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Abstract. Many studies have investigated potential climate

change impacts on regional hydrology; less attention has

been given to the components of uncertainty that affect these

scenarios. This study quantifies uncertainties resulting from

(i) General Circulation Models (GCMs), (ii) Regional Cli-

mate Models (RCMs), (iii) bias-correction of RCMs, and (iv)

hydrological model parameterization using a multi-model

framework. This consists of three GCMs, three RCMs, three

bias-correction techniques, and sets of hydrological model

parameters. The study is performed for the Lech watershed

(∼ 1000 km2), located in the Northern Limestone Alps, Aus-

tria. Bias-corrected climate data are used to drive the hy-

drological model HQsim to simulate runoff under present

(1971–2000) and future (2070–2099) climate conditions.

Hydrological model parameter uncertainty is assessed by

Monte Carlo sampling. The model chain is found to perform

well under present climate conditions. However, hydrologi-

cal projections are associated with high uncertainty, mainly

due to the choice of GCM and RCM. Uncertainty due to

bias-correction is found to have greatest influence on pro-

jections of extreme river flows, and the choice of method(s)

is an important consideration in snowmelt systems. Overall,

hydrological model parameterization is least important. The

study also demonstrates how an improved understanding of

the physical processes governing future river flows can help

focus attention on the scientifically tractable elements of the

uncertainty.

1 Introduction

The global climate has changed during recent decades and

there is high confidence that this is partly due to human activ-

ity (Oreskes, 2004; Solomon et al., 2007; Jones et al., 2008;

Rosenzweig et al., 2008). Over coming decades, changes in

climate are expected to exceed those observed during the

20th century (Kharin et al., 2007; Solomon et al., 2007; Tren-

berth, 2011). As a consequence, climate change risk assess-

ment has become an important part of sectoral and national

adaptation planning (e.g. Biesbroek et al., 2010; Howden et

al., 2007; Milly et al., 2008).

General Circulation Models (GCMs) are the most

favoured tools for assessing climate change. These models

represent major Earth system components including atmo-

sphere, oceans, land surface and sea ice. GCMs operate on a

global to continental scale and, thus, are unable to resolve re-

gional climate effects. Dynamical and statistical downscaling

is therefore used to generate climate information at finer spa-

tial resolutions. Dynamical downscaling includes Regional

Climate Models (RCMs) which are nested within the domain

of a GCM over a region of interest (Giorgi et al., 1990; Giorgi

and Mearns, 1999). RCMs use GCM output as initial and

lateral boundary conditions and can now generate climate in-

formation at resolutions as fine as 7 km (Pavlik et al., 2012).

Statistical downscaling is based on empirical relationships

between large-scale atmospheric indices and local meteoro-

logical data (Wilby et al., 2004). Comprehensive reviews of

downscaling methods are provided elsewhere (e.g. Fowler et

al., 2007; Maraun et al., 2010; Wilby et al., 2009).
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Projects such as PRUDENCE (Christensen and Chris-

tensen, 2007) and ENSEMBLES (van der Linden and

Mitchell, 2009) have increased the availability of RCM out-

puts, whereas increasing computational resources have lead

to their improved spatial resolution as well as their appeal

for hydrological impact assessment (e.g. van Roosmalen et

al., 2011). However, systematic biases are often found in

the RCM output, especially in the simulation of precipita-

tion (e.g. Frei et al., 2006; Themeßl et al., 2010; Pavlik et

al., 2012). Hence, statistical bias-correction techniques are

widely applied to RCM output before using the scenarios in

hydrological assessment (e.g. Bóe et al., 2007; Beyene et al.,

2010; Dobler et al., 2010; Quintana-Seguı́ et al., 2010; Hage-

mann et al., 2011; Stoll et al., 2011).

Although many studies rely on this type of approach, rel-

atively few have assessed the associated uncertainties. Es-

timating uncertainty in climate change impact studies is

still very much in its infancy, although early studies sug-

gest that widely divergent scenarios can emerge (e.g. Kay

et al., 2009; Quintana-Seguı̀ et al., 2010; Chen et al., 2011a;

Stoll et al., 2011; Ledbetter et al., 2012). This uncertainty

arises from the emission scenario, GCM structure and pa-

rameterization, RCM structure and parameterization, bias-

correction method, impact model structure and parameteri-

zation, as well as natural variability in the impact system.

These sources can be grouped into (i) uncertainty originat-

ing from the future emission pathways and aerosols, (ii) un-

certainty related to the model projections and (iii) uncer-

tainty arising from natural fluctuations (Maurer and Duffy,

2005; Hawkins and Sutton, 2009; Fischer et al., 2011). In

the present investigation we focus on uncertainty originat-

ing from model projections because we are particularly in-

terested in identifying those components of uncertainty that

are potentially reducible through further field work and re-

search (e.g. Hawkins and Sutton, 2009).

Many studies have already explored the significant un-

certainty originating from GCMs (e.g. Jasper et al., 2004;

Maurer and Duffy, 2005; Chen et al., 2006; Minville et al.,

2008; Buytaert et al., 2009). Uncertainty related to the RCM,

the statistical downscaling approach, the hydrological model

structure and parameterization, has received less attention

and studies show mixed results. For example, Quintana-

Seguı́ et al. (2010) found major differences between three

downscaling and bias-correction techniques when assessing

climate change impacts on the hydrology of Mediterranean

basins. Similar findings are reported by Stoll et al. (2011),

Teutschbein et al. (2011) and Chen et al. (2011a). Con-

versely, van Roosmalen et al. (2011) found only small dif-

ferences when comparing projected groundwater and stream

discharge using two different bias-correction methods. Chen

et al. (2011b) report that the choice of calibration period for

deriving bias-correction parameters is found to be of minor

importance.

