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Quantifying Differential Privacy in Continuous
Data Release under Temporal Correlations

Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong

Abstract—Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ

traditional DP mechanisms (e.g., the Laplace mechanism) as primitives to continuously release private data for protecting privacy at

each time point (i.e., event-level privacy), which assume that the data at different time points are independent, or that adversaries do

not have knowledge of correlation between data. However, continuously generated data tend to be temporally correlated, and such

correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism

under temporal correlations. First, we analyze the privacy leakage of a DP mechanism under temporal correlation that can be modeled

using Markov Chain. Our analysis reveals that, the event-level privacy loss of a DP mechanism may increase over time. We call the

unexpected privacy loss temporal privacy leakage (TPL). Although TPL may increase over time, we find that its supremum may exist in

some cases. Second, we design efficient algorithms for calculating TPL. Third, we propose data releasing mechanisms that convert

any existing DP mechanism into one against TPL. Experiments confirm that our approach is efficient and effective.

Index Terms—Differential Privacy, Correlated data, Markov Model, Time series, Streaming data.

✦

1 INTRODUCTION

W ITH the development of IoT technology, vast amount
of temporal data generated by individuals are being

collected, such as trajectories and web page click streams.
The continual publication of statistics from these temporal
data has the potential for significant social benefits such as
disease surveillance , real-time traffic monitoring and web
mining. However, privacy concerns hinder the wider use
of these data. To this end, differential privacy under continual
observation [1] [2] [3] [4] [5] [6] [7] [8] has received increasing
attention because differential priavcy provides a rigorous
privacy guarantee. Intuitively, differential privacy (DP) [9]
ensures that the change of any single user’s data has a
“slight” (bounded in ǫ) impact on the change in outputs. The
parameter ǫ is defined to be a positive real number to control
the level of privacy guarantee. Larger values of ǫ result in
larger privacy leakage. However, most existing works on
differentially private continuous data release assume data
at different time points are independent, or attackers do
not have knowledge of correlation between data. Example 1
shows that temporal correlations may degrade the expected
privacy guarantee of a DP mechanism.

Example 1. Consider the scenario of continuous data release with
DP illustrated in Figure 1. A trusted server collects users’ loca-
tions at each time point in Figure 1(a) and tries to continuously
publish differentially private aggregates (i.e., the private counts
of people at each location). Suppose that each user appears at
only one location at each time point. According to the Laplace
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Fig. 1. Continuous Data Release with DP under Temporal Correlations.

mechanism [10], adding Lap(2/ǫ) noise1 to perturb each count
in Figure1(c) can achieve ǫ-DP at each time point. It is because the
modification of each cell (raw data) in Figure 1(a) affects at most
two cells (true counts) in Figure 1(c), i.e., the global sensitivity
is 2. However, it may not be true under the existence of temporal
correlations. For example, due to the nature of road networks, user
may have a particular mobility pattern such as “always arriving
at loc5 after visiting loc4” (shown in Figure 1(b)), leading to the
patterns illustrated in solid lines of Figure 1(a)(c). Such temporal
correlation can be represented as Pr(lt = loc5|lt−1 = loc4) = 1

where lt is the location of a user at time t. In this case, adding
Lap(2/ǫ) noise only achieves 2ǫ-DP because the change of one
cell in Figure 1(a) may affect four cells in Figure 1(c) in the worst
case, i.e., the global sensitivity is 4.

Few studies in the literature investigated such potential
privacy loss of event-level ǫ-DP under temporal correlations
as shown in Example 1. A direct method (without finely
utilizing the probability of correlation) involves amplifying
the perturbation in terms of group differential privacy [11] [10],
i.e., protecting the correlated data as a group. In Example 1,
for temporal correlation Pr(lt = loc5|lt−1 = loc4) = 1, we can

1. Lap(b) denotes a Laplace distribution with variance 2b2.
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protect the counts of loc4 at time t − 1 and loc5 at time t in
a group by increasing the scale of the perturbation (using
Lap(4/ǫ)) at each time point. However, this technique is
not suitable for probabilistic correlations to finely prevent
privacy leakage and may over-perturb the data as a result.
For example, regardless of whether Pr(lt = loci|lt−1 = loci) is
1 or 0.1, it always protects the correlated data in a bundle.

Although a few studies investigated the issue of dif-
ferential privacy under probabilistic correlations, existing
works are not appropriate for continuous data release because
of two reasons. First, most of existing works focused on
correlations between users (i.e., user-user correlation) rather
than correlation between data at different time points (i.e.,
temporal correlations). Yang et al. [12] proposed Bayesian
differential privacy, which measures the privacy leakage
under probabilistic correlations between users using a Gaus-
sian Markov Random Field without taking time factor into
account. Liu et al. [13] proposed dependent differential pri-
vacy by introducing two parameters of dependence size and
probabilistic dependence relationship between tuples. It is not
clear whether we can specify these parameters for tempo-
rally correlated data since it is not commonly used prob-
abilistic model. A concurrent work [14] proposed Markov
Quilt Mechanism when data correlation is represented by a
Bayesian Network (BN). Although BN is possible to model
both user-user correlation (when the nodes in BN are indi-
viduals) and temporal correlation (when the nodes in BN are
individual data at different time points), [17] assumes the
private data are released only at one time. This is the second
major difference between our work and all above works:
they focus on the setting of “one-shot” data release, which
means the private data are released only at one time. To
the best of our knowledge, no study reported the dynamical
change of the privacy guarantee in continuous data release.

In this work, we call the adversary with knowledge of
probabilistic temporal correlations adversaryT . Rigorously
quantifying and bounding the privacy leakage against
adversaryT in continuous data release remains a challenge.
Therefore, our goal is to solve the following problems:

• How do we analyze the privacy loss of DP mechanisms
against adversaryT ? (Section 3)

• How do we calculate such privacy loss efficiently?
(Section 4)

• How do we bound such privacy loss in continuous
data release? (Section 5)

1.1 Contributions

Our contributions are summarized as follows.
First, we show that the privacy guarantee of data release

at a single time is not on its own or static; instead, due to the
existence of temporal correlation, it may be increasing with
previous release and even future release. We first adopt a
commonly used model Markov Chain to describe temporal
correlations between data at different time points, which
includes backward and forward correlations, i.e., Pr(lt−1i |lti)
and Pr(lti |lt−1i ) where lti denotes the value (e.g., location)
of user i at time t. We then define Temporal Privacy Leakage
(TPL) as the privacy loss of a DP mechanism at time t against
adversaryT who has knowledge of the above Markov model
and observes the continuous data release. We show that

TPL includes two parts: Backward Privacy Leakage (BPL) and
Forward Privacy leakage (FPL). Intuitively, BPL at time t is
affected by previously releases that are from time 1 to t− 1,
and FPL at time t will be affected by future releases that
are from time t + 1 to the end of release. We define α-
differential privacy under temporal correlation, denoted as α-
DPT , to formalize the privacy guarantee of a DP mechanism
against adversaryT , which implies the temporal privacy
leakage should be bounded in α. We prove a new form of
sequential composition theorem for α-DPT , which reveals
interesting connections among event-level DP, w-event DP
[7] and user-level DP [4] [5].

Second, we design efficient algorithms to calculate TPL
under given backward and forward temporal correlations.
Our idea is to transform such calculation into finding an
optimal solution of a Linear-Fractional Programming problem.
This type of optimization can be solved by well-studied
methods, e.g., simplex algorithm, in exponential time. By
exploiting the constraints of this problem, we propose fast
algorithms to obtain the optimal solution without directly
solving the problem. Experiments show our algorithms out-
perform the off-the-shelf optimization software (CPLEX) by
several orders of magnitude with the same optimal answer.

Third, we design novel data release mechanisms against
TPL effectively. Our scheme is to carefully calibrate the pri-
vacy budget of the traditional DP mechanism at each time
point to make them satisfy α-DPT . A challenge is that TPL
is dynamically changing due to previous and even future
allocated privacy budgets so that α-DPT is hard to achieve.
In our first solution, we prove that, even though TPL may
increase over time, its supremum may exist when allocating
a calibrated privacy budget at each time. That is to say,
TPL will never be greater than such supremum α no matter
when the release ends. However, when the releases are too
short (TPL is far from reaching its supremum), we may over-
perturb the data. In our second solution, we design another
budget allocation scheme that exactly achieves α-DPT at
each time point.

Finally, experiments confirm the efficiency and effective-
ness of our TPL quantification algorithms and data release
mechanisms. We also demonstrate the impact of different
degree of temporal correlations on privacy leakage.

2 PRELIMINARIES

2.1 Differential Privacy

Differential privacy [9] is a formal definition of data privacy.
Let D be a database and D′ be a copy of D that is different
in any one tuple. D and D′ are neighboring databases. A
differentially private output from D or D′ should exhibit
little difference.

Definition 1 (ǫ-DP). M is a randomized mechanism that takes
as input D and outputs r, i.e., M(D) = r. M satisfies ǫ-
differential privacy if the following inequality is true for any pair
of neighboring databases D,D′ and all possible outputs r.

log
Pr(r ∈ Range(M)|D)

Pr(r ∈ Range(M)|D′)
≤ ǫ. (1)

The parameter ǫ, called the privacy budget, represents the
degree of privacy offered. A commonly used method to
achieve ǫ-DP is the Laplace mechanism as shown below.
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Theorem 1 (Laplace Mechanism). Let Q : D → R be a
statistical query on database D. The sensitivity of Q is de-
fined as the maximum L1 norm between Q(D) and Q(D′), i.e.,
∆ = maxD,D′ ||Q(D) − Q(D′)||1. We can achieve ǫ-DP by adding
Laplace noise with scale ∆/ǫ, i.e., Lap(∆/ǫ).

2.2 Privacy Leakage

In this section, we define the privacy leakage of a DP
mechanism against a type of adversaries Ai, who targets
user i’s value in the database, i.e., li ∈ [loc1, . . . , locn], and
has knowledge of DK = D−{li}. The adversary Ai observes
the private output r and attempts to distinguish whether
user i’s value is locj or lock where locj , lock ∈ [loc1, . . . , locn].
We define the privacy leakage of a DP mechanism w.r.t. such
adversaries as follows.

Definition 2. The privacy leakage of a DP mechanism M against
one Ai with a specific i and all Ai, i ∈ U are defined, respectively,
as follows in which li and l′i are two different possible values of
i-th data in the database.

PL0(Ai,M)
def
== sup

r,li,l
′
i

log
Pr(r|li, DK)

Pr(r|l′i, DK)

PL0(M)
def
== max

∀Ai,i∈U
PL0(Ai,M) = sup

r,D,D′
log

Pr(r|D)

Pr(r|D′)

In other words, the privacy budget of a DP mechanism
can be considered as a metric of privacy leakage. The larger ǫ,
the larger the privacy leakage. We note that a ǫ′-DP mecha-
nism automatically satisfies ǫ-DP if ǫ′ < ǫ. For convenience,
in the rest of this paper, when we say that M satisfies ǫ-DP,
we mean that the supremum of privacy leakage is ǫ.

2.3 Problem Setting

We attempt to quantify the potential privacy loss of a DP
mechanism under temporal correlations in the context of
continuous data release (e.g., releasing private counts at each
time as shown in Figure 1). For the convenience of analysis,
let us assume the length of release time is T . Note that we
do not need to know the exact T in this paper. Users in the
database, denoted by U , are generating data continuously.
Let loc = {loc1, . . . , locn} be all possible values of user’s
data. We denote the value of user i at time t by lti . A
trusted server collects the data of each user into the database
Dt = {lt1, . . . , l

t
|U |} at each time t (e.g., the columns in Figure

1(a)). Without loss of generality, we assume that each user
contributes only one data point in Dt. DP mechanisms Mt

release differentially private outputs rt independently at
different time t. For simplicity, we let Mt to be the same DP
mechanism but may with different privacy budgets at each
t ∈ [1, T ]. Our goal is to quantify and bound the potential
privacy loss of Mt against adversaries with knowledge of
temporal correlations. We note that while we use location
data in Example 1, the problem setting is general for tempo-
rally correlated data. We summarize notations used in this
paper in Table 1.

