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We present a unifying approach to the quantification of entanglement based on entanglement witnesses,
which includes several already established entanglement measures such as the negativity, the concurrence, and
the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having
as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states
with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles
are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation
dmin, for the distillable entanglement ED and for the entanglement of formation. A particular measure, the
PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to dmin and ED

than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of
entanglement in the Heisenberg XXX and dimerized models.
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I. INTRODUCTION

In recent years entanglement has been recognized as a
physical resource central to quantum information processing.
As a result, a remarkable research effort has been devoted to
classifying and quantifying it. The first achievement in this
direction was the identification of the entropy of entangle-
ment �1�, EE, as the unique measure of entanglement for pure
bipartite states in the asymptotic limit. It was shown that m
copies of a pure state ��� can be reversibly converted into n
copies of ��� by local operations and classical communica-
tion �LOCC� if, and only if, mEE�����=nEE�����. This re-
versibility is lost, however, when one considers the more
general picture of mixed states. In this case two different
entanglement measures, associated with the formation and
distillation processes, respectively, have to be taken into ac-
count. On one hand the entanglement cost, EC��� �1�, is the
minimal number of singlets necessary to create the state � by
LOCC in the asymptotic regime. On the other, the distillable
entanglement, ED��� �1�, is the maximum number of singlets
that can be extracted by LOCC from �. Another important
measure connected to asymptotic properties is the relative
entropy of entanglement, ER �2�. It is related to how distin-
guishable an entangled state is from a separable one and
gives bounds to EC and EF.

The finite copy case is more complex and the entropic
quantities considered above are not more applicable. For bi-
partite pure states, where the reversibility is already lost, the
minimum set of entanglement measures characterizing deter-
ministic and probabilistic transformations were derived
�3–5�. The mixed case, however, is known only for very
restricted situations and remains mainly unsolved.

Another approach for the quantification of entanglement
is to measure the usefulness of a state to perform a given
quantum information task. For example, the maximal fidelity

of teleportation achieved by single copy LOCC �6�, the
maximal secret-key rate attainable by local measurements in
a cryptographic protocol �7�, and the capacity of dense cod-
ing �8�, despite not being equal to any of the measures dis-
cussed so far, are clearly the best quantifiers when one of
these protocols is analyzed.

Entanglement in multipartite systems exhibits a much
richer structure than the bipartite case and its study is even
more challenging. Already in the pure three qubits case there
are two different manners for a state to be entangled, in the
sense that there are states that cannot be converted, even with
a certain probability, in each other �9�. From the measures
considered above only ER is unambiguously defined to mul-
tipartite systems, although it is not the only one.

It is thus clear that entanglement is a highly complex phe-
nomenon, which cannot be quantified by only one measure.
Then, a natural way to measure it is to use any quantie which
satisfies some particular properties, the monotonicity under
LOCC being the most important �2,10�. In this axiomatic
approach any measure which does not increase, on average,
under LOCC, called an entanglement monotone �10�, is a
good measure of entanglement and, conversely, any mean-
ingful quantifier has to be an entanglement monotone, or at
least has some sort of weaker monotonicity under LOCC.

A closely related problem to the quantification problem is
the characterization of entanglement. The very fundamental
question whether a given mixed state is entangled or not is
extremely difficult, being actually NP-hard �11�. A possible
approach is then to consider sufficient criteria for entangle-
ment, such as the Peres-Horodecki �12� and the alignment
�13� tests. Nonetheless, the strongest manner to characterize
entanglement is using entanglement witnesses �EWs�
�14,15�. They are Hermitian operators whose expectation
value is positive in every separable state. Therefore a nega-
tive expectation value in a measurement of a witness opera-
tor in an arbitrary state is a direct indication of entanglement
in this state. Furthermore, it was shown by the Horodeckis
that a state is entangled if, and only if, it is detected by an
EW �14�. A great deal of research has been devoted to the*Electronic address: fgslb@ufmg.br
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study of EWs, varying from their classification and optimi-
zation �15–17� to their use in the characterization of en-
tanglement in important, even macroscopic, physical systems
�18–20�. Also optimal setups for local measurements of wit-
nesses �21,22� and experimental realizations of witnessing
entanglement were realized �23�. In spite of the determina-
tion of EWs for all states being also computationally intrac-
table �24�, different methods from convex optimization
theory can be applied to the problem, leading to efficient
approximative procedures to determine and even optimize
EWs for arbitrary states �24–26�.