Gosling et al. (2011) investigated impacts of climate

change on river runoff using seven GCMs and two dis-

tributed hydrological models (a global hydrological model

and a catchment-scale hydrological model). GCM structural

uncertainty was found to be larger than hydrological model

structural uncertainty. Bae et al. (2011) studied the effects

of climate change by driving three semi-distributed hydro-

logical models with a number of GCMs. They found that the

choice of hydrological model can induce major differences in

runoff change under the same climate forcing. This is consis-

tent with Bastola et al. (2011), who report high uncertainty

associated with hydrological models in an investigation of

four Irish catchments. Poulin et al. (2011) demonstrated that

the effect of the hydrological model structure is more impor-

tant than the effect of parameter uncertainty when studying

climate change impacts in a snow-dominated river basin.

The majority of studies focus on a single source of uncer-

tainty; only a few attempt to quantify uncertainty originating

from multiple factors. For example, Wilby and Harris (2006)

report that uncertainty due to climate change scenarios and

downscaling methods is greater than uncertainty related to

the hydrological model parameters. Kay et al. (2009), Prud-

homme and Davies (2009) and Chen et al. (2011c) confirm

that impacts are most sensitive to GCM structures, but Chen

et al. (2011c) show that the downscaling method or GCM ini-

tial conditions can produce comparable or even larger uncer-

tainty. In general, the importance of each uncertainty source

depends on (i) the time interval, (ii) the impact variable, (iii)

season, and (iv) the region considered.

The aim of this study is to quantify different sources of

uncertainty in hydrological projections for an Alpine river

basin. We examine uncertainty originating from (i) GCM

structure, (ii) RCM structure, (iii) bias-correction method,

and (iv) hydrological model parameterization. We begin with

a description of the study area and data involved then ex-

plain the calibration and uncertainty analyses at each stage.

The four components of uncertainty are diagnosed in terms

of changes to annual, mean and high flows. The final sec-

tion identifies some important caveats and opportunities for

further research.

2 Study area and data

The study is performed for the Lech watershed, located in the

Northern Limestone Alps of Austria (Fig. 1). The watershed

is drained by the river Lech, a tributary of the Danube river.

The catchment area upstream of the gauge at Lechaschau,

near Reutte, is approximately 1000 km2. For a detailed de-

scription of the study area see Dobler et al. (2010).

The Lech catchment is characterized by major varia-

tions in topography, climate, soil and vegetation over short

distances. The elevation ranges from approximately 800 m

above sea level to around 3000 m, with 85 % of the area lo-

cated at an elevation of 1200 m to 2400 m. Annual precipi-

tation varies between ∼ 1300 mm and ∼ 1800 mm measured

at the stations illustrated in Fig. 1. At an elevation of 1080 m
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Fig. 1. Study area Lech watershed.

(station Holzgau – see Fig. 1), mean annual air temperature

is around 6.1 ◦C, with maximum monthly mean temperature

of 15.2 ◦C in July and minimum monthly mean temperature

of −3.5 ◦C in January.

Daily data for temperature, precipitation and runoff for the

years 1971 to 2005 are obtained from the Hydrographischer

Dienst Österreich, Zentralanstalt für Meteorologie und Geo-

dynamik (ZAMG) and Deutscher Wetterdienst (DWD). Fig-

ure 1 shows the location of the temperature and precipitation

stations in or close to the catchment.

Large-scale climate data are derived from the ENSEM-

BLES project (http://ensemblesrt3.dmi.dk/) for the period

from 1971 to 2099. The time slice from 1971 to 2000 is used

as present climate while the period 2070 to 2099 serves as

the future scenario. Surface air temperature and precipitation

were extracted from the RCM output.

3 Models and methods

An ensemble of downscaled and bias-corrected climate sce-

narios is used to drive a hydrological model in order to sim-

ulate runoff for present and future time horizons. The pro-

jections of future climate are produced by three different

GCMs, which are dynamically downscaled by three differ-

ent RCMs and subsequently bias-corrected in three differ-

ent ways. Uncertainty originating from (i) GCM, (ii) RCM,

(iii) bias-correction, and (iv) hydrological model parameter-

ization is systematically assessed by varying the modelling

component under focus, while holding others constant. For

example, in order to assess uncertainty related to the GCM,

the three GCMs are varied while the remaining model chain

consists of a fixed RCM, a fixed bias-correction technique

and a fixed hydrological model parameter set. Differences

between model outputs provide an estimate of the uncertainty

originating from each modelling component. Figure 2 gives

an overview of the approach and the combinations of models

used to assess each source of uncertainty.

3.1 GCMs

Three GCMs, the Max Planck Institute for Meteorology

ECHAM5 model (Roeckner et al., 2006), the Met Office

Hadley Centre for Climate Prediction and Research HadCM3

(Johns et al., 2003; Jungclaus et al., 2006) and the Bergen

Climate Model BCM (Furevik et al., 2003) are used. From

the HadCM3 model, the low sensitive member (HadCM3Q3)

is considered. All models are forced with the Special Re-

port on Emission (SRES) A1B scenario (Nakicenovic et al.,

2000), which can be considered as mid-range scenario in

terms of greenhouse gas emissions.

3.2 RCMs

The RCMs used are RCA (Kjellström et al., 2005), REMO

(Jacob, 2001, Jacob et al., 2007) and RACMO (Lenderink et

al., 2003). The output of these models has a spatial resolu-

tion of about 25 km (0.22◦). Figure 2 gives an overview of

the RCMs under study and their driving GCMs. The RCA

model is driven by all of the three different GCMs, while

the REMO and RACMO models are only forced with the

ECHAM5 model.

www.hydrol-earth-syst-sci.net/16/4343/2012/ Hydrol. Earth Syst. Sci., 16, 4343–4360, 2012
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Fig. 2. Modelling chains used to assess (a) GCM uncertainty, (b) RCM uncertainty, (c) bias-correction uncertainty and (d) hydrological

model parameter uncertainty.

