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When examining dynamics occurring at non-zero temperatures, both energy and entropy must be taken into
account while describing activated barrier crossing events. Furthermore, good reaction coordinates need to
be constructed to describe different metastable states and the transition mechanisms between them. Here
we use a physics-based machine learning method called the State Predictive Information Bottleneck (SPIB)
to find non-linear reaction coordinates for three systems of varying complexity. The SPIB is able to predict
correctly an entropic bottleneck for an analytical flat-energy double-well system and identify the entropy-
and energy-dominated pathways for an analytical four-well system. Finally, for a simulation of benzoic acid
permeation through a lipid bilayer, SPIB is able to discover the the entropic and energetic barriers to the
permeation process. Given these results, we thus establish that SPIB is a reasonable and robust method for
finding the important entropy and energy/enthalpy barriers in physical systems, which can then be used for
enhanced understanding and sampling of different activated mechanisms.

I INTRODUCTION

The separation of driving forces for a generic chemical
mechanism into its energetic and entropic components
has been a topic of continued interest over the decades.
This is relevant to diverse problems such as solute
aggregation,1,2; drug, ligand binding to proteins3,4 and
other biomolecules5,6; nucleation7,8; molecular perme-
ation through membranes9–11; and entropy-driven phase
transitions12–15. This separation gives fundamental in-
sight into the nature of interactions stabilizing or desta-
bilizing a given material, and can guide further design
strategies.

For systems evolving at a non-zero temperature, the
energy of the system alone does not determine the stabil-
ity of different configurations. In addition to the change
in energy, ∆U , or enthalpy, ∆H, depending on whether
the system is at constant volume or constant pressure
conditions, an entropic contribution, −T∆S, driven by
the system’s temperature, must also be taken into ac-
count. Restricting our attention for the sake of argument
to systems at constant pressure that adhere to Kramers’
rate law, the reaction rate at a temperature T is pro-
portional to the exponential of the free energy barrier

∆G:16 k ∝ exp
[
− ∆G
kBT

]
= exp

[
−∆H
kBT

]
exp

[
∆S
kB

]
where

kB is Boltzmann’s constant. One can then disentan-
gle entropic and enthalpic contributions by noting that
the rate thus defined can be viewed as the product of a
temperature independent term driven by entropy, with
all enthalpic contributions restricted to the temperature-
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dependent term:

ln

(
k

k′

)
=

∆H

kB

(
1

T ′
− 1

T

)
, (1)

where k, k′ denote rates at two temperatures T and T ′.
However, using Eq. 1 to calculate the enthalpic and en-

tropic contributions to the free energy is burdensome, as
it requires running experiments or simulations at multiple
temperatures, which is likely difficult for myriad reasons.
Furthermore, this approach would still not give insight
into the molecular origins of the enthalpic and entropic
parts of the rate constant. Thus, there is clear need to
develop theoretical and computational frameworks that
can give direct molecular and atomic level understand-
ing of entropic and enthalpic or energetic driving forces
without having to repeat expensive all-atom simulations
at different temperatures.

In this work we demonstrate a computational frame-
work that allows quantifying the energetic and entropic
contributions to a given chemical process of interest from
all-atom unbiased or biased molecular dynamics (MD)
simulations performed at a single temperature. Given
the importance of this problem,9,11,17–20 several other ap-
proaches have been proposed; however, we would argue
that no single approach addresses under the same um-
brella both of the following key challenges:

1. Chemical processes often involve a multiplicity of
pathways14,17,21–30 with differing energetic and en-
tropic contributions. The approach should be able
to quantify these for the different pathways sep-
arately instead of just one overall trend and learn
low-dimensional descriptors corresponding to them.

2. Many processes are effectively rare events when
simulated in all-atom femtosecond resolution. Sim-
ulating these thus require specialized enhanced
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sampling methods, which work better if one has
prior knowledge of approximate reaction coordi-
nates for the different slow processes mentioned in
the challenge above31–33.

Commonly used dimensionality reduction techniques
such as time-lagged independent component analysis
(TICA)34, or Markov state models35 can assist with the
first challenge above as they can ascertain the dominant
slow modes in a given system. However, they need prior
access to extensive sampling, thereby not offering a solu-
tion to the second challenge. We seek an approach that is
able to learn such slow, multi-dimensional degrees of free-
dom corresponding to different pathways from prelimi-
nary biased or unbiased data, and perform further biased
sampling to enhance fluctuations along these pathways36.

Here, we utilize the state predictive information bot-
tleneck (SPIB)37 that meets both of these challenges to-
gether. SPIB has the ability to both find relevant multi-
dimensional reaction coordinates and perform enhanced
sampling along them, even for simulations of rare events.
We show here how it can be used to learn reaction co-
ordinates for a set of systems that are known to pos-
sess distinct entropic and energetic barriers, clearly de-
marcating different pathways and their respective ener-
getic/entropic components.