Our problem setting is identical to differential privacy
under continual observation in the literature [1] [2] [3] [4] [5]
[6] [7] [8]. In contrast to “one-shot” data release over a static
database, the attackers can observe multiple private outputs,
i.e., r1, . . . , rt. There are typically two different privacy goals
in the context of continuous data release: event-level and user-
level [4] [5]. The former protects each user’s single data point

TABLE 1
Summary of Notations.

U The set of users in the database

i The i-th user where i ∈ [1, |U |]
loc Value domain {loc1, . . . , locn} of all user’s data

lti, l
t
i
′

The data of user i at time t, lti ∈ loc, lti 6= lti
′

Dt The database at time t, Dt = {lt1, . . . , ltn}
Mt Differentially private mechanism over Dt

rt Differentially private output at time t

Ai Adversary who targets user i without temporal correlations

AT
i Adversary Ai with temporal correlations

PB
i Transition matrix that represents Pr(lt−1

i |lti),
i.e., backward temporal correlation, known to AT

i

PF
i Transition matrix that represents Pr(lti|lt−1

i ),
i.e., forward temporal correlation, known to AT

i

Dt
K The subset of database Dt − {lti}, known to AT

i

at time t (i.e., the neighboring databases are Dt and Dt′),
whereas the latter protects the presence of a user with all
her data on the timeline (i.e., the neighboring databases are
{D1, . . . , Dt} and {D1′

, . . . , Dt′}). In this work, we start from
examining event-level DP under temporal correlations, and
we also extend the discussion to user-level DP by studying
the sequential composability of the privacy leakage.

3 ANALYZING TEMPORAL PRIVACY LEAKAGE

3.1 Adversay with Knowledge of Temporal Correlations

Markov Chain for Temporal Correlations. The Markov
chain (MC) is extensively used in modeling user mobility.
For a time-homogeneous first-order MC, a user’s current
value only depends on the previous one. The parameter
of the MC is the transition matrix, which describes the
probabilities for transition between values. The sum of the
probabilities in each row of the transition matrix is 1. A
concrete example of transition matrix and time-reversed
one for location data is shown in Figure 2. As shown in
Figure 2(a), if user i is at loc1 now (time t); then, the
probability of coming from loc3 (time t − 1) is 0.7, namely,
Pr(lt−1

i = loc3|l
t
i = loc1) = 0.7. As shown in Figure 2(b),

if user i was at loc3 at the previous time t − 1, then the
probability of being at loc1 now (time t) is 0.6; namely,
Pr(lti = loc1|l

t−1
i = loc3) = 0.6. We call the transition matrices

in Figure 2(a) and (b) as backward temporal correlation and
forward temporal correlation, respectively.

Definition 3 (Temporal Correlations). The backward and for-
ward temporal correlations between user i’s data lt−1i and lti are
described by transition matrices PB

i , PF
i ∈ R

n×n, representing
Pr(lt−1

i |lti) and Pr(lti |l
t−1
i ), respectively.

It is reasonable to consider that the backward and/or
forward temporal correlations could be acquired by adver-
saries. For example, the adversaries can learn them from
user’s historical trajectories (or the reversed trajectories) by
well studied methods such as Maximum Likelihood estima-
tion (supervised) or Baum-Welch algorithm (unsupervised).
Also, if the initial distribution of l1i is known (i.e., Pr(l1i )), the
backward temporal correlation (i.e., Pr(lt−1

i |lti)) can be de-
rived from the forward temporal correlation (i.e., Pr(lti |l

t−1
i ))

by Bayesian inference. We assume the attackers’ knowledge
about temporal correlations is given in our framework.

We now define an enhanced version of Ai (in Definition
2) with knowledge of temporal correlations.
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loc1 loc2 loc3
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i

t
)

Backward Temporal Correlation PiB

Fig. 2. Examples of Temporal Correlations.

Definition 4 (AdversaryT ). AdversaryT is a class of adver-
saries who have knowledge of (1) all other users’ data Dt

K at each
time t except the one of the targeted victim, i.e., Dt

K = Dt − {lti},
and (2) backward and/or forward temporal correlations repre-
sented as transition matrices PB

i and PF
i . We denote AdversaryT

who targets user i by AT
i (PB

i , PF
i ).

There are three types of adversaryT : (i) AT
i (PB

i , ∅), (ii)
AT

i (∅, PF
i ), (iii) AT

i (PB
i , PF

i ), where ∅ denotes that the cor-
responding correlations are not known to the adversaries.
For simplicity, we denote types (i) and (ii) as AT

i (PB
i ) and

AT
i (PF

i ), respectively. We note that AT
i (∅, ∅) is the same as

the traditional DP adversary Ai without any knowledge of
temporal correlations.

3.2 Temporal Privacy Leakage

We now define the privacy leakage w.r.t. adversaryT . The
adversary AT

i observes the differentially private outputs
rt, which is released by a traditional differentially private
mechanisms Mt (e.g., Laplace mechanism) at each time
point t ∈ [1, T ], and attempts to infer the possible value of
user i’s data at t, namely lti . Similar to Definition 2, we de-
fine the privacy leakage in terms of event-level differential
privacy in the context of continual data release as described
in Section 2.3.

Definition 5 (Temporal Privacy Leakage, TPL). Let Dt′ be a
neighboring database of Dt. Let Dt

K be the tuple knowledge of AT
i .

We have Dt′ = Dt
K∪{lti} and Dt′ = Dt

K∪{lti
′} where lti and lti

′
are

two different values of user i’s data at time t. Temporal Privacy
Leakage (TPL) of Mt w.r.t. a single AT

i and all AT
i , i ∈ U are

defined, respectively, as follows.

TPL(AT
i ,Mt

)
def
== sup

lti,l
t
i
′
,r1,...,rT

log
Pr(r1, . . . , rT |lti, Dt

K)

Pr(r1, . . . , rT |lti
′, Dt

K)
. (2)

TPL(Mt
)

def
== max

∀AT
i

,i∈U

TPL(A
T
i ,Mt

) (3)

= sup
Dt,Dt′,r1,...,rT

log
Pr(r1, . . . , rT |Dt)

Pr(r1, . . . , rT |Dt′)
. (4)

We first analyze TPL(AT
i ,Mt) (i.e., Equation (2)) because

it is key to solve Equation (3) or (4).

Theorem 2. We can rewrite TPL(AT
i ,Mt) as follows.

sup
r1,...,rt,

lti,l
t
i
′

log
Pr(r1, ..., rt|lti, Dt

K)

Pr(r1, ..., rt|lti
′, Dt

K)

︸ ︷︷ ︸

backward privacy leakage

+ sup
rt,...,rT ,

lti,l
t
i
′

log
Pr(rt, ..., rT |lti, Dt

K)

Pr(rt, ..., rT |lti
′, Dt

K)

︸ ︷︷ ︸

forward privacy leakage

− sup
rt,lt

i
,lt
i
′
log

Pr(rt|lti, Dt
K)

Pr(rt|lti
′, Dt

K)

︸ ︷︷ ︸

PL0(AT
i

,Mt)

(5)

It is clear that PL0(AT
i ,Mt) = PL0(Ai,Mt) because PL0

indicates the privacy leakage w.r.t. one output r (refer to

Definition 2). As annotated in the above equation, we define
backward and forward privacy leakage as follows.

Definition 6 (Backward Privacy Leakage, BPL). The privacy
leakage of Mt caused by r1, ..., rt w.r.t. AT

i is called backward
privacy leakage, defined as follows.

BPL(AT
i ,Mt

)
def
== sup

lti,l
t
i
′
,r1,...,rt

log
Pr(r1, . . . , rt|lti, Dt

K)

Pr(r1, . . . , rt|lti
′, Dt

K)
. (6)

BPL(Mt
)

def
== max

∀AT
i

,i∈U

BPL(AT
i ,Mt

). (7)

Definition 7 (Forward Privacy Leakage, FPL). The privacy
leakage of Mt caused by rt, ..., rT w.r.t. AT

i is called forward
privacy leakage, defined by follows.

FPL(AT
i ,Mt

)
def
== sup

lti,l
t
i
′
,rt,...,rT

log
Pr(rt, . . . , rT |lti, Dt

K)

Pr(rt, . . . , rT |lti
′, Dt

K)
. (8)

FPL(Mt
)

def
== max

∀AT
i

,i∈U

FPL(AT
i ,Mt

). (9)

By substituting Equation (6) and (8) into (5), we have
TPL(AT

i ,Mt
) = BPL(AT

i ,Mt
) + FPL(AT

i ,Mt
)− PL0(A

T
i ,Mt

). (10)

Since the privacy leakage is considered as the worst case
among all users in the database, by Equations (7) and (9),
we have

TPL(Mt) = BPL(Mt) + FPL(Mt)− PL0(M
t). (11)

Intuitively, BPL, FPL and TPL are the privacy leakage w.r.t.
the adversaries AT

i (PB
i ) , AT

i (PF
i ) and AT

i (PB
i , PF

i ), respec-
tively. In Equation (11), we need to minus PL0(Mt) because
it is counted in both BPL and FPL. In the following, we will
dive into the analysis of BPL and FPL.

BPL over time. For BPL, we first expand and simplify
Equation (6) by Bayesian theorem, BPL(AT

i ,Mt) is equal to

sup
lti,l

t
i
′
,

r1,...,rt−1

log

∑

l
t−1
i

Pr(r1, . . . , rt−1|lt−1
i , Dt−1

K ) Pr(lt−1
i |lti)

∑

l
t−1′

i

Pr(r
1
, . . . , r

t−1|lt−1
i

′
, D

t−1
K )

︸ ︷︷ ︸

(i) BPL(AT
i

,Mt−1)

Pr(l
t−1′

i |lti
′
)

︸ ︷︷ ︸

(ii) PB
i

+ sup
lti,l

t
i
′
,rt

log
Pr(rt|lti, Dt

K)

Pr(r
t|lti

′
, D

t
K)

︸ ︷︷ ︸

(iii) PL0(AT
i

,Mt)

. (12)

We now discuss the three annotated terms in the above
equation. The first term indicates BPL at the previous time
t − 1, the second term is the backward temporal correlation
determined by PB

i , and the third term is equal to the privacy
leakage w.r.t. adversaries in traditional DP (see Definition 2).
Hence, BPL at time t depends on (i) BPL at time t−1, (ii) the
backward temporal correlations, and (iii) the (traditional)
privacy leakage of Mt (which is related to the privacy
budget allocated to Mt). By Equation (12), we know that
if t = 1, BPL(AT

i ,M1) = PL0(Ai,M
1); if t > 1, we have

the following, where LB(·) is a backward temporal privacy loss
function for calculating the accumulated privacy loss.

BPL(AT
i ,Mt) = LB

(

BPL(AT
i ,Mt−1)

)

+ PL0(Ai,M
t) (13)

Equation (13) reveals that BPL is calculated recursively and
may accumulate over time, as shown in Example 2 (Fig.3(a)).

Example 2 (BPL due to previous releases). Suppose that
a DP mechanism Mt satisfies PL0(M

t) = 0.1 for each time
t ∈ [1, T ], i.e., 0.1-DP at each time point. We now discuss
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Fig. 3. Backward (BPL), Forward (FPL), and Temporal Privacy Leakage (TPL) of a 0.1-DP mechanism at each time point for Example 2 and 3.

BPL at each time point w.r.t. AT
i with knowledge of backward

temporal correlations PB
i . In an extreme case, if PB

i indicates
the strongest correlation, say, PB

i =
(

1 0
0 1

)
, then, at time t, AT

i

knows lti = lt−1
i = · · · = l1i , i.e., Dt = Dt−1 = · · · = D1 because of

Dt = {lti}∪Dt
K for any t ∈ [1, T ]. Hence, the continuous data release

r1, . . . , rt is equivalent to releasing the same database multiple
times; the privacy leakage at each time point will accumulate from
previous time points and increase linearly (the red line with circle
marker in Figure 3(a)). In another extreme case, if there is no
backward temporal correlation that is known to AT

i (e.g., for the
Ai in Definition 2 or AT

i (PF
i )), BPL at each time point is PL0(Mt),

as shown in Figure 3(a), the black line with rectangle marker. The
blue line with triangle marker in Figure 3(a) depicts the backward
privacy leakage caused by PB

i =
(

0.8 0.2
0 1

)

, which can be finely
quantified using our method (Algorithm 1) in Section 4.