3.3 Bias-correction techniques

In order to correct RCM output for systematic biases, three

different bias-correction techniques are applied: the delta

change method (delta), local scaling (scal), and quantile-

quantile (QQ) mapping. All methods depend on establishing

an empirical relationship between the RCM control simula-

tion (1971–2000) and observations (1971–2000), for each of

the stations shown in Fig. 1. Subsequently, the same rela-

tionship is applied when adjusting the scenario simulation

(2070–2099). The methods are based on the fundamental as-

sumption that the empirical relationship derived from present

climate conditions is also valid for the future scenario (e.g.

Wilby et al., 2004).

The single RCM grid box (resolution of 25 × 25 km) over-

lying the target station is selected for the bias-correction

of temperature and precipitation. The bias-correction tech-

niques are then applied separately for each pair of grid

and station values. For temperature, the bias-correction is

only applied to data of the station at Holzgau, the reference

station. In order to differentiate temperature in the catch-

ment vertically, fixed monthly temperature lapse rates de-

rived from observed data are used. The application of ob-

served lapse rates is necessary because mean monthly tem-

perature lapse rates as simulated by the RCMs show large

systematic biases. For example, Kotlarski et al. (2011) evalu-

ated temperature lapse rates simulated by the RCM COSMO-

CLM over the Alps. Deviations from the observed lapse rate

of ∼ 0.15 ◦C per 100 m were reported, which would result in

large temperature biases at higher elevations.

However, Gardner et al. (2009) and Minder et al. (2010)

show that the assumption of a constant surface lapse rate (e.g.

−0.65 ◦C per 100 m) is questionable and recommend the ap-

plication of temporally variable lapse rates. Thus, we derive

monthly varying temperature lapse rates based on observed

data by regressing the mean monthly temperature of the cor-

responding stations against their elevation. The application

of monthly constant lapse rates assumes that the lapse rates

will not change in the future. However, this is a questionable

(e.g. Kotlarski et al., 2011) but necessary assumption when

studying climate change impacts in a complex Alpine catch-

ment where steep temperature gradients are not properly rep-

resented by RCMs.

We selected two temperature stations (Holzgau

(1080 m a.s.l.) and Zugspitze (2960 m a.s.l.), see Fig. 1)

covering the time period from 1971–2000 to derive monthly

varying surface lapse rates. In order to assess the spatial

representativeness of the calculated lapse rates, we compared

them with lapse rates calculated from a number of additional

stations, which cover a shorter time period (1985–2000).

Figure 3 confirms that the lapse rate calculations based on

the two temperature stations are broadly representative for

the time period 1985–2000. Only between July and October

does the estimation give stronger lapse rates compared to
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derived from two and seven stations.

the calculation based on the seven stations. However, as

most of the snow is already melted away in these months,

the differences in the lapse rate calculations may not signif-

icantly affect runoff simulations. The monthly lapse rates

based on the two stations show strong seasonal variations

with a minimum during June at −0.66 ◦C per 100 m and a

maximum in January at −0.34 ◦C per 100 m, based on the

years 1971 to 2000. Similar lapse rates are also reported by

Prömmel et al. (2010) for other station pairs in the Alps.

3.3.1 Delta change method

Due to its simplicity, the “delta change” or “change fac-

tor” method is one of the most widely applied downscaling

techniques in climate change impact assessments (e.g. Prud-

homme et al., 2002; Wilby and Harris, 2006; Minville et al.,

2008; Dobler et al., 2010). Observed temperature and precip-

itation series are altered with delta change factors to obtain

future climate scenarios. The change factors are derived from

RCM data as the mean monthly change between the control

and future simulations and are additive for temperature and

multiplicative for precipitation. Note that the basic method

accounts for shifts in mean and ignores changes in variabil-

ity (Fowler et al., 2007). The number of days with precip-

itation does not change between the reference and scenario

simulations.

3.3.2 Local scaling

The second method is local scaling, following the approach

of Widmann et al. (2003) and others (e.g. Salathé, 2005;

Graham et al., 2007; Stoll et al., 2011). Local scaling is a

straightforward approach, as it preserves the dynamic charac-

teristics of the scenario simulation. Daily RCM precipitation

at each grid point is multiplied by a monthly factor, which

is derived from the quotient between the precipitation simu-

lated by the RCM for the reference period and the precipita-

tion observed at each site. The same factor is then applied to

the RCM scenario data. For temperature, an additive adjust-

ment instead of a multiplicative is used. In this method, it is

possible for the future precipitation frequency to differ from

the control period.

Bias-correction of the variance of monthly temperature

was also undertaken following the method of Chen et

al. (2011a). This is necessary as large biases in the variance

of monthly temperatures are found in RCM output, which

could significantly affect modelled snow accumulation and

melt. Thus, the standard deviation of the RCM temperature

is corrected by the ratio between the standard deviation of

the temperature simulated by the RCM for the reference pe-

riod and the standard deviation of observed temperature. The

same correction factor is then applied to the future scenario

data.

3.3.3 Quantile-quantile mapping

The third technique is the quantile-quantile (QQ) mapping

approach, as employed in a growing number of studies (e.g.

Bóe et al., 2007; Déqué, 2007, Quintanta-Seguı́ et al., 2010;

Hagemann et al., 2011; Themeßl et al., 2012). QQ mapping is

based on adjusting quantiles of RCM output to observations

in order to eliminate systematic errors in RCM output.

First, cumulative distribution functions (CDFs) of ob-

served and RCM simulated data for the control period are

used to calculate transfer functions for each percentile. A

moving window of 31 days centered on the day under in-

vestigation is used to construct the CDFs. It should be noted

that the use of a moving window approach, compared to a

monthly calibration as presented in Sects. 3.3.1 and 3.3.2, en-

sures that no abrupt changes occur at the boundaries of each

month. The transfer functions are determined for each day of

the year with the two percentiles related by linear interpola-

tion. Note, that after this step, the corrected variables of the

control simulations have the same CDF as observations.

