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Abstract

Water density fluctuations are an important statistical mechanical observable that is related to
many-body correlations, as well as hydrophobic hydration and interactions. Local water density
fluctuations at a solid-water surface have also been proposed as a measure of it’s hydrophobicity.
These fluctuations can be quantified by calculating the probability, Pv(N), of observing N waters
in a probe volume of interest v. When v is large, calculating Pv(N) using molecular dynamics
simulations is challenging, as the probability of observing very few waters is exponentially small,
and the standard procedure for overcoming this problem (umbrella sampling in N) leads to
undesirable impulsive forces. Patel et al. [J. Phys. Chem. B, 114, 1632 (2010)] have recently
developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle
number to obtain Pv(N) in cuboidal volumes. Here, we present and demonstrate an extension of
that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections
of such volumes. We further describe the implementation of INDUS in the NPT ensemble and
calculate Pv(N) distributions over a broad range of pressures. Our method may be of particular
interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related
systems.
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1 Introduction

Quantifying density fluctuations in a condensed phase is interesting from a statistical
physics perspective. For example, the probability Pv(N) of finding N fluid particles in a
probe volume v contains information about many-body correlations in the fluid. Calculations
of Pv(N) in liquid water have significantly enhanced our understanding of hydrophobicity. In
particular, as the hydration of an idealized solvent-excluding hydrophobic solute is
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equivalent to the creation of a cavity with the same size and shape as that of the solute, the
excess free energy, μex, of solute hydration is [1]

(1)

where kB is the Boltzmann constant, T is the temperature, and ‘log’ represents the natural
logarithm. In 1996, Hummer et al. showed that in bulk water, Pv(N) distributions are
gaussian for small spherical volumes containing fewer than ten water molecules on average
[2]. This simplicity formed the basis for an information theoretic model that could predict
the thermodynamics of hydrophobic hydration and the association of small solutes over a
range of conditions, using only the readily available information on the average density and
the water radial distribution function [2–4]. Gaussian statistics of density fluctuations [5]
also underlies the Pratt-Chandler theory [6], which employs the same information to
estimate pair correlation functions for small hydrated hydrophobic species.

While small solutes can be accommodated in cavities that are formed spontaneously by
thermal fluctuations in bulk water, solvating large solutes requires forming a liquid-vapor-
like interface [7–9]. As a result, the nature of density fluctuations in large volumes is more
complex. The Lum-Chandler-Weeks (LCW) theory captures the lengthscale dependence of
hydration quantitatively by combining the physics of gaussian density fluctuations and that
of interface formation [8]. Specifically, it predicts that while Pv(N) for large volumes is
gaussian around the mean, the low-N wings of the distribution are enhanced substantially
[10,11]. Quantifying these rare water fluctuations in large volumes is essentially impossible
in equilibrium molecular simulations, and requires non-Boltzmann or umbrella sampling
methods [12]. Straightforward umbrella sampling of N, is further complicated by the fact
that N is a discontinuous function of particle coordinates, resulting in impulsive forces,
which are difficult to treat in typical molecular dynamics (MD) simulations. To circumvent
this difficulty, Patel et al. recently introduced an indirect umbrella sampling (INDUS)
method in which N is sampled indirectly, by biasing a coarse-grained variable, Ñ, which is
strongly correlated with N but varies continuously with particle coordinates [13]. Some
elements of this formalism have also been used previously by Andreev et al. in their study of
deformed carbon nanotubes [14].