FPL over time. For FPL, similar to the analysis of BPL,
we expand and simplify Equation (6) by Bayesian theorem,
FPL(AT

i ,Mt) is equal to

sup
lti,l

t
i
′
,

rt+1,...,rT

log

∑

l
t+1
i

Pr(rt+1, . . . , rT |lt+1
i , Dt+1

K ) Pr(lt+1
i |lti)

∑

l
t+1′

i

Pr(r
t+1

, . . . , r
T |lt+1

i

′
, D

t+1
K )

︸ ︷︷ ︸

(i) FPL(AT
i

,Mt+1)

Pr(l
t+1′

i |lti
′
)

︸ ︷︷ ︸

(ii) PF
i

+ sup
lti,l

t
i
′
,rt

log
Pr(rt|lti, Dt

K)

Pr(r
t|lti

′
, D

t
K)

︸ ︷︷ ︸

(iii) PL0(AT
i

,Mt)

. (14)

By Equation (14), we know that if t = T , FPL(AT
i ,MT ) =

PL0(Ai,MT ); if t < T , we have the following, where LF (·)

is a forward temporal privacy loss function for calculating the
increased privacy loss due to FPL at the next time.

FPL(AT
i ,Mt

) = LF (FPL(AT
i ,Mt+1

)
)
+ PL0(Ai,Mt

) (15)

Equation (15) reveals that FPL is calculated recursively and
may increase over time, as shown in Example 3 (Fig.3(b)).

Example 3 (FPL due to future releases). Considering the same
setting in Example 2, we now discuss FPL at each time point
w.r.t. AT

i with knowledge of forward temporal correlations PF
i .

In an extreme case, if PF
i indicates the strongest correlation, say,

PF
i =

(

1 0
0 1

)

, then, at time t, AT
i knows lti = lt+1

i = · · · = lTi , i.e.,
Dt = Dt+1 = · · · = DT because of Dt = {lti}∪Dt

K for any t ∈ [1, T ].
Hence, the continuous data release rt, . . . , rT is equivalent to
releasing the same database multiple times; the privacy leakage at
time t will increase when every time new release (i.e., rt+1,rt+2,...)
happens, as shown in the red line with circle marker in Figure
3(b). We see that contrary to BPL, the FPL at time 1 is the highest
(due to future releases at time 1 to 10) while FPL at time 10 is the
lowest (since there is no future release with respect to time 10 yet).
If r11 is released, all FPL at time t ∈ [1, 10] will be updated. In
another extreme case, if there is no forward temporal correlation
that is known to AT

i (e.g., for the Ai in Definition 2 or AT
i (PB

i )),
then the forward privacy leakage at each time point is PL0(Mt),
as shown in the black line with rectangle marker Figure 3(b). The

blue line with triangle marker in Figure 3(b) depicts the forward
privacy leakage caused by PF

i =
(

0.8 0.2
0 1

)

, which can be finely
quantified using our method (Algorithm 1) in Section 4.

Remark 1. The extreme cases shown in Examples 2 and 3 are
the upper and lower bound of BPL and FPL. Hence, the temporal
privacy loss functions LB(·) and LF (·) in Equations (13) and (15)
satisfy 0 ≤ LB(x) ≤ x, where x is BPL at the previous time, and
0 ≤ LF (x) ≤ x, where x is FPL at the next time, respectively.

From Examples 2 and 3, we know that: backward tem-
poral correlation (i.e.,PB

i ) does not affect FPL, and forward
temporal correlation (i.e.,PF

i ) does not affect BPL. In other
words, adversary AT

i (PB
i ) only causes BPL; AT

i (PF
i ) only

causes FPL; while AT
i (PB

i , PF
i ) poses a risk on both BPL and

FPL. The composition of BPL and FPL is shown in Equations
(10) and (11). Figure 3(c) shows TPL, which can be calculated
using Equation (11).

3.3 α-DPT and Its Composability

In this section, we define α-DPT (differential privacy un-
der temporal correlations) to provide a privacy guarantee
against temporal privacy leakage. We prove its sequential
composition theorem and discuss the connection between
α-DPT and ǫ-DP in terms of event-level/user-level privacy
[4] [5] and w-event privacy [7].

Definition 8 (α-DPT , differential privacy under temporal
correlations). If TPL of a differentially private mechanism is
less than or equal to α, we say that such mechanism satisfies
α-Differential Privacy under Temporal correlation, i.e., α-DPT .

DPT is an enhanced version of differential privacy on time-
series data. If the data are temporally independent (i.e., for
all user i, both PB

i and PF
i are ∅), an ǫ-DP mechanism

satisfies ǫ-DPT . If the data are temporally correlated (i.e.,
existing user i whose PB

i or PF
i is not ∅), an ǫ-DP mechanism

satisfies α-DPT where α is the increased privacy leakage
and can be quantified in our framework.

One may wonder, for a sequence of DPT mechanisms
on the timeline, what is the overall privacy guarantee. In
the following, we suppose that Mt is a ǫt-DP mechanism at
time t ∈ [1, T ] and poses risks of BPL and FPL as αB

t and αF
t ,

respectively. That is, Mt satisfies (αB
t +αF

t −ǫt)-DPT at time t
according to Equation (11). Similar to definition of TPL w.r.t.
a DP mechanism at a single time point, we define TPL of a
sequence of DP mechanisms at consecutive time points as
follows.

Definition 9 (TPL of a sequence of DP mechanisms). The
temporal privacy leakage of DP mechanisms {Mt, . . . ,Mt+j}

where j ≥ 0 is defined as follows.

TPL
(
{Mt

, . . . ,Mt+j}
) def
== sup

Dt,...,Dt+j ,

Dt′,...,Dt+j ′,

r1,...,rT

log
Pr(r1, . . . , rT |Dt, . . . , Dt+j)

Pr(r1, . . . , rT |Dt′, . . . , Dt+j ′)
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It is easy to see that, if j = 0, it is event-level privacy; if
t = 1 and j = T − 1, it is user-level privacy.

Theorem 3 (Sequential Composition under Temporal Corre-
lations). A sequence of DP mechanisms {Mt, . . . ,Mt+j} satisfies

{

(αB
t + αF

t+1)-DPT j = 1
(
αB

t + αF
t+j +

∑k=t+j−1
k=t+1 ǫk

)
-DPT j ≥ 2

(16)

In Theorem 3, when t = 1 and j = T − 1, we have Corollary 1.

Corollary 1. The temporal privacy leakage of a combined mecha-
nism {M1, . . . ,MT } is

∑k=T
k=1 ǫk where ǫk is the privacy budget

of Mk, k ∈ [1, T ].

It shows that temporal correlations do not affect the user-level
privacy (i.e., protecting all the data on the timeline of each
user), which is in line with the idea of group differential
privacy: protecting all the correlated data in a bundle.

Comparison between DP and DPT . As we mentioned
in Section 2.3, there are typically two privacy notions in
continuous data release: event-level and user-level [4] [5].
Recently, w-event privacy [7] is proposed to merge the
gap between event-level and user-level privacy. It protects
the data in any w-length sliding window by utilizing the
sequential composition theorem of DP.

Theorem 4 (Sequential composition on independent data
[15]). Suppose that Mt satisfies ǫt-DP for each t ∈ [1, T ]. A
combined mechanism {Mt, . . . ,Mt+j} satisfies

∑k=t+j
k=t

ǫk-DP.

For ease of exposition, suppose that Mt satisfies ǫ-DP
for each t ∈ [1, T ]. According to Theorem 4, it achieves Tǫ-
DP on user-level and wǫ-DP on w-event level. We compare
the privacy guarantee of Mt on independent data and
temporally correlated data in Table 2.

TABLE 2
The privacy guarantee of ǫ-DP mechanisms on different types of data.

Privacy Notion

Data
independent temporally correlated

event-level [4] [5] ǫ-DP α-DPT (ǫ ≤ α ≤ Tǫ)

w-event [7] wǫ-DP see Theorem 3

user-level [4] [5] Tǫ-DP Tǫ-DPT (by Corollary 1)

It reveals that temporal correlations may blur the boundary
between event-level privacy and user-level privacy. As shown in
Table 2, the privacy leakage of a ǫ-DP mechanism at a single
time point (event-level) on temporally correlated data may
range from ǫ to Tǫ which depends on the strength of tem-
poral correlation. For example, as shown in Figure 3(c), TPL
of a 0.1-DP mechanism under strong temporal correlation at
each time point (event-level) is T ∗ 0.1, which is equal to the
privacy leakage of a sequence of 0.1-DP mechanisms that
satisfies user-level privacy. When the temporal correlations
is moderate, TPL of a 0.1-DP mechanism at each time point
(event-level) is less than T ∗ 0.1 but still larger than 0.1, as
shown in the blue line with triangle markers in Figure 3(c).

3.4 Connection with Pufferfish Framework

α-DPT is highly related to Pufferfish framework [16] [17]
and its instantiation [14]. Pufferfish provides rigorous and
customizable privacy framework which consists of three

components: a set of secrets, a set of discriminative pairs
and data evolution scenarios (how the data were generated,
or how the data are correlated). Note that the data evolution
scenarios is essentially the adversary’s background knowl-
edge about data, such as data correlations. In Pufferfish
framework [16] [17], they prove that when secrets to be all
possible values of tuples, discriminative pairs to be the set of
all pairs of potential secrets, and tuples to be independent, it
is equivalent to DP; hence, Pufferfish becomes DPT under
the above setting of secrets and discriminative pairs, but
with temporally correlated tuples.

A recent work [14] proposes Markov Quilt Mechanism
for Pufferfish framework when data correlations can be
modeled by Bayesian Network (BN). They further design
efficient mechanisms MQMExact and MQMApprox when
the structure of BN is Markov Chain. Although we also use
Markov Chain as temporal correlation model, the settings
of two studies are essentially different. In the motivating ex-
ample of [14], i.e., Physical Activity Monitoring, the private
histogram is “one-shot” (see Section 2.3) release: adapting
to our setting in Figure 1, their example is equivalent to
release location access statistics for a one-user database only
at a given time T . Whereas, we focus on quantifying the
privacy leakage in continuous data release. One important
insight of our study is that, the privacy guarantee of one-shot
data release is not on its own or static; instead, it may be affected
by previous release and even future release, which are defined
as Backward and Forward Privacy Leakage in our work.

3.5 Discussion

We make a few important observations regarding our pri-
vacy analysis. First, the temporal privacy leakage is defined
in a personalized way. That is, the privacy leakage may be
different for users with distinct temporal patterns (i.e., PB

i

and PF
i ). We define the overall temporal privacy leakage

as the maximum one for all users, so that α-DPT is com-
patible with the traditional ǫ-DP mechanisms (using one
parameter to represent the overall privacy level) and we can
convert them to protect against TPL. On the other hand, our
definitions is also compatible with personalized differential
privacy (PDP) mechanisms [18], in which the personalized
privacy budgets, i.e., a vector [ǫ1, . . . , ǫn], are allocated to each
user. In other words, we can convert a PDP mechanism to
bound the temporal privacy leakage for each user.

Second, in this paper, we focus on the temporally corre-
lated data and assume that the adversary has knowledge of
temporal correlations modeled by Markov chain. However,
it is possible that the adversary has knowledge about more
sophisticated temporal correlation model or other types of
correlations. Especially, if the the assumption about Markov
model is not the “ground truth”. We may not protect against
TPL appropriately. Song et al. [14] provided a formalization
of the upper bound of privacy leakage if a set of possible
data correlations Θ is given, which is max-divergence be-
tween any two conditional distributions of θ̃ ∈ Θ and θ ∈ Θ
given any secret that we want to protect. In their Markov
Quilt Mechanism that models correlation using Bayesian
Network (BN), the privacy leakage can be represented by
max-influence between nodes (tuples). Hence, given a set
of BNs as possible data correlations, the upper bound of
privacy leakage is the largest max-influence under different
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BNs. Similarly, in our case, given a set of Transition Matrices
(TM), we can calculate the maximum TPL w.r.t. different
TMs. However, it remains an open question how to find a set
of possible data correlations Θ that includes the adversarial
knowledge or the ground truth in a high probability, which
may depend on the application scenarios. We believe that
this question is also related to “how to identify appropriate
concepts of neighboring databases in different scenarios”
since properly defined neighboring databases can circum-
vent the affect of data correlations on privacy leakage in
a certain extent (as we show in Section 3.3, the difference
between event-level privacy, w-event privacy, and user-level
privacy).