Second, simulated variables for the present climate are

bias-corrected using the transfer function. Finally, the same

transfer function is applied to the future scenario. Values

smaller than the observed minimum or greater than the maxi-

mum are assumed to be the lowest and highest percentiles, re-

spectively. For temperature, we followed the study of Beyene

et al. (2010) and removed the linear warming trend before ap-

plying the QQ technique and re-imposed it afterwards. Due

to a significant temperature increase in the future scenario,

the CDF of future temperature is very different from the CDF

of simulated present temperature. This would lead to many

temperature corrections outside the calibration range, and

may significantly alter the climate change signal. Removing

the linear trend before applying the QQ technique helps to

reduce the number of extrapolations.
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3.4 Hydrological model

In order to simulate hydrological conditions for present

and future climate, the semi-distributed hydrological model

HQsim (Kleindienst, 1996) is applied. HQsim has been

tested extensively for Alpine watersheds (e.g. Dobler et al.,

2010; Achleitner et al., 2011) and has already been used to

study climate change impacts on the runoff regime (Dobler

et al., 2010) and flood hazard potential (Dobler et al., 2012)

of the Lech river.

In brief, HQsim is best described as a semi-distributed,

conceptual model. HQsim simulates all relevant processes

controlling runoff in mountain watersheds: snow accumula-

tion and melt, evapotranspiration, interception and infiltra-

tion. Evapotranspiration is simulated based on the concept of

Hamon’s potential evapotranspiration dependent on the wa-

ter availability (Federer and Lash, 1978). For a detailed de-

scription of the model see Achleitner et al. (2011) or Dobler

and Pappenberger (2012). The watershed is divided into hy-

drological response units (HRUs), which are defined as areas

with similar runoff characteristics (Flügel, 1997). The delin-

eation of HRUs is done on the basis of gridded layers of

altitude, soil and land use. Input to the hydrological model

includes daily temperatures for 100 m altitudinal belts and

daily precipitation for the stations shown in Fig. 1. Tempera-

tures for different altitudinal belts are calculated by applying

the lapse rates obtained from the two meteorological stations

(see Sect. 3.3). The model is run with a daily time step.

HQsim is specified by a number of global and local param-

eters, which must be adjusted during the calibration period.

Dobler and Pappenberger (2012) identified the most sensi-

tive parameters in the model. They found 17 parameters to be

sensitive for the simulation of runoff, which are considered

for calibration in this study. These parameters mainly control

snow and soil processes and are calibrated by maximizing the

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970).

The model is calibrated for the Lech watershed using flows

at the gauging station Lechaschau, for the years 1981 to

2000. Subsequently, the model is validated using the periods

1971 to 1980 and 2001 to 2005. Figure 4a gives an exam-

ple of the performance of HQsim for one year (1975) dur-

ing the validation period (red line). This is a fairly typical

hydrological year for the Lech catchment characterized by

snow melt-induced spring floods as well as floods during

the summer season, which were caused by heavy precipi-

tation events. Therefore, the year can be considered as be-

ing broadly representative. The seasonal cycle is simulated

well by the model, although a slight underestimation is found

from May to September (Fig. 4b). The exceedance probabil-

ity distrution (Fig. 4c) indicates a slight bias towards higher

runoff values. However, in general the figures indicate that

the model performs fairly well in this complex Alpine wa-

tershed. For the calibration period, the NSE is 0.85 and for

the two validation periods 0.83 (1971–1980) and 0.87 (2001–

2005), respectively. The better performance of the model

in the second validation period (2001–2005) is mainly due

to two extreme flood events (2002 and 2005), which are

Hydrol. Earth Syst. Sci., 16, 4343–4360, 2012 www.hydrol-earth-syst-sci.net/16/4343/2012/
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Table 1. Parameters and their ranges used for uncertainty analysis. Values in brackets indicate the range of the 20 parameter sets.

Parameter Range Unit Description

meltfunc max 1.0–6.0 mm ◦C−1 d−1 maximum degree day factor

(1.1–1.6)

s0 depth 500–2500 mm depth of unsaturated soil zone

(575–2477) of soil type 0 (lithosol)

s2 depth 500–2500 mm depth of unsaturated soil zone

(910–2283) of soil type 2 (rendzina)

s2 m 0.1–0.9 Mualem-van Genuchten parameter m

(0.2–0.4) for soil type 2 (rendzina)

s2 drain 0–0.3 ratio of the outflow of the unsaturated

(0.1–0.3) soil zone, which comes to base flow

storage (soil type 2 – rendzina)

simulated very well by the model. We found no significant

changes in the model performance during the whole simula-

tion period 1971–2005.

3.5 Hydrological model parameters

Of the 17 parameters selected for calibration, Dobler and

Pappenberger (2012) classified five as being highly sensitive

(Table 1). Of those five parameters, one relates to snow melt-

ing (meltfunc max) and the remaining four to soil properties.

In order to account for uncertainty related to the choice of

hydrological model parameters, a Monte Carlo framework

is applied. Five thousand parameter sets are generated ran-

domly from the parameter ranges in Table 1, assuming a

uniform distribution. The 20 parameter sets with the high-

est NSE are then selected to evaluate the effects of different

parameter sets on projected climate impacts.

As can be seen in Table 1, for the parameters s0 depth,

s2 depth and s2 drain, good simulations can be obtained with

values varying over wide ranges. This indicates that values of

these parameters have little influence. Other parameters such

as meltfunc max and s2 m only produce acceptable simula-

tions when concentrated within certain intervals.

Figure 4a illustrates an example for the range of the simu-

lations obtained from the 20 different model parameter sets.

The NSE for these 20 simulations varies between 0.84 and

0.85, based on the years 1971–2000. Thus, different sets of

model parameters yield the same functional output, consis-

tent with the concept of model equifinality (Beven and Freer,

2001).

In order to evaluate the effects of different hydrological

model parameter sets on the hydrological projections, rela-

tive changes between the present and future runoff simula-

tions are calculated for each parameter set. As can be seen

in Fig. 2, the modelling chain consisting of the ECHAM5

model, the RACMO model and the delta change approach is

used as a basis for this assessment.