The original implementation of INDUS, which is suitable only for cuboidal volumes,
showed that for large volumes in bulk water, Pv(N) indeed deviates significantly from
gaussian behavior at low N, reflecting the underlying physics of interface formation [13].
Application of INDUS to sample density fluctuations in large volumes in interfacial
environments showed that fluctuations near hydrophilic surfaces are similar to those in bulk,
but near hydrophobic interfaces, the probability of density depletion is significantly
enhanced [13]. The ability to calculate Pv(N), and especially μex using Eq. 1, in large
volumes near interfaces also allowed us to calculate the binding free energies of
hydrophobic cuboids to surfaces with a range of chemistries, and these binding free energies
were shown to correlate with the macroscopic wetting properties of the surfaces [15]. Thus,
Pv(N) is a potential molecular measure of hydrophobicity, which may enable the
characterization of surfaces of proteins and biomolecules that exhibit nanoscale roughness
and chemical heterogeneity.

Here, we extend INDUS such that it can be used to umbrella sample probe volumes of other
regular shapes, e.g., with cylindrical and spherical symmetry, as well as intersections and
unions of collections of such regular volumes and their complements. While the ideas
underlying the extension are simple, they considerably widen the scope of the method. For
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example, they allow umbrella sampling of arbitrarily shaped volumes, enabling faithful
characterization of fluctuations in the hydration shells of ions, nanoparticles, nanotubes, as
well as rugged proteins surfaces.

We also extend the method to work in the NPT ensemble. Previous applications of INDUS
were performed in the NVT ensemble with a buffering vapor-liquid interface. While the two
schemes yield indistinguishable results at low pressures, the present extension allows access
to a much broader range of pressures. We begin by describing the INDUS method of Ref.
[13], which is suitable for cuboidal probe volumes, and introduce the pertinent equations,
which lays down the framework for extending the method to other regular volumes. We then
generalize these equations to volumes of more general shapes and to collections of such
volumes, and describe how INDUS affects the calculation of system pressure. Finally, we
demonstrate these generalizations by calculating Pv(N) in various noncuboidal shapes and at
high pressures.

2 The INDUS Method

The number of particles, N, in a specific probe volume, v, changes discontinuously as the
center of any particle crosses the surface of v. Hence, if the biasing potential, U, were
chosen to be a function of N, it would result in impulsive forces. Instead, we choose U to be
a function of a closely related coarse-grained particle number, Ñ, that is a continuous
function of the positions, {ri}, of all M particles in the system as,

(2a)

where

(2b)

The integral in Eq. 2b is over the probe volume v, and the integrand is a coarse-graining
function, Φ(r), which we choose to be

(3a)

where

(3b)

The function φ(α), shown in Fig. 1, is a gaussian that is truncated at |α| = αc, shifted down,
and then scaled, so as to make it continuous and normalized. The normalization constant, k,

is equal to  and Θ(α) is the Heaviside step function.
As the width of the gaussian, σ, approaches 0, the function φ(α) approaches the Dirac delta
function δ(α) and Ñ approaches N. The correlation between Ñ and N is thus strongest when σ
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is smallest, but if σ is chosen to be too small, the resulting biasing forces may be too large to
handle correctly in typical MD simulations.

For a cuboidal volume v, the integral in Eq. 2b can be performed independently in the x, y
and z directions. The result is

(4a)

where

(4b)

and xmin and xmax are the coordinates of the faces of v perpendicular to the x-axis. The
functions h̃y(yi) and h̃z(zi) are defined analogously.

Fig. 2a shows the function hx(xi) (equal to 1 for xmin ≤ xi ≤ xmax, and 0 otherwise), which
can be thought of as the x contribution to h(ri); that is, h(ri) = hx(xi)hy(yi)hz(zi) and N = Σi
h(ri). Fig. 2a also shows the function h̃x(xi), which varies continuously across the boundary
of v, unlike hx(xi). The coarse-graining function h̃x(xi) differs from hx(xi) only in the thin
boundary region of thickness 2xc. Thus, by ensuring that Ñ and N are strongly correlated, we
are able to influence N indirectly by biasing Ñ.

For a cuboidal probe volume, the x-component of the force on particle i due to the biasing
potential, U(Ñ), is given by

(5)

where the derivative of h̃x(xi), obtained by differentiating Eq. 4b and shown in Fig. 2a, is

(6)

It follows that the biasing forces act only on particles near the boundary of v, are finite, and
are continuous functions of particle positions.