4 CALCULATING TEMPORAL PRIVACY LEAKAGE

In this section, we design algorithms for computing back-
ward privacy leakage (BPL) and forward privacy leakage
(FPL). We first show that both of them can be transformed to
the optimal solution of a linear-fractional programming prob-
lem [19] in Section 4.1. Traditionally, this type of problem
can be solved by simplex algorithm in exponential time
[19]. By exploiting the constraints in this problem, we then
design a polynomial algorithm to calculate it in Section 4.2.
Further, based on our observation of some repeated compu-
tation when the polynomial algorithm runs on different time
points, we precompute such common results and design
quasi-quadratic and sub-linear algorithms for calculating
temporal privacy leakage at each time point in Section 4.3
and Section 4.4, respectively.

4.1 Problem formulation

According to the privacy analysis of BPL and FPL in Section
3.2, we need to solve the backward and forward temporal
privacy loss functions LB(·) and LF (·) in Equations (13)
and (15), respectively. By observing the structure of the
first term in Equations (12) and (14), we can see that the
calculations for recursive functions LB(·) and LF (·) are
virtually in the same way. They calculate the increment of
the input values (the previous BPL or the next FPL) based
on temporal correlations (backward or forward). Although
different degree of correlations result in different privacy
loss functions, the methods for analyzing them are the same.

We now quantitatively analyze the temporal privacy
leakage. In the following, we demonstrate the calculation
of LB(·), i.e., the first term of Equation (12).

sup
lti,l

t
i
′
,

r1,...,rt−1

log

∑

l
t−1
i

Pr(r1, . . . , rt−1|lt−1
i , Dt−1

K ) Pr(lt−1
i |lti)

∑

l
t−1′

i

Pr(r
1
, . . . , r

t−1|lt−1
i

′
, D

t−1
K )

︸ ︷︷ ︸

BPL(AT
i

,Mt−1)

Pr(l
t−1′

i |lti
′
)

︸ ︷︷ ︸

PB
i

(17)

We now simplify the notations in the above formula.
Let two arbitrary (distinct) rows in PB

i be vectors q =

(q1, ..., qn) and d = (d1, ..., dn). For example, suppose that
q is the first row in the transition matrix of Figure 2(b);
then, the elements in q are: q1 = Pr(lt−1

i = loc1|lti = loc1),
q2 = Pr(lt−1

i = loc2|lti = loc1), q3 = Pr(lt−1
i = loc3|lti = loc1),

etc. Let x = (x1, ..., xn)T be a vector whose elements indicate
Pr(r1, ..., rt−1|lt−1

i , Dt−1
K ) with distinct values of lt−1

i ∈ loc,
e.g., x1 denotes Pr(r1, ..., rt−1|lt−1

i = loc1, D
t−1
K ). We obtain the

following by expanding lt−1
i , lt−1′

i ∈ loc in Equation (17).

LB(BPL(AT
i ,Mt−1

)
)
= sup

q,d∈PB
i

log
q1x1 + · · ·+ qnxn

d1x1 + · · ·+ dnxn

= sup
q,d∈PB

i

log
qx

dx
(18)

Next, we formalize the objective function and con-
straints. Suppose that BPL(AT

i ,Mt−1) = αB
t−1. According to

the definition of BPL (as the supremum), for any xj , xk ∈ x,

we have e−αB
t−1 ≤

xj

xk
≤ eα

B
t−1 . Given x as the variable vector

and q,d as the coefficient vectors, LB(αB
t−1) is equal to the

logarithm of the objective function (19) in the following
maximization problem.

maximize
qx

dx
(19)

subject to e
−αB

t−1 ≤ xj

xk

≤ e
αB
t−1 , (20)

0 < xj < 1 and 0 < xk < 1, (21)

where xj , xk ∈ x, j, k ∈ [1, n].

The above is a form of Linear-Fractional Programming [19]
(i.e., LFP), where the objective function is a ratio of two
linear functions and the constraints are linear inequalities or
equations. A linear-fractional programming problem can be
converted into a sequence of linear programming problems
and then solved using the simplex algorithm in time O(2n)

[19]. According to Equation (18), given PB
i as an n × n

matrix, finding LB(·) involves solving n(n − 1) such LFP
problems w.r.t. different permutation of choosing two rows
q and d from the transition matrix PB

i . Hence, the overal
time complexity using simplex algorithm is O(n22n).

As we mentioned previously, the calculations of LB(·)
and LF (·) are identical. For simplicity, in the following part
of this paper, we use L(·) to represent the privacy loss
function LB(·) or LF (·), use α to denote αB

t−1 or αF
t+1, and

use Pi to denote PB
i or PF

i .

4.2 Polynomial Algorithm

In this section, we design an efficient algorithm to calculate
TPL, i.e., to solve the linear-fractional program in Equations
(19) to (21). Intuitively, we prove that the optimal solutions
always satisfy some conditions (Theorem 5), which enable
us to design an efficient algorithm to obtain the optimal
value without directly solving the optimization problem.

Properties of the optimal solutions. From Inequalities
(20) and (21), we know that the feasible region of the
constraints are not empty and bounded; hence, the optimal
solution exists. We prove Theorem 5, which enables the
optimal solution to be found in time O(n2).

We first define some notations that will be frequently
used in our theorems. Suppose that the variable vector x

consists of two parts (subsets): x+ and x−. Let the cor-
responding coefficients vectors be q+,d+ and q−,d−. Let
q =

∑

q+ and d =
∑

d+. For example, suppose that x+ =

[x1, x3] and x− = [x2, x4, x5]. Then, we have q+ = [q1, q3],
d+ = [d1, d3], q

− = [q2, q4, q5], and d− = [d2, d4, q5]. In this
case, q = q1 + q3 and d = d1 + d3.

Theorem 5. If the following Inequalities (22) and (23) are
satisfied, the maximum value of the objective function in the

problem (19)∼(21) is q(e
αB
t−1−1)+1

d(e
αB
t−1−1)+1

.
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qj

dj
>

q(eα
B
t−1 − 1) + 1

d(e
αB
t−1 − 1) + 1

, ∀j ∈ [1, n] where qj ∈ q+, dj ∈ d+ (22)

qk

dk
≤

q(eα
B
t−1 − 1) + 1

d(e
αB
t−1 − 1) + 1

, ∀k ∈ [1, n] where qk ∈ q−, dk ∈ d− (23)

According to Equation (18), the increment of temporal
privacy loss, i.e., L(·), is the maximum value among the
n(n − 1) LFP problems, which are defined by different 2-
permutations q and d chosen from n rows of Pi.

L
(

α
)

= max
q,d∈Pi

log
q(eα − 1) + 1

d(eα − 1) + 1
(24)

Further, we give Corollary 2 for finding q+ and d+.

Corollary 2. If Inequalities (22) and (23) are satisfied, we have
qj > dj in which qj ∈ q+ and dj ∈ d+.

Now, the question is how do we find q and d (or, q+

and d+) in Theorem 5 that give the maximum value of
objective function. Inequalities (22) and (23) are sufficient
conditions for obtaining such optimal value. Corollary 2
gives a necessary condition for satisfying Inequalities (22)
and (23). Based on the above analysis, we design Algorithm
1 for computing BPL or FPL.

Algorithm 1: Calculate BPL or FPL by Theorem 5.

Input: Pi (i.e., PB
i or PF

i ); α (i.e., αB
t−1 or αF

t+1); ǫt (i.e., PL0(Mt)).
Output: BPL or FPL at time t

1 L = 0; //the value of Equation (24).
2 foreach two rows permutation q, d from n rows in Pi do
3 foreach qj ∈ q, dj ∈ d do //Corollary 2.

4 if qj > dj then add qj to q+; add dj to d+;

5 update = false;

6 do //find q+
, d+

by Theorem 5.

7 q =
∑

q+; d =
∑

d+; //update q and d.

8 foreach qj ∈ q+, dj ∈ d+ do
//if it does not satisfy Inequality (22).

9 if qj/dj ≤
(
q ∗ (eα − 1) + 1

)
/
(
d ∗ (eα − 1) + 1

)

10 then q+ ← q+ − qj ; d+ ← d+ − dj ; update = true;

11 while update

12 if L < log
q∗(eα−1)+1
d∗(eα−1)+1

then L = log
q∗(eα−1)+1
d∗(eα−1)+1

;

13 return L+ ǫt //by Equation (13) or (15).

Algorithm design. According to the definition of BPL
and FPL, we need to find the maximum privacy leakage
(Line 12) w.r.t. any 2-permutations selected from n rows of
the given transition matrix Pi (Line 2). Lines 3∼11 are to
solve a single linear-fractional programming problem w.r.t
two specific rows chosen from Pi. In Lines 3 and 4, we
divide the variable vector x into two parts according to
Corollary 2, which gives the necessary condition for finding
the maximum solution: if a pair of coefficients with the same
subscript qj ≤ dj , they are not in q+ and d+ that satisfy
Inequalities (22) and (23). In other words, if qj > dj , they
are “candidates” in q+ and d+ that gives the maximum
objective function. In Lines 5∼11, we check the candidates
q+ and d+ whether or not satisfying Inequalities (22) and
(23). In Line 7, we update the values of q and d because they
may be changed in the context. In Lines 8∼10, we check
each bit in q+ and d+ whether or not satisfying Inequality
(22). If any bit is removed, we set a flag updated to true
and do the loop again until every pairs of q+ and d+ satisfy
Inequality (22).

A subtle question may arise regarding such “update”.
In Lines 8∼10, the algorithm may remove several pairs of qj
and dj , say, {q1, d1} and {q2, d2}, that do not satisfy Inequality
(22) in one loop. However, one may wonder if it is possible
that, after removing {q1, d1} from q+ and d+, Inequality (22)
can be satisfied for {q2, d2} due to the update of q and d,
i.e., q2

d2
>

(q−q1)∗(e
α−1)+1

(d−d1)∗(eα−1)+1
. We show that this is impossible.

If q1
d1

≤ q∗(eα−1)+1
d∗(eα−1)+1

, we have q∗(eα−1)+1
d∗(eα−1)+1

≤ (q−q1)∗(e
α−1)+1

(d−d1)∗(eα−1)+1
.

Hence, q2
d2

≤ q∗(eα−1)+1
d∗(eα−1)+1

≤ (q−q1)∗(e
α−1)+1

(d−d1)∗(eα−1)+1
. Therefore, we

can remove multiple pairs of qj and dj that do not satisfy
Inequality (22) at one time.

Theorems 6 and 7 provide insights on transition matrices
that lead to the extreme cases of temporal privacy leakage,
which are in accordance with Remark 1.

Theorem 6. If for any two rows q and d chosen from Pi that
satisfy qi = di for i ∈ [1, n], we have L(·) = 0.

Theorem 7. If there exist two rows q and d in Pi that satisfy
qi = 1 and di = 0 for a certain index i, L(·) in an identical
function, i.e, L(x) = x.

Complexity. The time complexity for solving one linear-
fractional programming problem (Lines 3∼11) w.r.t. two
specific rows of the transition matrix is O(n2) because Line 9
may iterate n(n−1) times in the worst case. The overall time
complexity of Algorithm 1 is O(n4) since there are n(n− 1)
permutations of different pairs of q and d.

4.3 Quasi-quadratic Algorithm

When Algorithm 1 runs on different time points for contin-
uous data release, we have a constant Pi and different α as
inputs at each time point. Our observation is that, there may
exist some common computations when Algorithm 1 takes
different inputs of α. More specifically, we want to know
that, for given q and d which are two rows chosen from Pi,
whether or not the final q and d (when stopping update in
Line 11 in Algorithm 1) keep the same for any input of α,
so that we can precompute q and d and do not need Lines
5∼11 at next run with a different α. Since q,d and α indicate
a specific LFP problem in Equation (19)∼(21), we attempt to
directly obtain the q and p in Theorem 5. Unfortunately, we
find that such q and d do not keep the same for different
α w.r.t. given q and d. However, interestingly we find that,
for any input α, there are only several possible pairs of q
and d when the update in Lines 6∼11 of Algorithm 1 is
terminated, as shown in Theorem 8.