3.6 Uncertainty measure

In order to determine the contribution of the different un-

certainty sources, the spread (percentage points) between the

different simulations is used. This measure has already been

applied in a wide range of studies, e.g. Kay et al. (2009). The

advantages of this measure are that (i) it is easy to implement

and (ii) the results are easy to interpret. However, the disad-

vantages are that (i) information from data points between the

minimum and maximum values is not taken into account; (ii)

interactions between the different components are not con-

sidered; as well as (iii) the ranges are not normalized by the

number of samples, which makes it difficult to compare the

different uncertainty sources. As an alternative to the uncer-

tainty measure presented here, Finger et al. (2012) performed

an analysis of variance (ANOVA) to partition the uncertainty

into different components.

4 Results

Section 4.1 presents the performance of the bias-corrected

control simulations, while Sect. 4.2 shows temperature and

precipitation projections obtained from the spectrum of

model combinations. Finally, uncertainties in the hydrolog-

ical projections resulting from different sources are assessed.

4.1 Performance for present climate conditions

Figure 5 shows HQsim simulations driven by observed me-

teorological data (denoted as the reference simulation) and

bias-corrected RCM data for the control period. Note that

HQsim simulations forced with bias-corrected data are com-

pared with the reference simulation, instead of observed

runoff. This is to separate model biases in the HQsim simula-

tions from those originating from the bias-corrected climate

data (e.g. Lenderink et al., 2007; Minville et al., 2008).
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Fig. 5. Runoff from HQsim simulations using observed station data (reference simulation) and the different modelling chains showing (a)

mean daily runoff, (b) mean seasonal runoff and (c) the mean seasonal 90 %-quantile of daily runoff.

The control simulations are bias-corrected by applying

the local scaling and the QQ mapping approaches. Note

that in case of the delta change approach the reference

simulation is regarded as control simulation. Figure 5a

shows a relatively good agreement between the reference

simulation and the six control simulations. The seasonal

cycle is captured very well, indicating that the applied

model chains perform well in this complex catchment.

The clearest differences occur in the winter season when

some of the control simulations are slightly lower than

the reference simulation (see Fig. 5b). Biases in winter

range from −36 % (ECHAM5 REMO SCAL) to −10 %

(HadCM3Q3 RCA SCAL). Comparatively small biases are

found in summer, ranging from −7 % (BCM RCA SCAL)

to +4 % (ECHAM5 RACMO QQ) and from −9 %

(REMO RCA SCAL) to −3 % (ECHAM5 RACMO QQ)

in autumn.

In general, there is a tendency towards underestimating

seasonal runoff, especially for the simulations based on the

local scaling technique. This could be the result of possible

errors in the wet-day frequency, which are not accounted for

in the local scaling approach. The bias-corrected control sim-

ulations contain too many low precipitation (“drizzle”) days,

which may cause higher evapotranspiration and hence, lead

to an underestimation of seasonal runoff.

For the 90 %-quantile of daily runoff, almost all con-

trol simulations slightly underestimate runoff (see Fig. 5c).

The largest biases are found during winter, with de-

viations ranging from −44 % (ECHAM5 REMO SCAL)

to −19 % (HadCM3Q3 RCA SCAL). During summer, in-

stead, a relatively good agreement between observa-

tion and the control simulation is obtained, with bi-

ases ranging from −9 % (ECHAM5 RCA SCAL) to +6 %

(ECHAM5 RACMO QQ).

4.2 Uncertainty in climate projections

In the next step, temperature and precipitation scenarios are

compared to assess the spread of uncertainty originating from

the choice of the (i) GCM, (ii) RCM and (iii) bias-correction

approach. Note that for the delta change approach the climate

change signal is calculated between the future scenario and

the control simulations of the RCM, while for local scaling

and QQ mapping it is derived from the bias-corrected RCM

control and scenario simulations.

Figure 6 shows temperature and precipitation scenarios for

the different model chains. The differences among the pro-

jections provide an estimate of the uncertainty involved in

the simulations. GCM inter-model variability is found to be

very large for both temperature and precipitation projections.
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Fig. 6. Mean monthly changes in temperature (T ) and precipitation (P ) between the reference period (1971–2000) and the future scenario

(2070–2099). Uncertainty originating from GCM, RCM and bias-correction is illustrated. Temperature and precipitation data are averaged

across the catchment.

Most of the simulations show warming between 2.0 ◦C and

3.5 ◦C for the period 2070 to 2099, compared to the refer-

ence period (1971 to 2000). The largest increase of 4.5 ◦C

originates from the ECHAM5 scenario in July, whereas the

lowest increase of +1.3 ◦C is obtained from BCM scenario

in October. Temperature scenarios vary among the different

GCMs by 0.3 ◦C in January and by 2.1 ◦C in November. No

clear temporal pattern in the temperature change is evident,

but precipitation shows strong decreases during summer and

increases during winter and spring. These results are con-

sistent with findings obtained from other studies in the Alps

(e.g. Solomon et al., 2007; Smiatek et al., 2009; Kjellström et

al., 2011). The largest decrease is in the ECHAM5 scenario

with −28 % in July, and largest increase is simulated by the

BCM scenario with +35 % in December. The spread of the

precipitation scenarios is similar throughout the year.

During winter and spring, the spread of uncertainty in the

temperature projections resulting from the RCM structure is

similar to that originating from the GCM structure, while it

is lower during summer and autumn. The range of uncer-

tainty in the projections of precipitation is slightly smaller

for the RCMs than for the GCMs. For mean monthly tem-

perature, the inter-model variability ranges between 0.3 ◦C in

July and 1.8 ◦C in April. Generally, the RCMs produce more

similar temporal patterns for both variables than the GCMs.