The SPIB protocol finds the relevant reaction co-
ordinates by passing the input order parameters
through a modified variational autoencoder38 and en-
hances the sampling of the barrier regions by running
metadynamics39,40 along the optimized SPIB latent co-
ordinate(s). This approach is in contrast to pure TICA,
which does not intrinsically enhance the sampling along
the discovered slow reaction coordinate(s), and umbrella
sampling41, which enhances the sampling without discov-
ering the reaction coordinate. Furthermore, SPIB, like its
predecessor RAVE (re-weighted autoencoded variational
Bayes)42,43, is used to iteratively update the discovered
reaction coordinate to enable the sampling of rare events
with a feasible amount of compute time. That is, rounds
of SPIB can be performed to iteratively optimize the dis-
covered reaction coordinates44.

We show that without much prior knowledge the SPIB
approach is able to separate different pathways and dis-
tinguish the primarily entropic from the primarily ener-
getic pathway. We demonstrate this result for a pair of
analytical potentials as well as in the description of ben-
zoic acid permeation through a membrane. We compare
the SPIB results to TICA on all problems clearly demon-
strating the advantage of using SPIB for the systems
studied here. These results indicate the SPIB approach is
useful for finding the entropic and energetic reaction co-
ordinates, even though there is no explicit accounting of
either the energy or entropy in the SPIB approach. Com-
bined with the SPIB’s ability to discover and enhance the
sampling along these entropic and energetic reaction co-
ordinates when coupled with metadynamics, we propose
the SPIB as a powerful protocol to sample free energy
barriers, no matter their thermodynamic origins.

II METHODS

II.A State Predictive Information Bottleneck (SPIB)

The formalism for the SPIB was laid out in Ref. 37,
and the method is an extension of the previously devel-
oped reweighted autoencoded variational Bayes (RAVE)
technique42,45. Briefly, the SPIB takes as input a set of
coordinates from a time-ordered, dynamical trajectory
X(t), and finds a reduced representation of the dynamics
z(t) that maximizes the following loss function L, which
can be seen as related to the information bottleneck loss
function LIB and hence the difference of two mutual in-
formation terms as follows37:

LIB ≡ I(z,y)− βI(X, z) (2)

≥
N∑
k=1

log (p(y(k + s)|z(k)))− β log

(
p(z(k)|X(k))

p(zθ)

)
.

Maximization of the loss function in Eq. 2 ensures
that the SPIB discovers a low-dimensional, compressed
representation of the input coordinates that is maximally
predictive of the state of the system, y, at a lagtime
s in the future, y(k + s). The parameter β ∈ [0,∞)
serves the same function as in a traditional variational
autoencoder38,46; tuning β governs the trade-off between
how compressed the latent representation z is and how
faithfully the latent representation is able to predict the
future state of the system y(k + s). That is, the second
term in Eq. 2 effectively serves as a regularization term47

that penalizes a high-dimensional latent space.

The SPIB encoder, p(z(k)|X(k)), and decoder,
p(y(k + s)|z(k)), are generated by a fully-connected,
nonlinear neural network, as described in Ref. 37, with
two encoding layers and two decoding layers, in addition
to the bottleneck layer. The parameter-informed prior
p(zθ) is generated using a variation of the VampPrior
proposed in 48:

p(zθ) =

K∑
i=1

wipθ (z|ui) , (3)

where K is the predicted number of states in the system,
wi are the weights of the representative inputs ui, each
of which is, in practice, a single sample of X selected
from each of the K states y. The prior given in Eq.
3 is updated following each refinement of the network
as the predicted state labels y are refined and updated.
Furthermore, as the SPIB is iterated, some of the initial
state labels y(0) may merge, depending on the lagtime s
selected for the SPIB analysis. That is, as the lagtime s
of the SPIB is increased, the anticipated number of states
K will decrease. This is because faster motions, corre-
sponding to small barrier crossings are coarse-grained out
due to the longer lagtimes. This effect of finding only the
most metastable states of the system, corresponding to
the highest barrier crossing events, is analogous to what
occurs in Markov state modelling of dynamical systems35
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when a spectral clustering algorithm such as robust Per-
ron cluster-cluster analysis49 is applied to the obtained
eigenvectors of the transition operator on the state space.
Once the state labels y converge, the training process is
terminated, and the obtained z is analyzed.

II.B Calculating entropy and other state functions from
SPIB

For analytical potentials or systems in vacuum, the en-
ergy U(t) = U(X(t)) of the system at any time t in the
simulation can be directly calculated using the system’s
state X(t) at time t. For solvated systems the situation
is a bit more complicated, as both the solute intramolec-
ular and solute-solvent intermolecular potentials must be
taken into account. Following the procedure described in
Ref. 50, the change in energy from a reference state, ∆U ,
is given by

∆U = ∆Uintra + ∆Uinter, SR (4)

where ∆Uintra and ∆Uinter, SR denote the energy changes
due to solute-solute intramolecular and short-range
solute-solvent intermolecular interactions respectively. In
typical MD simulations, ∆Uinter, SR comes from Lennard-
Jones and electrostatic interactions. Furthermore, for
systems simulated in the constant number, pressure and
temperature (NPT) ensemble, the change in internal en-
ergy due to P-V work performed by the barostat must
be included. Here the solute enthalpy ∆H is calculated
instead of ∆U as follows:

∆H = ∆Uintra + ∆Uinter, SR + P∆V, (5)

where P∆V is the change in energy due to the work
performed by the barostat, where the reference volume
used to calculate ∆V is the volume of the box at the
beginning of the simulation.