Theorem 8. Let q and d be two vectors drawn from rows of a
transition matrix. Assume qi 6= di, i ∈ [1, n], for each qi ∈ q

and di ∈ d.2 Without loss of generality, we assume q1
d1

> · · · >
qk
dk

> 1 ≥
qk+1

dk+1
> · · · > qn

dn
, then there are only k pairs of q and d

that satisfy Inequalities (22) and (23) for given q and d.

case 1:
qk

dk

>
q(eα − 1) + 1

d(eα − 1) + 1
≥ 1 where q =

∑k

i=1
qi, d =

∑k

i=1
di;

case 2:
qk−1

dk−1

>
q(eα − 1) + 1

d(eα − 1) + 1
≥ qk

dk

where q =
∑k−1

i=1
qi, d =

∑k−1

i=1
di;

.

.

.
.
.
.

.

.

.

case k:
q1

d1

>
q(eα − 1) + 1

d(eα − 1) + 1
≥ q2

d2

where q = q1, d = d1.

2. The case of qi = di is proven in Theorem 6.
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More interestingly, we find that the values of q and d
are monotonically decreasing with the increase of α. That is,
when α is increasing from 0 to ∞, the pairs of q and d is
transiting from case 1 to case 2,..., until to case k. In other
words, the final q and d is constant in a certain range of α.
Hence, the mapping from a given α to the optimal solution
of a LFP problem w.r.t. q and d can be represented by a
piecewise function as shown in Theorem 9.

Theorem 9. We can represent the function of the optimal solution
of LPF problem w.r.t. given q and d by a piecewise function
as follows, where qi and di are the i-th elements of q and d,

respectively; and αj = log

(
qk−j+1−dk−j+1

qk−j+1∗dk−j+1−dk−j+1∗qk−j+1
+ 1

)

for

j ∈ [1, k−1]. We call α1, ..., αk−1 in the sub-domains as transition
points; q1, · · · , qk and d1, · · · , dk as coefficients of the piecewise
function.

fq,d(α) =
q(eα − 1) + 1

d(eα − 1) + 1
where

q =






qk =
∑k

i=1 qi
qk−1 =

∑k−1
i=1 qi

.

.

.

q1 = q1.

d =






dk =
∑k

i=1 di 0 ≤ α < α1;

dk−1 =
∑k−1

i=1 di α1 ≤ α < α2;

.

.

.
.
.
.

d1 = d1 αk−1 ≤ α.

(25)

For convenience, we let qArr = [q1, ..., qk], dArr = [d1, ..., dk],
and aArr = [αk−1, ..., 0]. Then, qArr, dArr, aArr determine a
piecewise function in Equation (25). Also, we let qM , dM
and aM be n(n − 1) × n matrices in which rows are qArr,
dArr and aArr w.r.t. distinct 2-permutations of q and d from
n rows of Pi. In other words, the three matrices determine
n(n− 1) piecewise functions.

In the following, we first design Algorithm 2 to obtain
qM , dM and aM . We then design Algorithm 3 to utilize
the precomputed qM, dM, aM for calculating backward or
forward temporal privacy leakage at each time point.

Algorithm 2: Precompute the parameters.

Input: Pi (i.e., PB
i or PF

i )
Output: matrices qM; dM; aM.

1 foreach two rows permutation q, d from n rows in Pi do
2 foreach qj ∈ q, dj ∈ d do
3 if qj ≤ dj then qj = 0; dj = 0;

4 if q and d are 0 then //when Theorem 6 is true.

5 qArr =[0]n; dArr =[0]n; aArr =[0]n;
6 else
7 Permutate q and d in the same way that makes

q1
d1

> · · · > qk
dk

where q1, ..., qk are larger than 0;

8 Let qArr =
[
q1, ...,

∑n
i=1 qi

]
;

9 Let dArr =
[
d1, ...,

∑n
i=1 di

]
;

10 foreach i ∈ [1, n] do

11 aArr[i] = log
qi−di

qArr[i]∗di−dArr[i]∗qi
;

12 Append qArr, dArr, aArr into new rows of qM, dM ,aM, respectively;

13 return qM, dM, aM

We now use an example of q = [0.2, 0.3, 0.5] and d =
[0.1, 0, 0.9] to demonstrate two notable points in Algorithm
2. First, with such q and d, Line 7 results in q = [0.3, 0.2, 0]
and q = [0, 0.1, 0] since only q1 = 0.3 > 0 and q2 = 0.2 >
0. Second, after the operation of Lines 10 and 11, we have
aArr= [Inf,1.47,NaN].

Algorithm 2 needs O(n3) time for precomputing the
parameters qM, dM and aM, which only needs to be run one
time and can be done offline. Algorithm 3 for calculating
privacy leakage at each time point needs O(n2 log n) time.

Algorithm 3: Calculate BPL or FPL by Precomputation.

Input: α (i.e., αB
t−1 or αF

t+1); qM ; dM ; aM ; ǫt (i.e., PL0(Mt)).
Output: BPL or FPL at time t

1 L = 0 ;
2 foreach j ∈ [1, n(n− 1)] do
3 qArr, dArr, aArr as j-th rows in qM, dM ,aM, respectively;
4 Binary Search aArr[k] that aArr[k] >α ≥ aArr[k+1];

5 PL = log
qArr[k](eα−1)+1
qArr[k](eα−1)+1

;

6 if PL>L then L = PL;

7 return L+ ǫt

0 1 2 3 4 5
0

0.5

1

1.5

2

In
c
re

m
e
n
ta

l 
P

ri
v
a
c
y
 l
e
a
k
a
g
e

Fig. 4. Illustration of function L(α) w.r.t. a 3 × 3 transition matrix in
Example 4. Each lines is fq,d(α) w.r.t. distinct pairs of q and d. The
bold line is L(α). The circle marks are transition points.

4.4 Sub-linear Algorithm

In this section, we further design a sub-linear privacy
leakage quantification algorithm by investigating how to
generate a function of L(α), so that, given an arbitrary α,
we can directly calculate the privacy loss.

Corollary 3. Temporal privacy loss function L(α) can be repre-
sented as a piecewise function: maxq,d∈Pi

log fq,d(α).

Example 4. Figure 4 shows the L(α) function w.r.t.
( 0.1 0.2 0.7

0.3 0.3 0.4
0.5 0.3 0.2

)
.

Each line represents a piecewise function fq,d(α) w.r.t. distinct
pairs of q and d chosen from Pi. Accoding to the definition of
BPL and FPL, L(α) function is a piecewise function whose value
is not less than any other functions for any α, e.g., the bold line
in Figure 4. The pentagram, which is not any transition point,
indicates an intersection of two piecewise functions.

Now, the challenge is how to find the “top” function
which is larger than or equal to other piecewise functions. A
simple idea is to compare the piecewise functions in every
sub-domains. First, we list all transition points α1, ..., αm

of n(n − 1) functions fq,d(α) w.r.t. distinct pairs of q and
d (i.e., all distinct values in aM); then, we find the “top”
piecewise function on each range between two consecutive
transition points, which requires computation time O(n3).
Despite the complexity, this idea may not be correct because
two piecewise functions may have an intersection between
two consecutive transition points, such as the pentagram
shown in Figure 4. Hence, we need a way to find such
additional transition points. Our finding is that, if the top
function is the same one at a1 and a2, then it is also the
top function for any α ∈ [a1, a2], which is formalized as the
following theorem.

Theorem 10. Let f(α) = q(eα−1)+1
d(eα−1)+1

and f ′(α) = q′(eα−1)+1
d′(eα−1)+1

. If
f(a1) ≥ f ′(a1) and f(a2) ≥ f ′(a2) in which 0 < a1 < a2, we
have f(α) ≥ f ′(α) for any a1 ≤ α ≤ a2.

Based on Theorem 10, we design Algorithm 4 to generate
a privacy loss function w.r.t. a given transition matrix. Al-
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gorithm 4 outputs a piecewise function of L(α): qArr, dArr
are coefficients of the sub-functions, and aArr contains the
corresponding sub-domains.

We now analyze Algorithm 4, which generate the pri-
vacy loss function L(α) in given a domain [a1, am] by
recursively find its sub-functions in sub-domains [a1, ak]
and [ak, am]. In Line 1, we check whether the parameters
qM, dM and aM are [0], which implied that Pi is uniform and
L(·) is 0 (see Lines 4 and 5 in Algorithm 2). For convenience
of the following analysis, we denote the definition of L(α)
at point α = aj by Lj(α) = log

qj(eα−1)+1

dj(eα−1)+1
with coefficients qj

and dj . In Lines 2, we obtain the definition of L1(α) with
coefficients q1 and d1. In Line 3, we obtain the definition
of Lm(α) with coefficients qm and dm. From Line 4 to 20,
we attempt to find the definition of L(α) at every point in
[a1, am]. There are two modules in this part. The first one
is from Line 5 to 12, in which we check that the definition
of L(α) in (a1, am) is L1(α) or Lm(α). The second module
is from Line 13 to 19, in which we exam the definition of
L(α) at point ak (which may be the intersection of two
sub-functions L1(α) and Lm(α)) and in the sub-domains
[a1, ak] and [ak, am]. Now, we dive into some details in these
modules. In Line 5, the condition is true when L1(α) and
Lm(α) are the same, or they intersect at α = am. Then,
L1 is the top function in [a1, am] by Theorem 10 because of
L1(α1) ≥ Lm(α1) and L1(αm) = Lm(αm). In Line 8, the condition
is true when L1(α) and Lm(α) intersect at a1 or they have
no intersection in [a1, am] (this implies q1 = qm and d1 = dm).
Then, L1 is the top function in [a1, am] by Theorem 10. In
Lines 6∼8 and 10∼12, we store the coefficients and sub-
domains in arrays. From Line 14 to 19, we deal with the
case of two functions intersecting at αk that a1 < αk < am

by recursively invoking Algorithm 4 to generate the sub-
function of L(α) in [α1, αk] and [αk, αm].

Algorithm 4: Generate Privacy Loss Function L(α).
Input: Pi (i.e., PB

i or PF
i ); a1; am (0 < a1 ≤ am), qM, dM, aM.

Output: vectors qArr, dArr (i.e., coefficients), aArr (i.e., sub-domains).
1 if qM, dM, aM are [0] then return qArr,dArr,aArr as [0]
2 Find maxPL1 , q1, d1 using Algorithm 2 with a1, qM, dM, aM, ǫt = 0;
3 Find maxPLm , qm, dm using Algorithm 2 with am, qM, dM, aM, ǫt = 0;

4 k = qm+d1−q1−dm

q1∗dm−qm∗d1
;

5 if a1 = am or maxPLm = log
q1(eam−1)+1

d1(eam−1)+1
then

6 aArr = [am]; //initialize vectors.

7 qArr =
[
q1
]
;

8 dArr =
[
d1
]
;

9 else if maxPL1 = log
qm(ea1−1)+1

dm(ea1−1)+1
or k<=0 then

10 aArr = [am]; //initialize vectors.

11 qArr = [qm];
12 dArr = [dm];
13 else
14 ak = log(k + 1);
15 Find qArrk , dArrk , aArrk using Algorithm 4 with Pi, a1, ak ;
16 Find qArrm, dArrm, aArrm using Algorithm 4 with Pi, ak, am;
17 aArr = [aArrk, aArrm]; //concatenate two vectors.

18 qArr = [qArrk, qArrm];
19 dArr = [dArrk, dArrm];
20 return qArr, dArr, aArr.

When obtaining function L(α), we can directly calculate
BPL or FPL as shown in Algorithm 5. In Line 1 of Algorithm
5, we can perform a binary search because aArr is sorted.