For precipitation, the largest deviations among the different

simulations are found in September, while the lowest differ-

ences occur in April. These results are in partial disagree-

ment with previous studies. Results from the PRUDENCE

project (10 RCMs forced by 1 GCM; Christensen and Chris-

tensen, 2007) have shown that the largest uncertainty over

central European areas (Jacob et al., 2007) and catchments

(Rhine, Danube; Hagemann and Jacob, 2007) occurs during

the summer. Here, the regional climate is less constrained

by the boundary forcing due the importance of local scale

processes, such as convection and land-atmosphere interac-

tions. For precipitation, our results agree with those men-

tioned above, except for July, where the limited sample size

of 3 RCMs likely leads to an underestimation of RCM uncer-

tainty. For temperature, the largest RCM uncertainty occurs

from March to June, while during the summer months of July

and August the RCM uncertainty is rather low. This is likely

caused by the mountainous location of the watershed where

snow-related processes, especially the snow albedo feedback
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Fig. 7. (a) Uncertainty in the projection of mean annual runoff (Q) resulting from GCM, RCM, bias-correction and hydrological model

parameters. (b) Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum

and maximum values are plotted.

(see, e.g. Hall and Qu, 2006), have a dominant impact on the

warming signal during the snow melt period in spring. Model

differences in the representation of these processes lead to

different strengths in the snow albedo feedback and, thus, to

larger uncertainties in the projected warming signal.

Uncertainty related to the choice of the bias-correction ap-

proach is comparatively small. However, it must be noted that

two out of three bias-correction techniques (local scaling and

the delta change approach) are directly calibrated on monthly

values. Thus, the climate change signals obtained by these

methods are the same when focusing on mean monthly pro-

jections. The QQ mapping approach (which has not been cal-

ibrated on monthly values) generates climate change signals

comparable to the delta change and local scaling technique.

But, it can be seen, that the QQ mapping approach modifies

the climate change signal. Similar findings are reported by

Hagemann et al. (2011) and Themeßl et al. (2012).

The spread of the temperature projections ranges up to

0.3 ◦C in April and May. The lowest difference between the

precipitation projections occurs in November and the highest

in May. Overall, Fig. 6 shows that uncertainty related to the

bias-correction approach is comparatively small when focus-

ing on mean monthly values.

4.3 Uncertainty in hydrological projections

4.3.1 Mean annual runoff

In the next step, uncertainty in projected mean annual runoff

is evaluated. Figure 7 shows the spread of uncertainty orig-

inating from (i) GCM, (ii) RCM, (iii) bias-correction, and

(iv) hydrological model parameters. All projections indicate

a slight downward trend in mean annual runoff.

Projections based on different GCMs show modest vari-

ations, ranging from −17 % (HadCM3Q3 RCA SCAL) to

−8 % (BCM RCA SCAL). Uncertainty originating from

the RCMs is slightly larger, with projected changes rang-

ing between −17 % (HadCM3Q3 RCA SCAL) and −4 %

(ECHAM5 RACMO SCAL), while uncertainty related to

the bias-correction step is smaller than GCM and RCM un-

certainty. The hydrological model parameter sets have rela-

tively little effect on the uncertainty.

It is interesting to note that although RCM uncertainty is

found to be less than GCM uncertainty for temperature and

precipitation (see Sect. 4.2), it is the most important source

of uncertainty when focusing on projections of mean annual

runoff. This suggests that the relationship between climate

forcing and hydrological response is highly non-linear, con-

sistent with the findings of Arnell (2011).

4.3.2 Mean monthly runoff

Figure 8 illustrates uncertainty in the projections of mean

monthly runoff originating from different sources. All sim-

ulations indicate considerable increases in mean monthly

runoff from December to April, and decreases from June

to August. In other months no clear tendency towards an

increase or decrease are found. Larger uncertainties in the

hydrological projections are found during winter compared

with summer. However, it has to be noted that the results

are presented in relative terms, whereas comparatively large

percentage differences during winter translate into relatively

small changes in absolute discharges.

On average, the GCM structure has the largest effects on

the model output. Relatively large deviations are found be-

tween the three different simulations from January to May
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Fig. 8. (a) Uncertainty in the projections of mean monthly runoff (Q) resulting from GCM, RCM, bias-correction and hydrological model

parameters. (b) Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum
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and in November. This is due to the fact that the BCM-driven

simulation (Fig. 6) shows a smaller increase in temperature

compared to the other two GCMs in these months. Snow

melt-dominated rivers like the Lech are particularly sensitive

to changes in temperature (e.g. Dobler et al., 2010), as this

determines whether precipitation falls as snow or rain. Thus,

high uncertainty in the temperature projections during these

months results in high uncertainty in runoff projections.

Uncertainty originating from the RCM structure is in gen-

eral slightly smaller than those related to the GCM struc-

ture. However, during winter relatively high uncertainty is

obtained, due to the spread of uncertainty in the tempera-

ture projections in these months (Fig. 6). Uncertainty result-

ing from the bias-correction approach is smaller than uncer-

tainty related to GCM and RCM structure, although compar-

atively large differences among the three simulations are ob-

tained for some months. Note that although only small differ-

ences in the forcing projections are found (Fig. 6), relatively

large differences in the hydrological simulations are evident.
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Again, this indicates that there is a non-linear hydrological

response to the climate forcing (Arnell, 2011).

Uncertainty resulting from hydrological model parame-

ters has generally less influence on projected changes in

monthly runoff, compared to the other uncertainty sources.

The largest uncertainty range due to hydrological model pa-

rameters is found during winter and amounts to about 20 %,

while during summer only a small spread of uncertainty is

obtained. As can be seen in Fig. 4a, model skill during low

flow periods in winter is comparatively small, arising from

a poorer representation of base flow than surface runoff and

interflow in the model structure. Hence, relatively large bi-

ases of the hydrological model cause relatively high projec-

tion uncertainties. However, it should be pointed out that the

uncertainties during winter are comparatively small in abso-

lute terms. Nevertheless, these results demonstrate that the

hydrological model parameterization varies across different

hydrological conditions.