In systems of practical interest with high free energy
barriers, the sampling in the barrier regions can be noisy.
Here, instead of using a regular histogram to calculate the
free energy and enthalpy along the reaction coordinate,
a kernel density estimate (KDE)51 of the probability dis-
tribution along each reaction coordinate is utilized, with
the choice of Gaussian kernel. In KDE with a Guassian
kernel, the probability distribution along an RC is esti-
mated at each value z of the RC using a sum of Gaussian
basis functions51:

p(z) =
1

N

N∑
k=1

1√
2πh2

exp
[
− (z − z(k))

2
/2h2

]
, (6)

where h is the selected bandwidth and N is the num-
ber of frames in the trajectory. Choosing KDE over reg-
ular histogramming effectively amounts to binning using
a Gaussian basis set in place of binning with a basis set
of indicator functions; using the Gaussian basis set al-
lows for a smoother estimate of the probability density
in regions of the free energy surface where the sampling is
noisy, which is the case for systems describing rare events

where the transition region is sampled infrequently.

To decompose the contribution of the entropic and en-
ergetic components along a generic RC z, we define first
the general definition of geometric free energy along a
reaction coordinate, G(z)52:

G(z) = −kBT ln

(∫
Rn

e−U(x)/kBT ×δ(Φ(x)− z) det(G̃)
1
2 dx

)
(7)

where Φ(x) is the desired level set of the reaction co-
ordinate where we desire the calculation of the geometric
free energy, δ(x) is the Dirac delta function, and G̃ is
the Gram matrix of the transformation Φ(x) : x → z.
The Gram matrix is decomposable into the product of
the Jacobian matrix, ∇z, and its transpose53:

G̃ =
(
∇zT

)
∇z (8)

where the Jacobian matrix describes how the n-
dimensional input space x is stretched or squeezed as it is
transformed nonlinearly via the SPIB-defined neural net-
work to generate the m-dimensional reaction coordinate
z.

The energy along each level set of z, U(z), can be cal-
culated using the formula for averaging over each level
set of the reaction coordinate52:

〈U(z)〉Σ(z) := U(z) =
1

Nz

∫
U(x)e−U(x)/kBT

× δ (Φ(x)− z) det
(
G̃
) 1

2

dx

(9)

where Σ(z) is the submanifold of the input coordinates
constrained to the given value of the reaction coordinate
z52. That is, Σ(z) contains the set of all high-dimensional
input coordinates in the trajectory mapped to z ∈ (z −
ε, z+ ε) by the SPIB encoder, for some small-enough ε >
0. Finally, Nz is a normalization constant that is equal to
the number of frames in the trajectory that are mapped
to the submanifold Σ(z), augmented by the Jacobian:

Nz =

N∑
k=1

Iz(X(k)) det(G̃)
1
2 (10)

where Iz(X(k)) is an indicator function over Σz which
is equal to 1 if X(k) maps to Σz and equal to 0 other-
wise. Finally, the entropy along z is calculated using the
thermodynamic identity ∆G(z) = ∆U(z) − T∆S(z) ⇒
∆S(z) = 1

T (∆U(z)−∆G(z)), where ∆U(z) = U(z) −
U(zref) and ∆G(z) = G(z)−G(zref); the reference value
zref, is defined as the value of z that minimizes U(z):
zref = arg min

z
U(z). Since −T∆S(z) gives the entropic

contribution to the free energy barrier along z, we will
plot −T∆S(z) when evaluating the entropic contribution
to the free energy barrier along a given SPIB reaction co-
ordinate.
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II.C Analytical potentials

We start by considering two analytical potentials. The
first system examined is the entropic double-well system
described in Ref. 54, which possesses only an entropic
‘bottleneck’ between two diffusive wells of equal area.
This potential energy surface is shown as a contour plot
in Figure 1(a) and is defined below:

U(x, y) = x6 + y6 + exp
[
−y2/σ2

y

] (
1− exp

[
x2/σ2

x

])
,

(11)
where σx = σy = 0.1 define the width of the wells.

