials and devices to defects motivates extensive research into the optimization of film morphology.

This research could be accelerated by automated experiments that characterize the response of film morphology to synthesis

conditions. Optical imaging can resolve morphological defects in thin films and is readily integrated into automated experiments

but the large volumes of images produced by such systems require automated analysis. Existing approaches to automatically

analyzing film morphologies in optical images require application-specific customization by software experts and are not robust to

changes in image content or imaging conditions. Here, we present a versatile convolutional neural network (CNN) for thin-film

image analysis which can identify and quantify the extent of a variety of defects and is applicable to multiple materials and imaging

conditions. This CNN is readily adapted to new thin-film image analysis tasks and will facilitate the use of imaging in automated

thin-film research systems.
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INTRODUCTION

Film morphology optimization is important for reducing the
detrimental impacts of defects on the performance of thin-film
devices such as photovoltaics1,2 and light-emitting diodes3.
Images of thin films carry information about common morpho-
logical defects, such as cracking4 and dewetting5,6, which are
controlled by film synthesis conditions. While automated experi-
ments can generate images of thin films synthesized under
numerous distinct conditions, existing approaches to automati-
cally analyzing film morphologies in such images typically require
application-specific customization by software experts and are not
robust to changes in image content or imaging conditions7,8. Here
we present a versatile convolutional neural network (CNN) for
thin-film image analysis which can identify and quantify the
extent of a variety of defects, is applicable to multiple materials
and imaging conditions, and is readily adapted to new thin-film
image analysis tasks.
The severity of film defects such as thickness variations, cracks,

precipitates, or dewetting can often be identified by the naked
eye or with optical microscopy4,9,10. For this reason, rapid, non-
destructive optical inspection of thin films is often carried out in
the place of more expensive, more destructive, or more time-
consuming methods such as stylus profilometry, atomic force
microscopy, or electron microscopy. Quantitative defect analysis
enables researchers to identify potentially subtle trends in film
morphology as a function of experimental conditions. Researchers
frequently perform quantitative image analyses using semi-
manual software tools, such as measuring film coverage with
ImageJ11, or surface roughness with Gwyddion12. Semi-manual
analysis becomes impractical, however, when applied to high-
throughput experiments or high-speed manufacturing where
images of thin films are generated at high frequency or in large
numbers. In such cases, automated image analysis is necessary.
Automated analyses of images of thin-film materials and devices
are often performed using image-processing algorithms that are

specific to the material, morphology, and imaging modality of
interest13. An example of this type of approach is the matrix-based
analysis of orientational order in AFM images of P3HT nanofibers7.
This traditional type of computer vision includes application-
specific feature extraction subroutines with numerous adjustable
parameters, such as imaging condition-dependent thresholds,
which can make them difficult to adapt to new applications14,
such as new materials, morphologies, or imaging modalities. Here,
we describe a new approach to image-based thin-film defect
quantification which uses a CNN to overcome many limitations of
previous approaches. The CNN we developed for this purpose,
which we call DeepThin, quantifies the extent of several types of
common morphological defects (e.g., particles, cracks, scratches,
and dewetting) in images of thin films. We show that DeepThin
works with different imaging modalities (darkfield imaging and
brightfield microscopy), different magnifications and different
materials (a small-molecule organic glass and a metal oxide) and
can readily be retrained to detect new defect types.
CNNs are a family of machine learning algorithms that have

been applied to image classification15, feature detection16, image
segmentation17, and object recognition problems18. CNNs have
achieved classification accuracy comparable to human experts in
computer vision challenges19,20. The performance and robustness
demonstrated by CNNs make them appealing for thin-film defect
analysis. An additional benefit of CNNs is that they can be easily
trained using examples provided by a domain expert (e.g., a
materials scientist) rather than through involved algorithm
customization by a computer vision expert14. CNNs are an
established approach to electron microscopy image analysis tasks,
with examples in the materials sciences including mechanical
property estimation21, nanoparticle segmentation22, nanostruc-
ture classification23, and the study of atomic-scale defects24–26.
However, CNNs have only recently been applied for the analysis of
optical images of thin films in two highly-application-specific
ways: classifying the corrosion conditions under which surface
films formed on metal surfaces27,28 and determining the thickness
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of exfoliated 2D crystals29. The DeepThin CNN reported here is a
general-purpose CNN for classifying or quantifying common
morphological defects in optical images of thin films.