To obtain Pv(N) using INDUS, we perform nw simulations with different biasing potentials,
Uj(Ñ) (j = 1, …, nw), chosen such that the range of interest of N is well sampled. During
each simulation, we collect nj samples of N and Ñ, denoted by Nj,l and Ñj,l (l = 1, …, nj), in
essence, sampling the biased joint distribution function, Pv(N, Ñ). We then unbias and stitch
together the nw biased joint distribution functions by using the weighted histogram analysis
method (WHAM) [16, 17]. Finally, we integrate out the unbiased joint distribution function
to obtain Pv(N), which is given by
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(7)

where β−1 = kBT is the thermal energy, δn,m is the Kronecker delta function, and C and {cj}
are normalization constants, determined self-consistently through the standard WHAM
equations,

(8a)

and

(8b)

3 Extension of INDUS to noncuboidal volumes

While several coarse-graining schemes are possible for defining Ñ, a practically useful
definition must satisfy the following three conditions: (i) Ñ must be a continuous function of
particle positions, (ii) Ñ and N must be strongly correlated, and (iii) the calculation of Ñ and
its derivatives should be straightforward. The choice of the form of Eq. 3a for cuboid
volumes allows h̃(ri) to be expressed as a product of independent contributions from x, y,
and z coordinates (as in Eq. 4a). While this formulation is particularly convenient for
cuboidal volumes, the integral (Eq. 2b) that defines h̃(ri) would not be independent in the
three coordinates for other regular volumes, such as spheres or cylindrical shells. Thus,
calculating h̃(ri) and its gradient efficiently at every MD step would not be straightforward.
To circumvent this complication, we bypass defining h̃(ri) via a coarse-graining function Φ
as in Eq. 2b, and instead, define it directly as a product of independent contributions from
the three co-ordinates (as in Eq. 4a) in the relevant co-ordinate system (e.g., cylindrical,
spherical, etc.) as,

(9)

Here α represents the coordinate component index (e.g., x, y or z in Cartesian coordinates; r,
θ or z for cylindrical ones, etc.) and h̃α (αi) may be defined in a manner analogous to h̃x(xi)
(Eq. 4b and Fig. 2a).

However, unlike cuboidal volumes, where each coordinate component has two boundaries
(e.g., xmin and xmax), the components in spherical or cylindrical systems may have either one
boundary (e.g., the r coordinate for a spherical v), or no boundaries (e.g., the θ coordinate
for a cylindrical v). These cases are illustrated in Fig. 2 and the expressions for h̃α(αi) and

 in each case are as follows:

• Two boundaries: αmin ≤ α ≤ αmax.
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(10a)

and

(10b)

where  and .

• One boundary: α ≤ αmax.

(11a)

and

(11b)

• No boundaries:

(12a)

and

(12b)

The forces are then given by

(13a)

with

(13b)

where ∂αi/∂xi is an element of the Jacobian for the coordinate transformation.
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4 Generalization to collections of probe volumes

The above approach can be generalized to calculate Pv(N) in a probe volume v that is
constructed from unions (vA ∪ vB) and intersections (vA ∩ vB) of regular subvolumes (vA, vB)
and their complements (v̄A, v̄B). The subvolumes need not be of the same size or shape.
When v is constructed from subvolumes using the complement, intersection and union
operations, the corresponding definition of h̃(ri) is constructed by noting that,

(14a)

(14b)

and

(14c)

Here, the superscript (A) indicates that the function is evaluated with respect to the
boundaries of sub-volume vA. For the special case of a probe volume v that is a union of G
non-overlapping sub-volumes {vk} (k = 1, …, G), the above prescription yields,

(15a)

where

(15b)

Once again, the force on particle i resulting from a biasing potential, U, is finite and
continuous everywhere, and is given by

(16a)

where

(16b)
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The recipe given in Eqs. 10–13, when applied to vk can be used to evaluate  and ∂h̃(k)/∂xi
in Eqs. 15b and 16b.