The second analytical model is a four-well system
whose slowest dynamics changes from crossing a predom-
inately entropic barrier to a predominately energetic bar-
rier, as described in Ref. 55. This potential energy sur-
face is shown as a contour plot in Figure 1(b) and is
defined below:

U(x, y) = hx
(
x2 − 1

)2
+ (hy + a((x, δ))

(
y2 − 1

)2
, (12)

with hx = 0.5 and hy = 1.0 describing the well
width in the x- and y-directions, respectively, δ =
0.05 describing how much the barrier-crossing path-
way along the x-direction is squeezed relative to pas-
sage along the barrier in the y-direction, and a(x, δ) =
1
5

(
1− 5 exp

[
− (x− x0)

2
/δ
])

.

Simulation details regarding the trajectory length in
integration timesteps, temperature, and friction coeffi-
cient γ for the entropic double well and temperature-
switch potentials are given in Table I. For both analyt-
ical potentials, the integration timestep is 0.001 units
and the trajectories in each case were saved to file ev-
ery ∆t = 10 integration steps, giving a total of 1×106

and 3×106 frames for analysis, respectively. The SPIB
parameters for both the analytical potentials are given in
Table SI. Since, a priori, the potential is known, the SPIB
neural network was trained to find a one-dimensional re-
action coordinate for the entropic double well system and
a two-dimensional reaction coordinate for the tempera-
ture switch system.

Table I: Simulation details for the entropic double well
(EDW) and temperature-switch (TS) potentials.

Parameter EDW TS

Integration steps 1× 107 3× 107

(kB(T ))
−1 10 1

γ 4.0 0.5

II.D Benzoic Acid Permeation through a DMPC Membrane
Bilayer

As a more challenging problem, we consider small
molecule permeation through membranes, which is
an important process for determining the efficacy
of pharmaceuticals56 as well as other biological

a)

b)

0.5 0.0 0.5
x

0.5

0.0

0.5

y

0 1 2
U(x,y)

1 0 1
x

1

0

1

y

0 5 10 15
U(x,y)

Figure 1: Panel a: Potential energy surface for the
entropic double-well potential (Eq. 11). The entropic
bottleneck between the two wells is centered at (x, y) =
(0.0, 0.0). Panel b: Potential energy surface for the
temperature-switch potential (Eq. 12). Crossing the
two channels between the left- and right-hand sides of
the potential corresponds to surmounting a barrier that
is primarily entropic while crossing the two (broader)
channels between the top and bottom wells corresponds
to surmounting a barrier that is primarily energetic.
The ‘masked’ (white) regions of the landscape
correspond to regions of the potential energy surface
where U(x,y) > 15.

processes57,58. However, it is known that for a va-
riety of small molecules, membrane permeation can-
not be adequately described using a single reaction
coordinate57,58. Recently it was shown that using SPIB
one can find an adequate reaction coordinate for enhanc-
ing the sampling of benzoic acid membrane crossing of
a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
membrane bilayer44.

Building upon the analysis reported in Ref. 44, we use
a set of generic 21 order parameters (OPs) as input to
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the SPIB analysis. These are the distance vector defined
from the centre-of-mass (COM) of aromatic ring in BA to

the COM of the lipid bilayer (~d1), the hydroxl oxygen of

the BA to the COM of the bilayer (~d2), the carbonyl oxy-

gen of BA to the bilayer COM (~d3), the distance vector

from the benzene ring COM to the hydroxyl oxygen (~d4),
and the distance vector defined between the COM of the
two leaflets of the bilayer (~d5). The (x,y,z)-components

of ~d1, ~d2, and ~d3 constitute the first 9 OPs. Further-
more, the sines and cosines of the three angles made by
~d4 (θx, θy, θz) and ~d5 (ωx, ωy, ωz) with the x-, y-, and z-
axes of the simulation box are taken as the additional
12 OPs, for a total of 21 OPs. As described in ref.44

the input to the SPIB analysis is a pair of 25-ns long
trajectories where the benzoic acid is initially placed on
the positive side of the bilayer membrane in one and on
the negative side in the other. A 500-ns, biased simu-
lation along an optimal SPIB one-dimensional reaction
coordinate found from this initial pair of 25-ns unbiased
molecular dynamics (MD) simulations is analyzed using
the SPIB. Full simulation details can be found in the SM
or in Ref. 44. A snapshot from the simulation showing
the physical setup of the system, with water molecules
excluded, is given in Figure S1 in the SM.

To perform the enthalpy-entropy decomposition for
this system, the enthalpy is calculated using Eq. 5 with
all energies, pressure, and volume calculated using the
gmx energy module in GROMACS 2020.259. To calcu-
late the free energy, enthalpy, and entropy profiles along
each of the two SPIB RCs, the KDE method outlined in
Section II B is used with the bandwidths for the first and
second RC equaling h = 0.5 and h = 1.0 respectively.