RESULTS

Training dataset and model development

To develop and validate DeepThin (Fig. 1), we first created a
dataset of 2600 darkfield images of organic semiconductor thin
films (each 4000 × 3000 pixels) exhibiting varying extents of
cracking and dewetting due to differences in film composition
and annealing conditions. These films were deposited by spin-
coating, annealed, and imaged by a flexible robotic platform
equipped with a darkfield photography system (see “Methods”
section, ref. 30). The images in this darkfield dataset were labeled
with respect to the extent of dewetting and of cracking by
materials scientists with expertise in thin-film materials research
(see “Methods” section). Labeling was on a subjective integer scale
from zero (no defects observed) to ten (extremely defected) for
both defect types. This labeled dataset was first randomly divided
into training, validation, and test sets to facilitate the development
of a CNN for image-based thin film defect analysis. These datasets
were then augmented by applying rotations and mirroring to the
labeled images to obtain a total of 17,374 labeled images. Finally,
some images of non-defected films were removed to improve the
balance of the datasets, with the final breakdown as detailed in
Table S1. This balancing was done to avoid biasing the model
towards labeling images as non-defected. We evaluated the
suitability of several state-of-the-art CNNs architectures31,32 for this
task before choosing to develop a new architecture for DeepThin
(Methods) inspired by the VGG16 CNN (see “Methods” section).
We trained DeepThin using five-fold cross-validation and the
Adam optimizer (see “Methods” section). After this optimization,

DeepThin quantified the extent of cracking, and of dewetting, in
each of the darkfield dataset images with >93 % accuracy (Table
S2). With the largest possible quantification error being 10, the
root-mean-square-errors between the model’s scores and the
ground truth were 0.086609 for crack quantification and 0.090362
for dewetting quantification.

Model validation against a known, monotonic morphological
trend

To further validate DeepThin we carried out an experiment where
an organic semiconductor film was imaged as it underwent
thermally-activated dewetting9 (Fig. 2a). This experiment provided
a series of images in which the extent of dewetting was known to
increase monotonically with respect to time. We then used
DeepThin to quantify the extent of dewetting in each image. The
resulting dewetting scores also increased monotonically with
respect to time (Fig. 2b), showing that DeepThin can correctly
order a set of images of thin films based on a one-dimensional
trend in the film morphology.

Resolution of a two-dimensional film-morphology response
surface

To illustrate the applicability of our method to thin film
optimization, we used DeepThin to resolve a 2-dimensional film-
morphology response surface in a set of experiments where both
film composition and processing were varied. Following our
previous work30, thin films of spiro-OMeTAD doped with varying
amounts of FK102 Co(III) TFSI salt and annealed for varying
durations were prepared and then imaged using a robotic
platform (see “Methods” section). These experiments provided
an array of images exhibiting morphological trends as a function
of both film composition and processing. The analysis of these
images using DeepThin automatically provided a response surface
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Fig. 1 Using DeepThin to evaluate the morphology of a thin film. a Scheme for applying DeepThin to score the extent of cracking (Scrack)
and dewetting (Sdewet): (1) thin film sample is created, for example by spin-coating. (2) A darkfield photograph of the sample is taken. (3) The
image is subdivided into n patches (4) The DeepThin convolutional neural network (architecture shown) is applied to each patch (5) Scores for
the extent of cracking and dewetting are computed by averaging the scores of all n patches. The structure of DeepThin is shown (bottom). The
numbers below each layer indicate the output data size of each convolution or fully connected layer. Conv Convolution layer, Pool Pooling
layer, ReLU Rectified Linear Units layer, FC fully connected layer. b Example images of organic thin films from the testing portion of the
darkfield dataset with varying extents of dewetting, ordered by the scores assigned to them by DeepThin. Scale bar, 500 µm.
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quantifying the extent of dewetting as a function of the film
composition
and annealing time (Fig. 3). From this surface, two trends can
readily be identified: (i) the extent of dewetting increased as the
dopant-to-spiro-OMeTAD molar ratio increased from 0 to 0.4, then
decreased at higher dopant levels; (ii) longer annealing times
produced more dewetted films across all dopant-to-spiro-
OMeTAD ratios, with the exception of undoped films which
did not exhibit dewetting regardless of annealing time. The ability
to automatically obtain composition-processing-morphology
response surfaces such as the one shown in Fig. 3 using rapid,
inexpensive, and non-destructive imaging is a benefit of our
approach.