Complexity. The complexity of Algorithm 5 for calcu-
lating privacy leakage at one time point is O(log n), which
makes it very efficient even for large n and T . Algorithm

Algorithm 5: Calculate BPL or FPL by L(α).
Input: α (i.e., αB

t−1 or αF
t+1); qArr, dArr, aArr (i.e., L(α)); ǫt.

Output: BPL or FPL at time t
1 if qArr, dArr, aArr are [0] then return ǫt
2 Binary Search αk in aArr that αk ≥ α and αk+1 < α;

3 return log
qk(eα−1)+1
dk(eα−1)+1

+ ǫt
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Fig. 5. Examples of the maximum BPL over time.

4 itself requires O(n2 log n +m logm) time where m is the
amount of transition points in [a1, am], and its parameters
qM, dM and aM need to be calculated by Algorithm 2 which
requires O(n3) time; hence, in total, generating L(·) needs
O(n3 +m logm) times.

5 BOUNDING TEMPORAL PRIVACY LEAKAGE

In this section, we design two privacy budget allocation
strategies that can be used to convert a traditional DP
mechanism into one protecting against TPL.

We first investigate the upper bound of BPL and FPL.
We have demonstrated that BPL and FPL may increase over
time as shown in Figure 3. A natural question is that: is there
a limit of BPL and FPL over time.

Theorem 11. Given a transition matrix PB
i (or PF

i ), let q and
d be the ones that give the maximum value in Equation (24) and
q 6= d. For Mt that satisfies ǫ-DP at each t ∈ [1, T ], there are four
cases regarding the supremum of BPL (or FPL) over time.





log

√
4deǫ(1−q)+(d+qeǫ−1)2+d+qeǫ−1

2d d 6= 0

log
(1−q)eǫ

1−qeǫ
d = 0 and q 6= 1 and ǫ ≤ log(1/q)

inf d = 0 and q 6= 1 and ǫ > log(1/q)

inf d = 0 and q = 1

Example 5 (The supremum of BPL over time). Suppose that
Mt satisfies ǫ-DP at each time point. In Figure 5, it shows the
maximum BPL w.r.t. different ǫ and different transition matrices
of PB

i . In (a) and (b), the supremum does not exist. In (c) and (d),
we can calculate the supremum using Theorem 11. The results are
in line with the ones from computing BPL step by step at each
time point using Algorithm 1.

Algorithm 6 for finding supreme of BPL or FPL is correct
because, according to Theorem 8, all possible q and d that
give the maximum value in Equation (24) are in the matrices
qM and dM . Algorithm 6 is useful not only for designing
privacy budget allocation strategies in this section, but also

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 201X 11

Algorithm 6: Find Supermum of BPL or FPL.

Input: ǫt ; qM; dM.
Output: the supremum of BPL or FPL over time, q, d

1 sup = 0; q = 0; d = 0
2 foreach qc ∈ qM, dc ∈dM do
3 Calculate a candidate supc using Theorem 11 ;
4 if sup < supc then sup = supc; q = qc; d = dc

5 return sup, q, d

for setting an appropriate parameter am as the input of
Algorithm 4 because we will show in experiments that a
larger am makes Algorithm 4 time-consuming (while, too
small am may result in failing to calculate privacy leakage
from L(α) if the input α may be larger than am).

Achieving α-DPT by limiting upper bound. We now
design a privacy budget allocation strategy utilizing Theo-
rem 11 to bound TPL. Theorem 11 tells us that, if it is not the
strongest temporal correlation (i.e., d = 0 and q = 1), we may
bound BPL or FPL within a desired value by allocating an
appropriate privacy budget to a traditional DP mechanism
at each time point. In other words, we want a constant ǫt
that guarantee the supremum of TPL, which is equal to the
sum of the supremum of BPL and the supremum of BPL
subtracting ǫt by Equation (11), will not larger than α. Based
on this idea, we design Algorithm 7 for solving such ǫt.

Algorithm 7: Achieving α-DPT by upper bound

Input: PB
i and PF

i ; α (desired privacy level).
Output: Privacy budgets ǫt satisfying α-DPT at each t

1 Find qMB , dMB using Algorithm 4 with PB
i ;

2 Find qMF , dMF using Algorithm 4 with PF
i ;

3 bingo = false; range = α; e = 0.5 ∗ α;
4 do //binary search.

5 range = 0.5 ∗ range;
6 Calculate supB by Algorithm 6 with e and qMB , dMB ;
7 Calculate supF by Algorithm 6 with e and qMF , dMF ;
8 if supB + supF − e = α then bingo = true
9 else if supB + supF − e > α then e = e− range

10 else e = e + range
11 while bingo = false
12 return ǫt = e

Achieving α-DPT by privacy leakage quantification.
Algorithm 7 allocates privacy budgets in a conservative
way: when T is short, the privacy leakage may not be
increased to the supremum. We now design Algorithm 8
to overcome this drawback. Observing the supremum of
backward privacy loss in Figure 5(c)(d), BPL at the first time
point is much less than the supremum. Similarly, it is easy to
see that FPL at the last time point is much less than its supre-
mum. Hence, we attempt to allocate more privacy budgets
toM1 andMT so that the temporal privacy leakage at every
time points are exactly equal to the desired level. Specifically,
if we want that BPL at two consecutive time points are
exactly the same value αB , i.e., BPL(Mt) = BPL(Mt+1) = αB ,
we can derive that ǫt = ǫt+1 for t ≥ 2 (it is true for t = 1 only
when LB(·) = 0). Applying the same logic to FPL, we have a
new strategy for allocating privacy budgets: assigning larger
privacy budgets at time points 1 and T , and constant values
at time [2, T ] to make sure that BPL at time points [1, T − 1]
are the same, denoted by αB , and FPL at time [2, T ] are the
same, denoted by αF . Hence, we have ǫ1 = αB and ǫT = αF .
Let the value of privacy budget at [2, T ] be ǫm. We have (i)
LB(αB)+ǫm = αB , (ii) LF (αF )+ǫm = αF and (iii) αB+αF−ǫm = α.
Combing (i) and (iii), we have Equation (26); Combing (ii)
and (iii), we have Equation (27).

LB(αB) + αF = α (26)

LF (αF ) + αB = α (27)

Based on the above idea, we design Algorithm 8 to solve
αB and αF . Since αB should be in [0, α], we heuristically
initialize αB with 0.5 ∗ α in Line 3 and then use binary
search to find appropriate αB and αF that satisfy Equations
(26) and (27).

Algorithm 8: Achieving α-DPT by quantification

Input: PB
i and PF

i ; α (desired privacy level for user i).
Output: Privacy budgets ǫt, t ∈ [1, T ] satisfying α-DPT at each t

1 Find qMB , dMB , aMB using Algorithm 4 with PB
i ;

2 Find qMF , dMF , aMF using Algorithm 4 with PF
i ;

3 bingo = false; range = α; aB = 0.5 ∗ α;
4 do //binary search.

5 range = 0.5 ∗ range ;
6 Find LB by Algorithm 5 with aB , qMB , dMB , aMB , ǫ = 0;
7 aF = α− LB ; //Equation (26).
8 Find LF by Algorithm 5 with aF with qMF , dMF , aMF , ǫ = 0;
9 if LF + aB = α then bingo = true

10 else if LF + aB < α then aB = aB + range //Equation (27).
11 else aB = aB − range
12 while bingo = false

13 return ǫ1 = aB ; ǫt = aB + aF − α, t ∈ [2, T − 1]; ǫT = aF

6 EXPERIMENTAL EVALUATION

In this section, we design experiments for the following: (1)
verifying the runtime and correctness of our privacy leakage
quantification algorithms, (2) investigating the impact of the
temporal correlations on privacy leakage and (3) evaluating
the data release Algorithms 7 and 8. We implemented all the
algorithms3 in Matlab2017b and conducted the experiments
on a machine with an Intel Core i7 2.6 GHz CPU and 16G
RAM running macOS High Sierra.

6.1 Runtime of Privacy Quantification Algorithms

In this section, we compare the runtime of our algorithms
with IBM ILOG CPLEX4, which is a well-known software
for solving optimization problems, e.g., the linear-fractional
programming problem (19)∼(21) in our setting.

For verifying the correctness of three privacy quantifying
algorithms, Algorithm 1, Algorithm 3 and Algorithm 5, we
generate 100 random transition matrices with dimension
size n = 30 and comparing the calculation results with the
one solving LFP problem using CPLEX. We verified that all
results obtained from our algorithms are identical to the one
using CPLEX w.r.t. the same transition matrix.

For testing the runtime of our algorithms, we run them
30 times with randomly generated transition matrices, and
run CPLEX one time (because it is very time-consuming),
and then calculate the average runtime for each of them.
Since Algorithm 3 needs parameters that are precomputed
by Algorithm 2, and Algorithm 5 needs L(·) that can be
obtained using Algorithm 4, we also test the runtime of
these precomputations. The results are shown in Figure 6.

Runtime vs. n. In Figures 6(a) and (b), we show the
runtime of privacy quantification algorithms and precom-
putation algorithms, respectively, In Figure 6(a), each algo-
rithm takes inputs of α = 0.1 and n×n random probability
matrices. The runtime of all algorithms increase along with

3. Souce code: https://github.com/brahms2013/TPL
4. http://www-01.ibm.com/software/commerce/optimization/cplex-

optimizer/. We use version 12.7.1.
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Fig. 6. Runtime of Temporal Privacy Leakage Quantification Algorithms.

n because the number of variables in our LFP problem
is n. The proposed Algorithms 1, 3 and 5 significantly
outperform CPLEX. In Figure 6(b), we test precomputation
procedures. We observed that all algorithms are increasing
with n, but Algorithm 4 is more susceptible to am. Algo-
rithm 4 with a larger am results in higher runtime because
it performs binary search in [0, am].

These results are in line with our complexity analysis,
which shows the complexity of Algorithms 2 and 4 are O(n3)

and O(n2 logn+m logm) (m is the amount of transition points
and increasing with am), respectively. However, when n or
am is large, pre-computation Algorithms 2 and 4 are time-
consuming because we need to find optimal solutions for
n∗(n−1) LFP problems given a n-dimension transition ma-
trix. This can be improved by advanced computation tools
such as parallel computing because here each LFP problem
is independently solved, and such computation only needs
to be run one time before starting to release private data.
Another interesting way to improve the runtime is to find
the relationship between the optimal solutions of different
LFP problems given a transition matrix (so that we can
prune some computations). We defer this to future study.

Runtime vs. T . In Figure 6(c), we test the runtime of
each privacy quantification algorithm integrated with their
precomputations over different length of time points. We
want to know how can we benefit from these precompu-
tations over time. All algorithms take inputs of 100 × 100
matrices and ǫt = 0.1 for each time point t. The parameters
of Algorithm 4 need to be initialized by Algorithm 2, so we
take them as an integrated module along with Algorithm 5.
It shows that, Algorithm 1 runs fast if T is small. Algorithm
3 becomes the most preferable if T is in [5, 300]. However,
when T is larger than 300, Algorithm 5 with its precom-
putation (Algorithm 4 with am = (T + 1) ∗ ǫt which is the
worst case of supremum) is the fast one and its runtime is
almost constant with the increase of T . Therefore, there is
no best algorithm in efficiency without a known T , but we
can choose appropriate algorithm adaptively.

Runtime vs. α. In Figure 6(d), we show that, a larger
previous BPL (or the next FPL), i.e., α, may lead to higher
runtime of Algorithm 1, whereas other algorithms are rel-
atively stable for varying α. The reason is that, when α is
large, Algorithm 1 may take more time in Lines 9 and 10
for updating each pair of qj ∈ q+ and dj ∈ d+ to satisfy
Inequality (22). An update in Line 10 is more likely to occur
due to a large α because q(eα−1)+1

d(eα−1)+1
is increasing with α.

However, such growth of runtime along with α will not last
so long because the update happens n times in the worse
case. As shown in Figure 6(b), when α > 10, the runtime of

Algorithm 1 becomes stable.

6.2 Impact of Temporal Correlations on TPL

In this section, for the ease of exposition, we only present the
impact of temporal correlations on BPL because the growth
of BPL and FPL are in the same way.