5 INDUS in the NPT ensemble

When calculating Pv(N) using simulations in the NVT ensemble, as was done in Ref. [13], it
is important to have a vapor bubble or a vapor-liquid interface in the simulation box. This
vapor bubble can be nucleated, e.g., by applying a particle excluding field far from v, and
can grow or shrink to accommodate water molecules pushed into or out of v. The resulting
effective pressure of the system is close to the saturation vapor pressure of the fluid.
Alternatively, we can perform simulations in the NPT ensemble without such a bubble, as
long as the forces resulting from the umbrella potential are included in the calculation of the
system pressure, . If v is fixed in space and does not move, grow or shrink as the
simulation box dimensions fluctuate, then the contribution of the umbrella potential to  is

(17)

where  is the umbrella force on particle i, calculated as described in the preceding
sections, and V is the system volume.

6 Results

We illustrate the extension of the INDUS method by calculating Pv(N) distributions for
volumes of different shapes in bulk water. Biased MD simulations of bulk water were
performed using the MD simulation packages LAMMPS [19] and GROMACS [20],
modified in-house to implement INDUS. For the parameters of the coarse-graining function
φ(α) in Eq. 3b, we used σ = 0.1 Å and αc = 0.2 Å (NVT ensemble) or αc = 0.3 Å (NPT
ensemble). Each simulation box contained several thousand water molecules, modeled with
the extended simple point charge water model (SPC/E) [21], and was periodic in all
directions.

We selected volumes of four different shapes (a sphere, a cube, a cylinder, and a cuboid; see
Figure 3), each with an average number of water molecules, 〈N〉, between 25 and 30. For
these large volumes, INDUS allows us to measure probabilities for rare water fluctuations
that are rather small (Pv(0) ≈ 10−30), whereas calculations using straightforward equilibrium
simulations [2] provide accurate estimates only for much smaller volumes (〈N〉 ≈ 8 with
corresponding Pv(0) ≈ 10−8). Although the volumes of the shapes that we have selected are
similar to each other, they are not identical, and contain slightly different number of waters
on average. Therefore, to compare them with each other as well as with a gaussian

distribution, in Fig. 3a, we plot Pv as a function of , where 〈δN2〉 is the
variance of N. Near the mean, the distributions are gaussian for all shapes, as expected.
However, there are significant deviations from gaussian behavior in the low-N tails of Pv(N).
Specifically, the smaller a shape’s surface-area to volume ratio, the fatter the low-N tail.

In the large lengthscale limit, interface formation governs the free energy of cavity
formation. LCW theory [8] predicted, and subsequent simulation studies verified [15,22–
24], that the gradual crossover from small to large lengthscale physics occurs around 1 nm,
which is roughly the length-scale of volumes selected here. Thus, we expect that shapes with
smaller surface areas will have lower free energies of cavity formation and correspondingly
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fatter low-N tails, as observed in Fig. 3a. Fig. 3b further confirms that the free energy is
governed by the physics of interface formation: the ratio of μex to the surface area of the
probe volume, A, which can be interpreted as an apparent surface tension, γ̃, is
approximately constant, independent of the shape of v. For nanoscopic objects, γ̃ depends on
solute size and curvature, and is expected to be lower than the macroscopic surface tension
of a vapor-liquid interface, γ∞ [13,22,25,26], in agreement with the results in Fig. 3b.

In Figure 4, we demonstrate the generalization of the INDUS method to collections of probe
volumes by calculating Pv(N) in an arbitrarily shaped volume. The volume that we have
chosen spells, ‘I N D U S’, using a collection of 156 non-overlapping cubic sub-volumes,
each with a side of 0.25 nm.