III RESULTS

III.A Entropic Double Well System

III.A.1 SPIB Discovers the Slow, Entropy-dominated
Process

The relevant results for the entropic double well sys-
tem are presented concisely in Figure 2, where Figure
2(a) shows the one-dimensional SPIB coordinate, z1, for
the two-dimensional entropic well system projected on
the underlying (x,y) space. SPIB finds a RC that is con-
stant inside the diffusive and energetically constant wells
to the left and right of x = 0.0, while z1 changes very
rapidly inside the bottleneck between wells. This sign
change of z1 inside the bottleneck indicates that z1 de-
scribes transitions between the diffusive wells through the
bottleneck as the relevant, slow process occurring in the
system. The profiles of ∆G(z1), ∆U(z1), and T∆S(z1)
along the SPIB coordinate z1 for the entropic double-
well system are plotted in Figure 2(b). It is clear that
the transition through the bottleneck is entropy driven.
However, since the real-space volume of the wells is large

a) b)

c) d)
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Figure 2: Panel a: Projection of the one-dimensional
SPIB coordinate, z1, onto the free energy surface for the
entropic double-well. Panel b: Plot of ∆G(z1)/kBT
(black), ∆U(z1)/kBT (red), and −∆S(z1)/kB (blue) for
the SPIB reaction coordinate. Since the reaction
coordinate ‘expands’ the bottleneck region in the latent
space, the free energy barrier, which is narrow in (x, y)
space, is extended in z1 space. Panel c: The slowest
TIC projected onto the entropic double well potential.
In contrast to the SPIB, the gradient of the TIC is
almost uniform throughout the free energy surface.
Panel d: Thermodynamic decomposition of the free
energy barrier along the slowest TICA coordinate.
Comparison with panel b shows that TICA predicts
qualitatively similar results as the SPIB, although the
width of the barrier along the slowest TIC is much
narrower than in the SPIB latent space, again due to
the uniform gradient of the slowest TIC.

(i.e. a single level set of z1 in Figure 1(a) covers the
left- and right-hand wells, respectively), the largest mag-
nitude values of z1 are favorable entropically. We would
like to point out that edge effects in ∆U(z1) are due to
thermal fluctuations pushing the system slightly up the
sextic potential when sampling outside the bottleneck.

III.A.2 Comparing SPIB with TICA

For comparison to a reference method to extract the
slow dynamics of a system, we run TICA34,60 on the same
trajectory fed to the SPIB. The theory and applications
of TICA to physical systems has been covered extensively
over the past decade60–63.

As with the SPIB analysis of the entropic double-well
trajectory, only a single TIC is output from the TICA,
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which is run using a lagtime of τ = 10∆t. The single
TIC is projected onto the entropic double-well potential
is given in Figure 2(c). At first glance, the result is similar
to the SPIB result. The slowest TIC predicts transitions
between the left and right wells through the bottleneck to
be the slowest process in the system. However, the SPIB
and TICA results differ in a crucial aspect. SPIB due
to its non-linear nature gives much superior resolution in
the entropic bottleneck region. On the other hand, the
gradient of the slowest TIC is constant over the entire
potential energy surface, as it is a linear method. Thus,
the input space is neither stretched or squeezed during
TICA. In contrast, SPIB’s non-linearity allows for com-
pression inside the bottleneck and expansion in the wells,
where the dynamics is fast and mostly orthogonal to the
slow, barrier-crossing process. From the thermodynamic
perspective, TICA is on par with the SPIB in predicting
both that the barrier to transition between the wells is
completely dominated by the entropy contribution. This
agreement is demonstrated by comparing the results for
SPIB in Figure 2(d) with the results from TICA in Figure
2(b).

III.A.3 Committors from SPIB and MSM

Finally, to quantitatively assess the quality of the
SPIB-predicted reaction coordinate for this system, the
committor function35,64,65 is calculated from a Markov
state model (MSM)66 with a lagtime τMSM = 10∆t con-
structed on the (x,y) state space discretized into 500
states using a regular space clustering algorithm67,68. To
define the committor function on this discrete space, the
‘reactant state’ or ‘state A’ is defined as the set of all (x,y)

mapped to ẑ1 = z1−min(z1)
max(z1)−min(z1) ≤ 0.02 by the SPIB neu-

ral network and the ‘product state’ or ‘state B’ as the
set of all (x,y) mapped to ẑ1 > 0.98; z1 is transformed to
its ‘min-max’ version ẑ1 because, for two-state systems,
the committor function should map onto this rescaled
version of the coordinate describing the crossing between
the wells69,70.

Figure 3 compares ẑ1 i.e. a linearly scaled version of
the SPIB coordinate, and the committor function cal-
culated using the MSM. Figure 3(a),(b) emphasizes the
comparison in the bottleneck or transition region of the
free energy surface, where both ẑ1 and the committor
function change rapidly. With the exception of some
‘bowing’ of the isocommittor surfaces at the entrance
to the bottleneck, there is little quantitative difference
between ẑ1 and the committor function calculated using
the MSM. This result indicates that SPIB is able to accu-
rately and directly learn the committor function for this
analytical system with an entropic barrier.

a) b)

0.2 0.0 0.2
x

0.2

0.1

0.0

0.1

0.2

y

0.2 0.0 0.2
x

0.2

0.1

0.0

0.1

0.2

y

0.0

0.2

0.4

0.6

0.8

1.0

z 1

0.0

0.2

0.4

0.6

0.8

1.0

P(
B
;
t)

Figure 3: Panel a: Projection of ẑ1 in the bottleneck
region of the entropic double well potential energy
surface. Panel b: Committor function predicted from
the MSM with 500 discrete states and lag τMSM = 10∆t
projected onto the bottleneck region of the entropic
double well potential energy surface.