4.3.3 10 % and 1 % flow exceedance probabilities

Finally, uncertainty in the 10 % and 1 % flow ex-

ceedance probabilities is assessed. Figure 9 shows the

spread of uncertainty in the whole exceedance probabil-

ity distribution resulting from different sources. Except for

the ECHAM5 RACMO QQ and ECHAM5 RACMO SCAL

scenarios, all show a decrease in mean high flows

by the end of this century. The spread of results

range from −27 % (HadCM3Q3 RCA SCAL) to −9 %

(ECHAM5 RACMO QQ) for flows exceeded 10 % of the

time and from −18 % (HadCM3Q3 RCA SCAL) to +15 %

(ECHAM5 RACMO QQ) for flows exceeded 1 % of the

time. In general, there are large variations across the spec-

trum of the different projections, stressing the importance

of using different model combinations when assessing the

spread of uncertainty.

Figure 9a indicates that the GCM and RCM structures

have significant effects on the projections of high flows.

While the magnitude of GCM uncertainty is similar for dif-

ferent exceedance probabilities, uncertainty related to the

RCM and the bias-correction approach increases with the

rarity of the hydrological event. For example, GCM, RCM

and bias-correction uncertainty are the main sources of un-

certainty for flows exceeded 10 % of the time, while RCM

and bias-correction uncertainty are the most important un-

certainty source for flows exceeded 1 % of the time. As can

be seen in Fig. 9, the spread of uncertainty in the projec-

tions of mean high flows originating from the RCM and the

bias-correction approach is very large. The projections even

suggest different sign changes. This clearly indicates that the

RCM and the bias-correction approach play a significant role

when assessing climate change impacts on hydrological ex-

tremes (at least in this catchment).

When comparing the ECHAM5 RACMO DELTA and

ECHAM5 RACMO SCAL scenarios, comparatively high

uncertainty for the highest flows are obtained. Although the

methods generate the same monthly temperature and precipi-

tation scenarios (Fig. 6), the results are very different for high

flows. The delta change approach only considers changes in

the mean, whereas the local scaling approach also changes

the variability. However, as changes in climate variability are

at least as important as changes in the mean when focus-

ing on extremes (Katz and Brown, 1992), it is not surprising

that both methods differ in the simulation of high flows. This

result echoes the findings of Lenderink et al. (2007), who

compared runoff in the river Rhine using two different bias-

correction techniques. Although similar results were found

in mean summer and mean winter runoff, large differences

for extreme flows during winter were reported.

In contrast to the delta change and local scaling tech-

niques, the QQ mapping approach explicitly accounts for

changes in both precipitation and temperature extremes. The-

meßl et al. (2010) showed that the technique performs well

for higher quantiles of the precipitation distribution. Thus,

the QQ mapping approach appears to be more reliable when

focusing on extremes than the delta change and local scaling

approaches. Uncertainty related to hydrological model pa-

rameters has only a minor influence on projections of high

flows, compared to the other sources discussed above. This

reflects the fact that the objective function (NSE) used for

HQsim calibration favours the reproduction of high flows.

5 Discussion and conclusion

Most climate change impact studies are based on a modelling

chain consisting of (i) GCMs, (ii) RCMs, (iii) bias-correction

techniques, and (iv) an impact model such as a hydrological

model. Although a large number of studies are based on this

kind of approach, relatively little attention has been given to

assessing uncertainty in the hydrological projections. While

some studies focus on one source of uncertainty, such as

GCM structure (Maurer and Duffy, 2005) or the downscaling

approach (e.g. Quintana-Seguı́ et al., 2010), fewer attempts

have been made to look at multiple sources (e.g. Wilby and

Harris, 2006; Kay et al., 2009; Prudhomme et al., 2009; Chen

et al., 2011c). This study explores uncertainty resulting from

different sources by applying a multi-model ensemble. The

Lech watershed (∼ 1000 km2), located in the Northern Lime-

stone Alps of Austria, was selected as the study area.

Our results generally show that hydrological projections

are subject to considerable uncertainty. The size of the im-

pact range among the spectrum of scenarios spans 90 % in

some months (see Fig. 8b). Sometimes the models even show

different sign changes. When focusing on flows exceeded

1 % of the time, for instance, some models indicate a de-

crease of −18 % while others show an increase of +15 %.

This demonstrates that the use of multi-model ensembles is

a necessary prerequisite for quantifying climate change im-

pacts at regional or local scales. Results from studies based
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Fig. 9. (a) Uncertainty in flow exceedance probabilities resulting from GCM, RCM, bias-correction and hydrological model parameters. (b)
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values are plotted.

on a single GCM, should thus be interpreted with extreme

caution (Chen et al., 2011c; Harding et al., 2012).

Overall, our results confirm that GCM structure is an im-

portant source of uncertainty in climate change impact stud-

ies on a regional scale. The wide range of uncertainty in the

hydrological projections is mainly the result of high uncer-

tainty in the forcing projections. This finding agrees with ear-

lier work (e.g. Wilby and Harris, 2006; Kay et al., 2009; Chen

et al., 2011c). Uncertainty related to the choice of RCMs is

found to be of comparable magnitude. The effect of the bias-

correction approach is found to increase with the rarity of the

hydrological event: there is less influence on the simulation

of average hydrological conditions compared with extremes.

Hydrological model parameter uncertainty is found to be less

important compared to the other factors.

For practical purposes most assessments cannot apply

multi-model ensembles as herein, so effort is best focused

on using different GCMs and RCMs when assessing the

main spread of uncertainty in hydrological projections. How-

ever, if information is needed on extremes, different bias-

correction techniques should also be included. Simple bias-

correction techniques such as the delta change method and

local scaling are only calibrated on monthly data and do not

take into account changes in the extremes. Thus, their appli-

cability should be limited to mean values. The delta change

method, even though it has been regularly used in the past, is

identified as insufficient to study extremes. Moreover, direct
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use of the RCM output as in local scaling and the QQ ap-

proach is more straightforward (plus changes in variability

are also considered unlike in the delta change approach). In

contrast, the delta change method is very easy to implement

and it provides reliable estimates for mean conditions.