The setting of temporal correlations. To evaluate if our
privacy loss quantification algorithms can perform well un-
der different degrees of temporal correlations, we find a way
to generate the transition matrices to eliminate the effect of
different correlation estimation algorithms or datasets. First,
we generate a transition matrix indicating the “strongest”
correlation that contains probability 1.0 in its diagonal
cells (this type of transition matrix will lead to an upper
bound of TPL). Then, we perform Laplacian smoothing [20]
to uniformize the probabilities of Pi (the uniform transition
matrix will lead to an low bound of TPL). Let pjk be an
element at the jth row and kth column of the matrix Pi. The
uniformized probabilities p̂jk are generated using Equation
(28), where s is a positive parameter that controls the
degrees of uniformity of probabilities in each row. Hence,
a smaller s means stronger temporal correlation. We note
that, different s are only comparable under the same n.

p̂jk =
pjk + s

∑
n
u=1 (pju + s)

(28)

We examined s values ranging from 0.005 to 1 and set
n to 50 and 200. Let ε be the privacy budget of Mt at each
time point. We test ε = 1 and 0.1. The results are shown in
Figure 7 and are summarized as follows.

Privacy Leakage vs. s. Figure 7 shows that the privacy
leakage caused by a non-trivial temporal correlation will
increase over time, and such growth first increases sharply
and then remains stable because it is gradually close to
its supremum. The increase caused by a stronger temporal
correlations (i.e., smaller s) is steeper, and the time for the
increase is longer. Consequently, stronger correlations result
in higher privacy leakage.

Privacy Leakage vs. ε. Comparing Figures 7(a) and
(b), we found that 0.1-DP significantly delayed the growth
of privacy leakage. Taking s = 0.005, for example, the
noticeable increase continues for almost 8 timestamps when
ε = 1 (Figures 7(a)), whereas it continues for approximately
80 timestamps when ε = 0.1 (Figures 7(b)). However, after
a sufficient long time, the privacy leakage in the case of
ε = 0.1 is not substantially lower than that of ε = 1 under
stronger temporal correlations. This is because, although the
privacy leakage is eliminated at each time point by setting a
small privacy budget, the adversaries can eventually learn
sufficient information from the continuous releases.

Privacy Leakage vs. n. Under the same s, TPL is smaller
when n (dimension of the transition matrix) is larger, as
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Fig. 7. Evaluation of BPL under different degrees of correlations.
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Fig. 8. Privacy Budget Allocation Schemes for 1-DPT .

shown in the lines s = 0.005 with n = 50 and n = 200 of
Figure 7. This is because the transition matrices tend to be
uniform (weaker correlations) when the dimension is larger.

6.3 Evaluation of Data Releasing Algorithms

In this section, we first show a visualization of privacy
allocation of Algorithms 7 and 8, then we compare the data
utility in terms of Laplace noise.

Figure 8 shows an example of budget allocation, w.r.t.
PB

i =
(

0.8 0.2
0.2 0.8

)
and PF

i =
(

0.8 0.2
0.1 0.9

)
. The goal is 1-DPT . It is

easy to see that Algorithm 8 has better data utility because
it exactly achieves the desired privacy level.

Figure 9 shows the data utility of Algorithms 7 and 8
with 2-DPT . We calculate the absolute value of the Laplace
noise with the allocated budgets (as shown in Figure 8).
Higher value of noise indicates lower data utility. In Figure
9(a), we test the data utility under backward and forward
temporal correlation both with parameter s = 0.001, which
means relatively strong correlation. It shows that, when T
is short, Algorithm 8 outperforms Algorithm 7. In Figure
9(b), we investigate the data utility under different degree
of correlations. The dash line indicates the absolute value
of Laplace noise if no temporal correlation exists (privacy
budget is 2). It is easy to see that the data utility significantly
decays under strong correlation s = 0.01.

7 RELATED WORK

Dwork et al. first studied differential privacy under continual
observation and proposed event-level/user-level privacy [4]
[5]. A plethora of studies have been conducted to investigate
different problems in this setting, such as high dimensional
data [1] [8], infinite sequence [7] [21] [22], and real-time
publishing [6] [23]. To the best of our knowledge, no study
has reported the risk of differential privacy under temporal
correlations for the continuous aggregate release setting.
Although [24] have considered a similar adversarial model
in which the adversaries have prior knowledge of temporal
correlations represented by Markov chains, they proposed
a mechanism extending differential privacy for releasing
a private location, whereas we focus on the scenario of
continuous aggregate release with DP.

A
b

s
o

lu
te

 V
a

lu
e

 o
f 
L

a
p

la
c
e

 N
o

is
e

0

8.75

17.5

26.25

35

5 10 50

Algorithm 7 Algorithm 8

A
b

s
o

lu
te

 V
a

lu
e

 o
f 
L

a
p

la
c
e

 N
o

is
e

0

1

2

3

4

0.01 0.1 1

Algorithm 7 Algorithm 8

(a) n=50, s=0.001 (b) n=50, T=10

T (length of release time) s (degree of correlations)

Fig. 9. Data utility of 2-DPT mechanisms.

Several studies have questioned whether differential pri-
vacy is valid for correlated data. Kifer and Machanavajjhala
[25] [16] [17] first raised the important issue that differential
privacy may not guarantee privacy if adversaries know the
data correlations between tuples. They [25] argued that it is
not possible to ensure any utility in addition to privacy with-
out making assumptions about the data-generating distribu-
tion and the background knowledge available to an adver-
sary. To this end, they proposed a general and customizable
privacy framework called PufferFish [16] [17], in which the
potential secrets, discriminative pairs, and data generation
need to be explicitly defined. Song et al. [14] proposed
Markov Quilt Mechanism when the correlations can be
modeled by Bayesian Network. Yang et al. [12] investigated
differential privacy on correlated tuples described using a
proposed Gaussian correlation model. The privacy leakage
w.r.t. adversaries with specified prior knowledge can be
efficiently computed. Zhu et al. [26] proposed correlated
differential privacy by defining the sensitivity of queries on
correlated data. Liu et al. [13] proposed dependent differen-
tial privacy by introducing dependence coefficients for ana-
lyzing the sensitivity of different queries under probabilistic
dependence between tuples. Most of the above works dead
with correlations between users in the database, i.e., user-
user correlations, in the setting of one-shot data release,
whereas we deal with the correlation among single user’s
data at different time points, i.e., temporal correlations, and
focusing on the dynamic change of privacy guarantee in
continuous data release.

On the other hand, it is still controversial [27] what
should be the guarantee of DP on correlated data. Li et
al. [27] proposed Personal Data Principle for clarifying the
privacy guarantee of DP on correlated data. It states that
an individual’s privacy is not violated if no data about
the individual is used. By doing this, one can ignore any
correlation between this individual’s data and other users’
data, i.e.,user-user correlations. On the other hand, the
question of “what is individual’s data”, or “what should
be an appropriate notion of negiboring databases” is tricky
in many application scenarios such as genomic data. If we
apply Personal Data Principle to the setting of continuous
data release, event-level privacy is not a good fit for protect-
ing individual’s privacy because a user’s data at each time
point is only a part of his/her whole data in the streaming
database. Our work shares the same insight with Personal
Data Principle on this point: we show that the privacy
loss of event-level privacy may increase over time under
temporal correlation, while the guarantee of user-privacy is
as expected. We note that, when the data stream is infinite
or the end of data release is unknown, we can only resort
to event-level privacy or w-event privacy [7]. Our work
provides useful tools against TPL in such setting.
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8 CONCLUSIONS

In this paper, we quantified the risk of differential privacy
under temporal correlations by formalizing, analyzing and
calculating the privacy loss against adversaries who have
knowledge of temporal correlations. Our analysis shows
the privacy loss of event-level privacy may increase over
time, while the privacy guarantee of user-level privacy
is as expected. We design fast algorithms for quantifying
temporal privacy leakage which enables private data release
in real-time. This work opens up interesting future research
directions, such as investigating the privacy leakage under
temporal correlations combining with other type of corre-
lation models, and use our methods to enhance previous
studies that neglected the effect of temporal correlations in
continuous data release.
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APPENDIX A

PROOF OF THEOREM 2

We need to prove

TPL(AT
i ,Mt

) = (29)

sup
lt,lt

i
′

(

sup
r1

log
Pr(r1|lti, Dt

K)

Pr(r1|lti
′, Dt

K)
+ · · ·+ sup

rT

log
Pr(rT |lti, Dt

K)

Pr(rT |lti
′, Dt

K)

)

(30)

= sup
lt,lt

i
′
,r1

log
Pr(r1|lti, Dt

K)

Pr(r1|lti
′, Dt

K)
+ · · ·+ sup

lt,lt
i
′
,rT

log
Pr(rT |lti, Dt

K)

Pr(rT |lti
′, Dt

K)
(31)

= sup
r1,...,rt,

lti,l
t
i
′

log
Pr(r1, ..., rt|lti, Dt

K)

Pr(r1, ..., rt|lti
′, Dt

K)
+ sup

rt,...,rT ,

lti,l
t
i
′

log
Pr(rt, ..., rT |lti, Dt

K)

Pr(rt, ..., rT |lti
′, Dt

K)

− sup
rt,lt

i
,lt
i
′
log

Pr(rt|lti, Dt
K)

Pr(rt|lti
′, Dt

K)
(32)

Because rt at different t ∈ [1, T ] are independent given
Dt = {lti , Dt

K} or Dt′ = {lti
′
, Dt
K}, we can derive Equation

(30) from Equation (29), and derive Equation (32) from
Equation (31). The remaining question is how to prove the
derivation of Equation (31) from Equation (30). It is true
because Mt is the same DP mechanism at different t, and
the output domains Range(Mk) = Range(Mj) for any
k, j ∈ [1, T ]. We explain in details in below.

Assume we have {l̄ti , l̄t
′

i } maximizing the first item in Equa-
tion (31) with a certain value of r1, i.e.,

{l̄ti,
¯
lt

′
i } = argmax

¯
lt
i
,
¯

lt
′

i

log
Pr(r1|lti, Dt

K)

Pr(r1|lti
′, Dt

K)
.

Then, {l̄ti , l̄t
′

i } also maximizes other items in Equation
(31) such as sup

rk,lti,l
t
i
′
log

Pr(rk|lti,D
t
K)

Pr(rk|lti
′
,Dt

K)
with a certain value of rk

where k ∈ [1, T ].
Formally, that is to say, there exists r̄k ∈ Range(Mk), for
any k ∈ [1, T ], that we have

log
Pr(r̄k|l̄ti, D

t
K)

Pr(r̄k| ¯lti
′, Dt

K)
= sup

lt,lt
i
′
,rk

log
Pr(rk|lti, Dt

K)

Pr(rk|lti
′, Dt

K)
.

Hence, we can derive Equation (31) from Equation (30).
The theorem follows.5

APPENDIX B

PROOF OF THEOREM 3

Proof. According to Definition 5 of TPL, the overall privacy
leakage of Mt and Mt+1 in terms of DPT are

sup

Dt,Dt
M

,...,D
t+j
M

′
,r1,...,rT

log
Pr(r1, . . . , rT |Dt, Dt+1)

Pr(r1, . . . , rT |Dt′, Dt+1′)

= sup
Dt,Dt′,

r1,...,rt

log
Pr(r1, . . . , rt|Dt)

Pr(r1, . . . , rt|Dt′)
+ sup

Dt,Dt′,

rt+1,...,rT

log
Pr(rt+1, . . . , rT |Dt+1)

Pr(rt+1, . . . , rT |Dt+1′)

= BPL(Mt
) + FPL(Mt+1

)

= α
B
t + α

F
t+j .

Therefore, the theorem follows when j = 1.

According to Definition 9, the overall privacy leakage of
Mt, . . . ,Mt+j in terms of DPT is as follows.