Applicability of DeepThin to multiple materials, defect types and
imaging modalities

To demonstrate the versatility of DeepThin, we next applied it
to a different imaging modality (bright-field microscopy) at
different magnifications (×5 and ×20), to additional defect types
(scratches, particles, and thickness non-uniformities) and to

films of a different material (a metal oxide) (Fig. 4). For these
demonstrations, three new image datasets were manually
obtained using a bright-field microscope (see “Methods” section):
a set of 129 images of organic semiconductor films at ×5
magnification and two sets of images of TiOx films (81 images at
×5 magnification and 82 at ×20 magnification). These microscope
images, originally 1024 × 768 pixels, were divided into 100 × 100
pixels patches, manually labeled based on the types of defects
present and then subjected to reflections and rotations to obtain
augmented datasets of adequate size for retraining and testing
DeepThin (Tables S3–S5). These images were classified based on
the presence or absence of cracking, dewetting, and additional
defect types not considered in the darkfield dataset originally
used for model development (scratches, particles, and thickness
non-uniformities). After a separate retraining for each of the three
microscopy datasets, DeepThin was able to accurately detect the
presence or absence of the five labeled defect types (cracks,
dewetting, particles, scratches, and thickness non-uniformities)
wherever they appeared in the datasets for the different materials
and magnifications (Fig. 4). The model could classify a given
brightfield image as having no defects or any combination of one
or more defects. Confusion matrices, which highlight the model’s
ability to discriminate between defect-types, are also provided in
Tables S6–S8. These results demonstrate that CNNs such as
DeepThin may be applied to a broad scope of thin-film materials,
defect morphologies, and imaging conditions.

Benchmarking against concrete defect detection literature

To assess the performance of DeepThin for defect detection in a
domain other than thin films, we benchmarked DeepThin against
previously reported state-of-the-art algorithms for crack detec-
tion33 and segmentation34,35 in images of concrete and road
surfaces. To benchmark the road-surface crack detection ability of
DeepThin, we used the training and testing datasets provided by
Zhang and coworkers33 to first retrain and then test DeepThin. The
accuracy statistics given in Table S9, architecture comparison
given in Table S10, and the receiver operating characteristic (ROC)
curves in Fig. S1 show that DeepThin outperforms the three crack
detection algorithms used by Zhang and coworkers33. Next, we
benchmarked DeepThin against the road-surface crack segmenta-
tion algorithms described by Shi et al.34 and Fan et al.35 using the
118 image CFD dataset provided by Shi et al. We used 72 of these
images for training and 46 images for testing as was done by

Fig. 2 Recovery of a monotonic trend in film morphology using DeepThin. a The experimental setup used for capturing a series of images
of a thin film with an extent of dewetting which increases monotonically in time. b Dewetting score assigned to images of the thin film
sample as a function of heating time. The extent of dewetting increased monotonically with time throughout the experiment as seen in the
images from 10, 30, 50, 70, and 90 s into the experiment. Similarly, the dewetting score reported by DeepThin also increases monotonically.
Scale bar in image, 10mm.

Fig. 3 Use of DeepThin to resolve trends in morphology caused by
variations in composition and processing of organic thin films.
The thermally-activated dewetting of the organic semiconductor
film was suppressed for levels of p-doping below 0.2 or above 0.8
whereas at intermediate doping levels, dewetting occurred after
annealing above 50 s. Scale bar in image, 10mm.
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Shi et al. and again found that DeepThin again achieves state-of-art
performance (Tables S11 and S12). The state-of-the-art perfor-
mance of DeepThin in these benchmarks likely arises from our use

of a CNN architecture based on one of the best available (VGG16)
and further optimized for crack detection. These results suggest
that DeepThin may also have utility in areas of materials science
other than thin films.