III.B Temperature Switch Potential

III.B.1 SPIB Separates the Entropy- and Energy-dominant
Pathways

A more challenging, two-dimensional, analytical sys-
tem is given by the temperature-switch potential pre-
sented in Ref. 55. As shown in Ref. 55, an interest-
ing feature of this system is that the slowest process
changes from crossing the energetic barrier along the y-
component at low temperatures (where the ∆U contribu-
tion to ∆A dominates) to crossing the entropic barrier at
high temperatures (where the −T∆S term in ∆A dom-
inates), hence the moniker ‘temperature-switch’ for this
system. Here we are testing if SPIB can select the cor-
rect two-dimensional reaction coordinate that captures
these two different energetic and entropic pathways at
an arbitrary temperature of (kBT )

−1
= 1.0.

Panels a and b of Figure 4 show both the SPIB la-
tent space coordinates projected individually onto the
(x,y) coordinates. Figure 4(a) shows that z1 describes
transitions across the system’s energetic barrier in the
y-direction, while Figure 4(b) shows that z2 describes
transitions across the entropic barrier in the x-direction.
Here as well as in the previous double well system, SPIB
demarcates the entropic bottleneck, while also distin-
guishing the two possible pathways. Overall, based on
the SPIB decomposition presented in Figure 4, we con-
clude that the SPIB is able to select two reaction co-
ordinates that separate nearly completely the dynamics
corresponding to crossing the energetic and entropic bar-
riers in the system. This statement is further quantified
by decomposing the free energy barrier into its energetic
and entropic components. Figure 4(c),(d) shows the anal-
ogous decomposition for both SPIB coordinates discov-
ered for the temperature-switch potential. Along z1 the
change in free energy is almost entirely due to potential
energy, while along z2 the change in free energy is almost
entirely due to entropy, justifying their labeling as the
energetic component and entropic components respec-
tively. In addition, the nonlinear SPIB approach allows
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for greater resolution of the transition regions, where the
slow processes are occurring, and decreased resolution in
the free energy wells, where the ‘uninteresting’ fast pro-
cesses are occurring.

III.B.2 Comparing SPIB with TICA

As with the entropic double-well potential, TICA is
performed on the trajectory for this system (see SM for
results). We find that the barrier decomposition from
TICA is qualitatively similar to the SPIB results, but
that the TICA coordinates possess a linear gradient along
the original (x,y) coordinates and thus give a poorer res-
olution of the barrier regions compared to the SPIB reac-
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Figure 4: Panel a: projection of z1 onto the free energy
surface of the temperature switch system. At the given
temperature, the first SPIB coordinate describes
crossing of the energetic barrier in the y-direction.
Panel b: projection of z2 onto the free energy surface of
the temperature switch system. At the given
temperature, the second SPIB coordinate describes
crossing of the entropic barrier in the x-direction. Panel
c: decomposition of the free energy profile (black) along
z1 into its energetic (red) and entropic (blue)
components. Based on this decomposition, it is clear the
barrier along z1 has a majority contribution from the
energetic component of the free energy, although there
is some ‘baseline’ contribution from the entropy barrier.
Panel d: decomposition of the free energy profile (black)
along z2 into its energetic (red) and entropic (blue)
components. Based on this decomposition, it is clear
the barrier along z2 has a majority contribution from
the entropic component of the free energy, although
there is a small contribution from the energy barrier.

tion coordinates. Thus, we conclude that for this system
as well, it is important to have a non-linear reaction co-
ordinate to describe the slow dynamics in the vicinity of
the transition state.

III.C Benzoic Acid Membrane Permeation through
Phospholipid bilayer

The third and final system studied here is benzoic acid
permeation through a DMPC membrane (BA-DMPC).
For this system the reaction coordinate and its ener-
getic/entropic components are not a priori clear. The
problem is further complicated because small molecule
permeation through a lipid bilayer is a slow process, usu-
ally requiring enhanced sampling methods to calculate
transport properties and permeation rates10,57,71. As
such, the permeation of benzoic acid through a DMPC
bilayer is an adequate example to test the SPIB’s ability
to both find and accelerate the sampling along the sys-
tem’s reaction coordinates and separate the entropy and
energy barriers to permeation.