5. We note that, if the DP mechanisms at each time are significantly
different, or the sensitivity of queries at each time are different, Equa-
tion (31) may not be the supremum of TPL, but an upper bound of
TPL.

sup
Dt,...,Dt+j ,

Dt′,...,Dt+j ′,

r1,...,rT

log
Pr(r1, . . . , rT |Dt, . . . , Dt+j)

Pr(r1, . . . , rT |Dt′, . . . , Dt+j ′)

= sup
Dt,Dt′,

r1,...,rt

log
Pr(r1, . . . , rt|Dt)

Pr(r1, . . . , rt|Dt′)
+ sup

Dt+j ,Dt+j ′,

rt+j ,...,rT

log
Pr(rt+j , . . . , rT |Dt+j)

Pr(rt+1, . . . , rT |Dt+j ′)

+ sup
Dt+1,

Dt+1′
,

rt+1

log
Pr(rt+1|Dt+1)

Pr(rt+1|Dt+1′)
+ · · ·+ sup

Dt+j−1,

Dt+j−1′
,

rt+j−1

log
Pr(rt+j−1|Dt+j−1)

Pr(rt+j−1|Dt+j−1′)

= BPL(Mt
) + FPL(Mt+j

) + PL0(Mt+1
) + · · · PL0(Mt+j−1

)

= α
B
t + α

F
t+j +

k=j−1∑

k=1

ǫt+k.

Therefore, the theorem follows when j ≥ 2.

APPENDIX C

PROOF OF THEOREM 5

We need Dinkelbach’s Theorem and Lemma 1 in our proof.

Theorem 12 (Dinkelbach’s Theorem [28]). In a linear-
fractional programming problem, suppose that the variable vector
is x and the objective function is represented as Q(x)

D(x)
. Vector x∗

is an optimal solution if and only if

max{Q(x)− λ ∗D(x)} = 0 where λ =
Q(x∗)

D(x∗)
. (33)

Lemma 1. For the following maximization problem (k1, ..., kn ∈

R) with the same constraints as the ones in the linear-fractional
programming (19)∼(21),

maximize k1x1 + · · ·+ knxn

subject to e
−αB

t−1 ∗ xk ≤ xj ≤ e
αB
t−1 ∗ xk,

0 < xj < 1 and 0 < xk < 1,

where xj , xk ∈ x, j, k ∈ [1, n].

an optimal solution is as follows: if ki > 0, let xi = eα
B
t−1m where

m is a positive real number; if ki ≤ 0, let xi = m.

Proof. Without loss of generality, we suppose that the small-
est value in the optimal solution is xn. Let yj be xj

xn
for

j ∈ [1, n − 1]; then, 1 ≤ yj ≤ eα
B
t−1 . Replacing xj with yj

and setting xn = m, we have a new objective function
1
m

∗ (k1y1 + · · · + kn−1yn−1 + kn) whose solution is equiv-
alent to the original one. Because the only constraint is

1 ≤ yj ≤ eα
B
t−1 , the following is an optimal solution for the

maximum objective function: if kj > 0, let yj = eα
B
t−1 ; if kj ≤ 0,

let yj = 1.

Proof of Theorem 5. We first prove that, under the conditions
shown in Theorem 5, i.e., Inequalities (22) and (23), an
optimal solution of the problem (19)∼(21) is:

x
∗ =

{

xj = eα
B
t−1 ∗m xj ∈ x+

xk = m xk ∈ x−
, (34)

where m is a positive real number.
In combination with Dinkelbach’s Theorem, we rewrite

our objective function as Q(x)
D(x)

in which Q(x) = qx and
D(x) = dx. Substituting x∗ of Equation (34) into Q(x)

and D(x), we have Q(x∗) = q(eα
B
t−1 − 1) + 1 and D(x∗) =

d(eα
B
t−1 − 1) + 1 (recall that q =

∑

q+ and d =
∑

d+. Then,
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we can rewrite Inequalities (22) and (23) in Theorem 5 as
follows.

qj

dj
>

Q(x∗)

D(x∗)
, ∀j ∈ [1, n] where qj ∈ q

+
, dj ∈ d

+ (35)

qk

dk
≤

Q(x∗)

D(x∗)
, ∀k ∈ [1, n] where qk ∈ q

−
, dk ∈ d

− (36)

Because D(x∗) > 0, to prove x∗ in (34) is an optimal
solution for Q(x)

D(x)
, we only need to prove the maximum value

of the following equation is equal to 0.

maximize {D(x∗)Q(x)−Q(x∗)D(x)} = 0. (37)

We expand the above equation as follows.

Eqn.(37) = D(x∗)(q+
x

+ + q
−
x

−)−Q(x∗)(d+
x

+ + d
−
x

−)

=
(

D(x∗)q+ −Q(x∗)d+)
x

+ +
(

D(x∗)q− −Q(x∗)d−)
x

−

(38)

By Equations (35) and (36)), we have D(x∗)q+−Q(x∗)d+ >

0 and D(x∗)q− − Q(x∗)d− ≤ 0. Hence, according to Lemma
1, we can obtain the maximum value in Equation (37) by

setting x+ = [eα
B
t−1 ∗ m] and x− = [m] where m is a positive

real number. We obtain the maximum value in Equation
(37).

(

(D(x∗)q −Q(x∗)d)eεm+
(

D(x∗)(1− q)−Q(x∗)(1− d))
)

m

=
(

D(x∗)(qeε + (1− q))−Q(x∗)(deε + (1− d))
)

m

=
(

D(x∗)Q(x∗)−Q(x∗)D(x∗)
)

m = 0

Therefore, by Dinkelbach’s Theorem, x∗ is an optimal so-
lution for the problem (19)∼(21). Substituting them into
the objective function (19), we obtain the maximum value
q(e

αB
t−1−1)+1

d(e
αB
t−1−1)+1

.

APPENDIX D

PROOF OF COROLLARY 2

Proof. The proof is by contradiction.
First, assume that q = d, i.e.,

∑

q+ =
∑

d+. That is,
there exist qj ∈ q+ and dj ∈ d+ satisfying qj

dj
≤ 1. This

leads to a contradiction to Inequality (22) because of qi
di

>

q(e
αB
t−1−1)+1

d(e
αB
t−1−1)+1

= 1. Hence, q = d is false.

Second, assume that q < d, i.e.,
∑

q+ <
∑

d+. Since
∑

(q+ + q−) =
∑

(d+ + d−) = 1, we have
∑

q− >
∑

d−.
That is, there exist qk ∈ q− and dk ∈ d− satisfying qk

dk
> 1.

This leads to a contradiction to Inequality (23) because of
qk
dk

<
q(e

αB
t−1−1)+1

d(e
αB
t−1−1)+1

< 1. Hence, q < d is false.

Therefore, q > d is true. Then, we have q(e
αB
t−1−1)+1

d(e
αB
t−1−1)+1

> 1. By

Inequality (22), it follows that qj
dj

>
q(e

αB
t−1−1)+1

d(e
αB
t−1−1)+1

> 1 in which

qj ∈ q+ and dj ∈ d+.

APPENDIX E

PROOF OF COROLLARY 3

Proof. The corollary is true because of Equation (24).

APPENDIX F

PROOF OF THEOREM 6

Proof. It is clear that, if qi = di for i ∈ [1, n] in q and d, Line 9
in Algorithm 1 is always true so that the flag update is alway
true until all bits are removed from q+ and d+. That is to
say, q+ and d+ are empty. Hence, in this case, Algorithm 1
will be terminated with empty q+ and d+, which result in
q = d = 0. Since for any two rows q and d in the transition
matrix Pi, we have q = d = 0, it follows L(·) = 0.

APPENDIX G

PROOF OF THEOREM 7

Proof. For such two rows q and d in Pi that satisfy qi = 1
and di = 0, it is easy to see that Algorithm 1 results in
q = 1, d = 0 and the flag update is false. Hence, we have
a maximum solution of α (i.e., αB

t−1 or αF
t+1) for such LFP

problem. Since the maximum solution of LFP problem w.r.t.
any two other rows in Pi cannot be larger than α, L(·) is an
identical function, i.e., L(x) = x.

APPENDIX H

PROOF OF THEOREM 8

Proof. According to Corollary 2, we have q(eα)+1
d(eα)+1

> 1 because
of q > d. By the pigeonhole principle, there only exists
k cases as shown in the theorem. We only need to pove
that the statements about q and d for each case are true.
In case k, it is clear that q1

d1
>

q1(e
α)+1

d1(eα)+1
. In case k − 1, the

final q+ and d+ are impossible to include {q3, · · · , qn} and
{d3, · · · , dn}, respectively; otherwise, it violates Inequality
(22). Additionally, the final q+ and d+ in case k − 1 are
impossible to exclude any elements in {q1, q2} and {d1, d2},
respectively; otherwise, it violates Inequality (23). Similarly,
we can verfiy all other cases are true.

APPENDIX I

PROOF OF THEOREM 9

Proof. We now show that the pairs of q and d will transit
from the case 1 to case k in Theorem 8 when α is in-
creasing. When α = 0, it is easy to see that q(e0−1)+1

d(e0−1)+1
= 1;

hence, q and d fall into case 1. We can see that q(eα−1)+1
d(eα−1)+1

continues to increase along with α untill α = α1 which
makes q(eα1−1)+1

d(eα1−1)+1
=

qk
dk

(i.e., α1 = log(
qk−dk

q∗dk−d∗qk
+ 1)), where

q = qk =
∑k

i=1 qi and d = dk =
∑k

i=1 di. If α = α1, q and d
fall into case 2. Hence, when 0 ≤ α < α1, q and d are the
ones in case 1. We can also find the transition point α2 by
solving q(eα2−1)+1

d(eα2−1)+1
=

qk−1
dk−1

(i.e., α2 = log(
qk−1−dk−1

q∗dk−1−d∗qk−1
+ 1)),

where q =
∑k−1

i=1 qi and d =
∑k−1

i=1 di. If α = α2, q and d fall into
case 3. Hence, when α1 ≤ α < α2, q and d are the ones in case
2. Similarly, we can use the same logic to find α3, · · · , αk−1,
which are called transition points. If α ≥ αk−1, q and d fall
into the case k because of q1

d1
>

q1(eα−1)+1

d1(eα−1)+1
regardless of how

large α is. Therefore, given q and d, fq,d(α) =
q(eα−1)+1
d(eα−1)+1

is a
piecewise function whose sub-domains and coefficients of q
and d are shown in Equation (25).
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APPENDIX J

PROOF OF THEOREM 10

Proof. It is easy to see that functions f(α) = q(eα−1)+1
d(eα−1)+1

and f ′(α) = q′(eα−1)+1
d′(eα−1)+1 are at most one intersection when

α > 0. Assume there is an intersection in [a1, a2]. Since
f(a1) ≥ f(a1) and both of f and f ′ are increasing functions,
we have f(a2) ≤ f ′(a2), which is in contradiction with the
given condition f(a2) ≥ f ′(a2). Hence, the assumption fails
and they have no intersection in [a1, a2]. In other words,
f(α) is always larger than f ′(α) when a1 < α < a2.

APPENDIX K

PROOF OF THEOREM 11

Proof. We denote the supremum of BPL or FPL over time
by α. If d = 0 and q = 1, it is easy to see that LB(·) =
LF (·) = 1 ∗ ·. In other words, BPL and FPL will increase
linearly without limit; hence, F does not exist. If BPL (or
FPL) has a limit, since the current privacy leakage should
be calculated based on the previous one (or the next one for
FPL), we have α = LB(α) + ǫ (see Equations (13) or (15)),
namely α = log

q(eα−1)+1
d(eα−1)+1

+ ǫ. By expanding this equation
and letting F be eα. we have an equation with a variable F ,
which F > 1.

dF2 + (qeǫ + d− 1)F + (qeǫ − eǫ) = 0 (39)

Hence, the logarithm of the solution (if it exists) in the
above equation is the supremum of BPL or FPL. If d = 0

and q 6= 1, we have F = (1−q)eǫ
1−qeǫ . To ensure a positive

F , because of (1 − q)eǫ > 0, we need 1 − qeǫ > 0,
i.e., ǫ < log(1/q). Therefore, when d = 0, q 6= 1 and
ǫ ≥ log(1/q), the supremum does not exist; when d = 0,

q 6= 1 and ǫ < log(1/q), we have the supremum log (1−q)eǫ
1−qeǫ .

If d 6= 0, by solving the quadratic equation (39), we can

obtain a positive solution:

√
4deǫ(1−q)+(d+qeǫ−1)2+d+qeǫ−1

2d .
It is easy to verify that this solution always exist and is
greater than 1. Therefore, the theorem follows.
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