The use of more sophisticated methods may also increase

the data requirements for bias-correction (e.g. Haerter et al.,

2011), even though the uncertainty introduced by the method

may be reduced. However, the bias-correction approach se-

lected to simulate extremes should be specially designed to

handle extreme events, such as the QQ mapping approach, as

it explicitly considers possible changes in extremes. Themeßl

et al. (2010) compared several empirical-statistical down-

scaling and error correction methods for daily precipitation

downscaling over the Alpine region. The QQ mapping ap-

proach showed the best performance in reducing error char-

acteristics, particularly at high quantiles. Thus, the method

seems to be more reliable when focusing on extremes than

other bias-correction techniques.

Nevertheless, all of these approaches have one main lim-

itation. In mountain watersheds, the combination of temper-

ature and precipitation is crucial, as it determines whether

precipitation falls as rain or snow. The bias-correction tech-

niques adjust both variables independently, which may de-

stroy the physical relationship between the two variables

(e.g. Boé et al., 2007; Maraun et al., 2010; Hagemann et al.,

2011; Themeßl et al., 2012). Further research is needed to de-

termine the extent to which these inter-variable relationships

matter when evaluating climate change impacts over annual

and multi-decadal time scales.

The results of this study show that the hydrological model

parameterization is generally of low significance. Recently,

Vaze et al. (2010) reported that models calibrated over a

long time period can generally be applied in climate impact

studies, when future mean annual rainfall is not more than

15 % drier or 20 % wetter than the values observed in the

calibration period. Also in this study a relatively long cali-

bration period (20 yr) was used, which increases the chance

of sampling-varied hydrological conditions and thereby may

result in more generalized parameters (Merz et al., 2009).

Hence, with these parameter sets, a wider range of hydrolog-

ical conditions can be simulated well, maybe even conditions

which have not been observed during the calibration period

(Merz et al., 2009). These results are in disagreement with

the findings presented by Merz et al. (2011) and Coron et

al. (2012), who stated that the transfer of model parameters

in time may introduce a significant bias in the hydrological

simulations. However, such findings strongly depend on the

catchment under investigation as well as the applied mod-

els and thus, are difficult to generalize. Decisively more re-

search is needed to test the assumption of model transferabil-

ity. In addition to the uncertainty sources investigated in this

study, other components may also affect the model output.

For example, Bae et al. (2011) demonstrated that the hydro-

logical model structure has a significant impact on projected

changes. Future studies should also take into consideration

this source of uncertainty.

Quantifying the distribution of temperature is particularly

important for mountain hydrology. Model errors resulting

from the assumed spatio-temporal constant lapse rate are

widely unknown, but may be of high significance in moun-

tain regions. Minder et al. (2010), for instance, analysed the

consequences of lapse rate characterization for hydrological

projections in the Cascade Mountains and found consider-

able differences in runoff projections when using different

lapse rate assumptions. However, the sparse distribution of

temperature stations, especially at higher elevation zones,

and the influence of local climate effects, makes it very dif-

ficult to resolve temperature variability in mountain regions

(Minder et al., 2010). Nevertheless, a better understanding of

the spatio-temporal dynamics of the temperature lapse rate

is essential in marginal situations between snow/ice accumu-

lation, melting, and bare ground. Additionally, field experi-

ments may help to better constrain the parameters of HQsim

and to reduce uncertainty due to model parameterization.

Despite the large range of uncertainty in the hydrologi-

cal projections, some robust findings emerge from this study.

Mean runoff during winter, for example, is projected to in-

crease substantially in all simulations. In this case, the cli-

mate change signal is by far larger than the uncertainty as-

sociated with the projections. These findings suggest some

confidence in hydrological projections on a regional local

scale, whilst acknowledging the small suite of GCMs used.

For high flows, instead, no clear signals towards an increase

or a decrease were obtained.

It should also be noticed, that the results of this study

strongly depend on the study region and the models used.

Thus, the results can not be directly transferred to other

catchments or other models. Nevertheless, the study provides

important findings on the relative importance of different un-

certainty sources, which are essential for future impact stud-

ies.

The study has several limitations. Due to a relatively small

number of models and methods applied, only a limited esti-

mation of the overall uncertainty could be quantified. In order

to assess uncertainty originating from hydrological model

parameters, only 20 parameter sets were used. Considering

more parameters may result in a wider uncertainty range.

Also, the relatively low number of GCM-RCM combinations

as well as the selection of the ECHAM5 and RCA models

to be held constant when varying the other components will

understate the spread of uncertainty due to GCM and RCM

structure. This could lead to misleading impressions of the

relative significance of individual uncertainty sources (Kay

and Jones, 2012). However, very large ensembles of GCM-

RCM combinations are yet not available due to the associated

high computational demand (e.g. Kendon et al., 2010). More-

over, possible interactions between the different uncertainty

sources were neglected in this study.
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Finally, it should also be noted that even if we can char-

acterize all the components of uncertainty in climate change

impact assessments, we must not lose sight of the fact that

the present generation of GCMs exhibit large errors. Recent

work has highlighted considerable deficiencies in the rep-

resentation of precipitation (Stephens et al., 2010) and the

global atmospheric moisture balance (Liepert and Previdi,

2012). Therefore, we should always be circumspect about

just how much uncertainty can be characterized given the

flawed nature of the inputs to our studies. Future research

in Alpine basins should thus focus on the tractable elements

of uncertainty: especially those linked to snow accumulation

and melt processes.
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J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T.,

Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper,

W., Pitcher, H., Price, L., Raihi, K., Roehl, A., Rogner, H.-H.,

Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R.,

Rooijen, S. V., Victor, N., and Dadi, Z.: Emission Scenarios. A

Special Report of Working Group III of the Intergovernmental

Panel on Climate Change, Cambridge University press, Cam-

bridge, UK, 2000.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-

ceptional models 1: discussion of principles, J. Hydrol. 10, 282–

290, 1970.

Oreskes, N.: The Scientific Consensus on Climate Change, Science,

306, 1686, 2004.
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