III.C.1 Free energy along intuitive, physical projections

For the BA-DMPC system, the number of input co-
ordinates to the SPIB is 21 (see SM and Ref. 44) with
a two-dimensional SPIB latent space. For seeding the
initial SPIB state labels, regular space clustering as im-
plemented in PyEMMA268 in the two-dimensional space
spanned by (1) the distance of the center-of-mass of the
aromatic ring in benzoic acid to the center-of-mass of the
membrane bilayer, d1,z, and (2) the angle between the
bilayer normal and a vector pointing from the center-of-
mass of the aromatic ring of benzoic to the center-of-mass
of the hydroxyl oxygen in the carboxylic acid functional
group, θz. All other parameters for the SPIB analysis
are given in Table S1 of the SM.

Recent research has shown that a one-dimensional
projection along the z-coordinate is not sufficient for
describing the permeation process of small molecules
through a lipid membrane58. For example, from the
two-dimensional free energy surface given in Figure 5,
it is clear that, to cross inside the membrane, the angu-
lar values of θz, on average, must be restricted so that
the -COOH group in benzoic acid is pointing toward
the phospholipid head groups, resulting in an energeti-
cally favorable dispersion interaction. However, the re-
striction of the conformational freedom of the ring after
entering the membrane compared with its orientational
freedom outside the membrane represents an entropic
barrier to membrane crossing. In contrast, the ben-
zoic acid crossing the center-of-mass of the bilayer rep-
resents an energetic barrier, since the benzoic acid must
lose its favorable dispersion interaction with the head-
group moieties to cross the bilayer. The free energy along
these two physical OPs d1,z and θz is given in Figure 5.
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Figure 5: Free energy surface spanned by d1,z and θz for
the BA-DMPC system. Dashed, vertical, magenta lines
are drawn at the average location of the center-of-mass
of the phosphorous atoms in the lipid headgroups for
the top and bottom layers of the bilayer.

This free energy was obtained from a 500-ns biased well-
tempered metadynamics simulation along an optimized
one-dimensional SPIB reaction coordinate described in
Ref. 44. Since this is a biased trajectory, the contri-
bution from each frame is reweighted appropriately40,72

when constructing the free-energy surface in Figure 5.
We emphasize that SPIB is given a larger set of 21 OPs
and discovers mechanistically relevant low-dimensional
projections on its own.

III.C.2 SPIB Separates the Entropy and Enthalpy Barriers

Figures 6a,b show the two latent space coordinates
learned by an SPIB analysis of the biased 500-ns tra-
jectory, projected on the two physical parameters intro-
duced in Sec. III C 1. Figures 6c,d show the thermody-
namic barrier decomposition along the two SPIB coor-
dinates for the BA-DMPC system. Figure 6(a) shows
that the first SPIB coordinate z1 changes sign on both
sides of the phospholipid bilayer, indicating this coordi-
nate describes benzoic acid entry into the bilayer. The
decomposition of the free energy along z1 into energy
and entropy as shown in Figure 6(c) establishes that z1

describes the entropic process of the permeation mecha-
nism, comprising ligand diffusion into the membrane and
subsequent re-orientation. The small energetic barrier
along z2 likely corresponds to the unfavorable interac-
tions between the nonpolar aromatic ring of benzoic acid
as it passes through the polar phosolipid headgroups and
into the interior of the bilayer.

Figure 6(b) shows that the second SPIB coordinate
z2 corresponds to the benzoic acid passing through the
center of the bilayer. Figure 6(d) establishes that along
z2, the free energy barrier is dwarfed by the enthalpic
barrier due to an entropy-enthalpy compensation effect
when benzoic acid reaches the center of the bilayer. This

entropy-enthalpy compensation occurs because there is a
larger free volume for the benzoic acid to occupy10,11 in
the center of the membrane and no preferential oriten-
taion of the benzoic acid with respect to the membrane
normal due to the loss of the favorable dispersion forces
between the benzoic acid and the phospholipid head-
groups. Thus, for this system SPIB is able to separate
the majority enthalpic and entropic processes from each
other.
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Figure 6: Panel a: projection of z1 from the SPIB
analysis of the weighted BA-DMPC trajectory onto the
surface spanned by the OPs d1,z and θz. Panel b:
projection of z2 from the SPIB analysis of the weighted
BA-DMPC trajectory onto the surface spanned by the
OPs d1,z and θz. Panel c: projection of the free energy
(black), enthalpy (red), and entropy (blue) along z1.
The entropy profile nearly traces the free energy profile,
indicating that the process described by z1 is entropy
dominated. Panel d: same as the left panel, except for
z2. Here, the free energy barrier is dwarfed by the
enthalpic contribution and there is an entropy-enthalpy
compensation effect at the barrier due to the larger
accessible volume in the middle of the membrane10,11.
Units of ∆G, ∆U , and −T∆S are kJ/mol.