DISCUSSION

We have shown that a CNN can accurately identify several
different types of morphological defects in images of organic and
inorganic thin films acquired under a variety of imaging
conditions. The versatility of this approach to defect detection

arises due to the ease with which it can be adapted to new defect
types using labeled example images. The labeling of images
containing examples of materials defects provides a straightfor-

ward mechanism for materials scientists to encode their domain
expertise into an image analysis algorithm. As this example-based
process for algorithm customization does not require software
engineering expertise, we expect CNN-based approaches to

material defect analysis to increase the accessibility of automated
image analysis to the materials science community. Our DeepThin
CNN provides the ability to rapidly and automatically identify
trends in film morphology arising from manipulations of

composition and process variables. We anticipate that capabilities
of this kind, particularly in combination with automated experi-
mentation, will accelerate thin film materials science research by

facilitating the optimization of materials in design spaces where
the morphological response to the experimental parameters is
initially unknown.

METHODS

Robotic platform for film deposition, annealing, and imaging

Deposition, annealing, and darkfield imaging of all the organic thin films

included in the database were performed using a flexible robotic platform

configured for thin-film experiments described in detail in ref. 30. Briefly,

the robotic platform consists of a multi-purpose robotic arm that can

handle fluids and planar glass substrates, as well as a variety of other

modules that enable other tasks to be performed. The modules relevant to

this study include: trays of stock solutions and mixing vials which enable

the formulation of spin-coating inks with various compositions; a spin-

coater for depositing inks on substrates to form thin films; an annealing

station for variable-time annealing of thin films; a darkfield imaging station

for imaging the thin films.

Materials

Toluene (ACS grade) was purchased from Fisher Chemical, and was used

without further purification. Acetonitrile (≥99.9%), 2-propanol (≥99.5%),

acetone (≥99.5%), 4-tert-Butylpyridine (96%), Spiro-MeOTAD (99%), FK 102

Co(III) TFSI salt (98%, SKU 805203-5G), and Zinc di[bis(trifluoromethylsulfo-

nyl)imide] (Zn(TFSI)2, 95%) were purchased from Sigma Aldrich and were

used without any further purification. Extran 300 Detergent was purchased

from Millipore Corporation. Titanium(IV) 2-ethylhexanoate (97%) was

purchased from Alfa Aesar and was used without any further purification.

White glass microscope slides (3″ × 1″ × 1mm) were purchased from VWR

International. Fused silica wafers (100mm diameter, 500 µm thickness,

double-side polished) were purchased from University Wafer.
Fused silica wafers and microscope slides were cleaned prior to thin film

deposition. A solution of 1% v/v Extran 300 in deionized water was

prepared. The substrates were sonicated successively in the diluted Extran

300, deionized water, acetone, and 2-propanol. Before each sonication

step, the substrates were rinsed in the following solvent. Substrates were

stored submersed in 2-propanol. Prior to use, the substrates were dried

with filtered, compressed air and inspected by eye for defects.
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Organic thin film deposition

Stock solutions of spiro-OMeTAD, FK102 Co(III) TFSI salt, Zn(TFSI)2, and 4-
tert-butylpyridine were prepared at 50mgmL−1 in 1:1 v/v acetonitrile/
toluene. These stock solutions were combined using the robotic platform
described above to form 150 µL of ink. 100 µL of ink was deposited by the
robotic platform onto a microscope substrate rotating at 1000 rpm;
rotation was maintained for 60 s following ink injection. The resulting thin
films were then annealed for 0 to 250 s using a custom forced air annealer
(an aluminum enclosure around heat gun, Model 750 MHT Products, Inc.).
All of these procedures are described in more detail in ref. 30.

Metal oxide thin film deposition

Amorphous titanium oxide films were prepared by manual spincoating.
The samples were prepared by pipetting 100 µL of Titanium(IV) 2-
ethylhexanoate solution (0.1 M, 2-propanol) onto cleaned fused silica
wafers rotating at 3000 rpm; rotation was maintained for 30 s following ink
injection. The resulting samples were irradiated with deep ultraviolet light
(Atlantic Ultraviolet G18T5VH/U lamp – 5.8 W 185/254 nm, ~2 cm from the
bulb, atmospheric conditions) for 15min. After irradiation, the samples
were transparent and highly refractive.