In Fig. 5, we show that for a cube of side 0.9 nm, the Pv(N) distribution calculated in the
NPT ensemble at a pressure,  = 1 bar, is identical to that obtained in the NVT ensemble
with a buffering vapor-liquid interface. This is expected since  ≪ kBT ≪ γA, so the
energetics of emptying v is governed almost entirely by the cost of forming an interface
(Figure 3b). The effective pressure in the NVT system is the coexistence pressure, , at T =
300 K, which is close to 0.06 bar. Since,  <  ≪ kBT, our simulations in the NVT
ensemble are an excellent approximation to those in the NPT ensemble at 1 bar.

The ability to calculate Pv(N) in the NPT ensemble allows us to study its pressure
dependence systematically. In Fig. 6a, we show Pv(N) distributions in a cube of side 1.2 nm
over a broad range of pressures. For pressures of 1 kbar and higher, the  term is no longer
negligible, and opposes emptying v. Correspondingly, the low-N fat tail disappears gradually
with increasing pressure. We also show in Fig. 6b that the free energy of hydrating the cubic
cavity increases roughly linearly with pressure. The slope of μex versus  is the excess
volume for solvating the cavity, and is equal to 0.67v for this cubic probe volume.

7 Conclusions

Given the importance of density fluctuations in understanding a range of solvation
phenomena [3, 4,27–31], we anticipate that the INDUS method will be of broad interest. For
instance, the size of density fluctuations at interfaces has been proposed recently as a
measure of interface hydrophobicity [15,32–34]. The extended INDUS method is capable of
characterizing hydrophobicity in complex environments that exhibit chemical heterogeneity
[33,35–37], complex topography [25,38,39], and confinement [35,40–46]. The ability to
calculate Pv(N) over a range of pressures using the NPT ensemble will be useful in studying
the effect of pressure on biomolecular structure, and especially in quantifying the hydration
contribution to the pressure denaturation of proteins [47]. Finally, quantifying Pv(N) in a
region surrounding a solute molecule constitutes an important contribution in the
quasichemical theories of solvation [48,49], and our extension of INDUS can be readily
applied to quantify that contribution for a solute of arbitrary shape and size.
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Fig. 1.

The coarse-graining function, φ(α), as defined in Eq. 3b, for αc = 2σ.
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Fig. 2.

The functions hα (αi), h̃α (αi) and its derivative, , for coordinates that have (a) two (α
→ x), (b) one (α → r) or (c) zero (α → θ) boundaries.
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Fig. 3.

(a) log Pv as a function of  for volumes of four different shapes: a sphere
of radius 0.6 nm, a cube of side 0.9 nm, a ylinder of radius 0.3 nm and length 3 nm, and a
thin cuboid of dimensions 0.3 nm × 1.6 nm × 1.6 nm. (b) The ratio of μex to surface area A,
as a function of A/v for the four different shapes. The dashed line represents the surface
tension, γ∞, of a vapor-liquid interface of SPC/E water [18].
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Fig. 4.

Pv(N) obtained by umbrella sampling a probe volume that spells, ‘I N D U S’. The volume is
composed of 156 cubic subvolumes of side 0.25 nm. The inset shows a superposition of five
independent configurations, taken from an MD simulation with a strong biasing potential
that empties the probe volume. The red spheres represent water oxygens. The letter ‘I’ in the
inset is 0.5 nm wide and 2.0 nm tall.
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Fig. 5.

Comparing Pv(N) for a cubic v of side 0.9 nm, obtained using NPT ensemble simulations ( 
= 1bar), with that obtained from NVT ensemble simulations having a buffering vapor-liquid
interface located far from v.
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Fig. 6.

(a) log Pv as a function of  for a cube of side 1.2 nm, calculated in the
NPT ensemble, over a range of pressures at T = 300 K. (b) Free energy, μex, of the same
cube as a function of pressure. A linear fit yields the excess volume of the cavity, vex ≈
0.67v.
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