III.C.3 Comparing SPIB with TICA

As with the other systems, the SPIB results are com-
pared with the two slowest TICA coordinates for the
same trajectory in the SM. We find that the slowest
TICA coordinate essentially corresponds to dynamics
along the d1,z coordinate and contains both the relevant
energetic and entropic barriers in the system. However,
most strikingly (Figure S3 in SM), the second TICA co-
ordinate is a fairly non-physical coordinate describing dy-
namics almost strictly along θz, which does not surmount
any relevant barriers in the (d1,z, θz) coordinate space.
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We postulate that this second TICA coordinate is ‘con-
fused’ by some slow, but likely irrelevant process occur-
ring in one or more of the other 18 OPs. This effect is
related to the point made previously by others that TICA
is susceptible to catching slow, correlated motions that
happen to be irrelevant to the interesting dynamics73.
That is, the second TIC must be capturing an irrelevant
slow process that has already been projected out in the
other 19 OPs and is noise when projected to (d1,z, θz)
space.

Overall, we see that TICA is not able to find separate
coordinates to describe the entropy and energy barrier
crossings in the system, and the second TICA coordinate
is not readily interpretable in (d1,z, θz). This outcome
would have repercussions when using TICA coordinates
to perform additional rounds of metadynamics or other
biased sampling calculations.

IV DISCUSSION AND CONCLUSIONS

In this work we have shown that the state predictive in-
formation bottleneck (SPIB) method is able to extract re-
action coordinates (RCs) for systems with energetic, en-
tropic or mixed barriers. The method is demonstrated to
work with biased or unbiased simulations and quantifies
the precise enthalpic/energetic or entropic contributions
to a given activated pathway. Our results show the effec-
tiveness of using a nonlinear method, here SPIB, for find-
ing reaction coordinates RCs as competing linear meth-
ods do not often do as satisfactory a job. The separation
of reaction coordinates into energetic and entropic com-
ponents should be important for performing enhanced
sampling intelligently for such systems; path-based meth-
ods such as forward-flux sampling74 or milestoning54 can
be used to push the permeant over the entropic barrier
and adaptive biasing methods such as metadynamics39 or
umbrella sampling41 can be used to push the permeant
over the enthalpic barrier at the center of the bilayer.

An additional advantage of using the nonlinear RCs
from SPIB is an ‘adaptive resolution’ of the RC, with
higher resolution of the transition states and lower reso-
lution of the energetic wells, compared to the linear TICA
method; this effect is seen for all three systems examined
here (viz. Figures 2a,c; 4a,b; 6a,b; S2a,b; S3a,b). This
increased resolution in the transition state is important
because it allows a high-fidelity reproduction of the com-
mittor function (Figure 3) and should allow for better
sampling of the transition state during subsequent en-
hanced sampling simulations biased along the nonlinear
RC.

This increased resolution should allow the biased sim-
ulation to give better detail regarding the physical and
chemical mechanisms occurring at the transition state
because its resolution there is finer. That is, the linear
method is suitable for finding the qualitatively correct
RC, but a nonlinear RC should give better quantitative
insight, especially regarding dynamics at the transition

state. This effect is similar to what is seen in the Markov
state modelling, where increasing the resolution of the in-
dicator function basis set in the transition region greatly
reduces the error in the approximation of the slow dy-
namics and, hence, results in a better model displaying
more Markovian dynamics67.

The BA-DMPC system is a good example of the im-
portance of using a non-linear RC and the SPIB’s ability
to separate the entropic and enthalpic contributions to
a single reaction mechanism, the permeation of a small
molecule through a lipid bilayer. When the linear TICA
method is used to find the RCs for this system, it finds
one useful RC describing the transition from one side of
the bilayer to the other, but fails to separate the entropy
and enthalpy barriers along this reaction path. Instead,
it lumps them into a single, slow RC (Figure S3a). In
contrast, the SPIB is able to sift the permeation mecha-
nism into the entropic process (entering and exiting the
membrane bilayer) and the enthalpic process (benzoic
acid moving from the underside of one leaflet to the un-
derside of the other leaflet, coupled with a reorientation
of benzoic acid’s -COOH moiety).

Finally, the ability of the SPIB to separate the entropic
and enthalpic barriers in a system such as BA-DMPC
could still have been partly serendipitous since these two
types of barriers happen to separate cleanly for this sys-
tem. For physical systems where the entropy and energy
barriers are more entangled, it cannot be expected that
the SPIB will perform so well at distinguishing the ther-
modynamic origin of the barrier a priori. This short-
coming of the method can be circumvented by adding
an extra term to the loss function that explicitly forces
one RC to traverse a pathway with maximum entropy
change and another the pathway with the maximum en-
ergy or enthalpy change. This exciting avenue for adding
physics-based constraints to training SPIB will be ex-
plored in future work.
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VI DATA AVAILABILITY

All codes and MD trajectories used to perform the
analysis are available following reasonable request to the
authors. The code to perform the SPIB analysis is avail-
able on GitHub: https://github.com/tiwarylab/State-
Predictive-Information-Bottleneck. Codes to calculate
the Jacobian and make the plots in the main text for
the entropic double well and temperature switch systems
can also be found in the following GitHub repository:
https://github.com/erb24/jacobian.
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