Robotic darkfield imaging

All darkfield images taken with the robot were captured with a FLIR
Blackfly S USB3 (BFS-U3-120S4C-CS) camera using a Sony 12.00 MP CMOS
sensor (IMX226) and an Edmund Optics 25mm C Series Fixed Focal Length
Imaging Lens (#59-871). The C-mount lens was connected to the CS-mount
camera using a Thorlabs CS- to C-Mount Extension Adapter, 1.00”-32
Threaded, 5 mm Length (CML05). The sample was illuminated from the
direction of the camera using an AmScope LED-64-ZK ring light. For
imaging, the lens was opened to f/1.4, and black flocking paper (Thorlabs
BFP1) was placed 10 cm behind the sample.

Bright-field microscopy

All brightfield images were collected using an OLYMPUS LEXT OLS 3100
microscope operating in bright-field reflection mode using ×5 and ×20
objectives.

Monotonic dewetting experiment

To collect images of an organic thin film monotonically dewetting over
time, a thin film of Spiro-OMeTAD and FK102 Co(III) TFSI salt was deposited
(but not annealed) using the robotic platform as described above. A
camera and lightsource were positioned above the sample in the same
way as they were for the robotic darkfield imaging setup. A heat gun
(Model 2363333, Wagner) was positioned to heat the sample from below
at a 45° degree angle so as not to obscure the black background from the
camera. To perform the experiment, the heat gun was turned on high and
images were acquired every second for 100 s.

Image labeling procedure to define ground truth for model
development

The extent of dewetting in the dark-field images was scored by up to 3
experts on an integer scale from 0 to 9. The extent of cracking in these
images was, separately, scored in the same way. In both cases, the average
of the available scores was used as the ground truth. All experts used the
same graphical user interface to perform the labeling. The darkfield images
and the associated scores, as well as the labeling GUI can be found online
(see “Data availability” section)
For the brightfield images, a vector of binary values was assigned by a

single researcher to each image. Each element of the vector indicated the
presence or absence of one type of defect from the following: cracks,
dewetting, particles, scratches, non-uniformities. In this way, images could be
labeled as having no defects, one defect (of a specified type) or more than
one defect (with the types present specified). The brightfield images and the
associated labels are also available online (see “Data availability” section).

Development of the DeepThin network

The DeepThin CNN architecture (Fig. 1) was developed for the thin-film
image analysis tasks described here and is inspired by the VGG16 CNN
architecture36. Initially, DeepThin was trained using only one convolutional

layer. The model complexity was iteratively increased until the model
accuracy stopped improving. We employed five-fold cross-validation37 to
find a high-performance model before evaluating the model on the
unseen validation data.
The input layer to DeepThin is an image with 3 RGB color channels.

DeepThin has several convolutional and pooling layers as detailed in Fig. 1.
The first convolutional layer uses 32 filters with a 3 × 3 × 3 kernel to
convolve over the image, creating an output of size 50 × 50 × 32. Zero
padding is performed so that the resulting image size is identical to the
input image size. The output of the convolutional layer is passed into a
ReLU activation layer. This convolutional layer is repeated, as in the
VGG16 model.
Next, a maximum pooling layer of kernel size 2 × 2 is convolved over the

output of the previous layer to generate a 25 × 25 × 32 output, returning
the maximum value for a kernel. The two convolution layers and the
pooling layer are repeated a second time. The output of the second
maximum pooling layer is flattened to a 2000 × 1 vector. This output is
followed by two fully connected layers of 20 neurons with ReLU activation
functions and a final layer that outputs defects classes by applying a
sigmoid activation function. DeepThin is trained by minimizing an error
function through backpropagation using the stochastic gradient descent
method. L2 (Gaussian) and Dropout regularization was used to reduce
interdependent learning amongst the neurons. Regularization reduces
overfitting by adding a penalty to the loss function.
DeepThin was trained using the Adam optimizer38, with an initial

learning rate of 0.001 and a batch size of 100. Training loss and validation
loss converged after 11 epochs.

DATA AVAILABILITY

The labeled image datasets and a spreadsheet giving the individual expert labels for

the darkfield images as well as the labeling application and the code used to

develop the model are all available at https://github.com/berlinguette/ada. All other

data supporting the findings of this study are available from the corresponding

authors upon request.
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