The main objective of this paper is to show that EWs can
be very helpful also to the quantification of entanglement.
The first measure related to EWs was due to Bertlmann et al.
�27� and was shown to be equal to the Hilbert-Schmidt dis-
tance from the set of separable states. Brandao and Vianna
�28� took another significant step in this direction, showing
that a measure derived from optimal EWs of the most stud-
ied group of witnesses so far, the group of EWs with unit
trace, was in fact equal to the random robustness, which lead
to the establishment of properties still unknown for the later,
such as its monotonicity under separable trace-preserving su-
peroperators.

Besides the obvious benefit of increasing the number of
entanglement measures known, EWs based quantifiers are
particularly interesting due to the possibility of performing
experimental measurements of them, which could be impor-
tant to the extension of entanglement to other areas of phys-
ics, such as thermodynamics and statistical mechanics.
Moreover, despite being necessary in general a complete to-
mography of a state to the determination of its degree of
entanglement based on an EW measure, any EW provides a
lower bound to it, even when no information about the state
is available.

The paper is structured as follows. In Sec. II we briefly
review the basic properties of multipartite optimal entangle-
ment witnesses. In Sec. III we define a class of entanglement
measures based on EWs, which includes several important
already known quantities such as the negativity and the con-
currence, and introduce a new infinite family of entangle-
ment monotones having the generalized robustness and the
best separable approximation measure as its limits. In Sec.
IV we present further properties of the considered measures
and relate them to the localizable entanglement. In Sec. V it
is shown that the methods developed in the last years to the
characterization of entanglement based on convex optimiza-
tion can be used to calculate approximately a large number
of measures based on EWs. In Sec. VI possible extensions of
our approach to Gaussian states are discussed. In Sec. VII we
consider how the measures and their calculation are modified
in states with symmetries. In Sec. VIII the questions of the
amount of entanglement and of nonlocality in the presence of
a superselection rule are answered from the perspective of
the studied measures. In Sec. IX it is shown that the three
most successful approaches to the quantification of entangle-
ment in systems of indistinguishable particles can be easily
accessed from the EWs based quanties. In Secs. X and XI the
questions of bounds on the teleportation distance and on the
distillable entanglement of a given quantum state are re-
viewed using our measures. It is shown that they provide

sharper bounds than the negativity for the majority of states.
In Sec. XII we derive lower bounds to the entanglement of
formation with any EW. Possible applications of the mea-
sures are exemplified in Sec. XIII, where the derivation of
two thermodynamic “equations of state” which take into ac-
count entanglement for two spin systems Hamiltonians is
presented. Finally, in Sec. XIV we summarize our results and
discuss future perspectives.

II. MULTIPARTITE SYSTEMS AND OPTIMAL
ENTANGLEMENT WITNESSES

We consider a system shared by N parties �Ai�i=1
N . Follow-

ing Ref. �29�, we call a k-partite split a partition of the sys-
tem into k�N sets �Si�i=1

k , where each may be composed of
several original parties. Given a density operator �1¯k
�B�H1 � ¯ � Hk� �the Hilbert space of bounded operators
acting on H1 � ¯ � Hk� associated with some k-partite split,
we say that �1¯k is a m-separable state if it is possible to find
a convex decomposition for it such that in each pure state
term at most m parties are entangled among each other, but
not with any member of the other group of n−m parties. For
example, every 1-separable state, also called fully separable,
can be written as

�1¯k = 	
i

pi��i�1
�i� � ¯ � ��i�k
�i� . �1�

Another example is the 2-separable states of a 3-partite split
given by

�1:2:3 = 	
i

pi�i, �2�

where each �i is separable with respect to at least one of the
three possible partitions �A:BC, AB:C, and AC:B�. For each
kind of separable state there is a different kind of entangle-
ment associated to it. We will say that a state is
�m+1�-partite entangled if it is not m-separable. It is clear
that if a state is m-separable it cannot be n-entangled for all
n�m.

It is possible to detect �m+1�-partite entanglement using
entanglement witnesses. In order to do that, consider the in-
dex set P= �1,2 , . . . ,k�. Let Pm be a subset of P which has at
most m elements. Then W is a �m+1�-partite entanglement
witness if

Pv
m
�� � ¯ � P1

m
��W���P1
m � ¯ � ���Pv

m � 0

∀ P1
m, . . . ,Pv

m such that

�k=1
v Pk

m = P and Pk
m � Pl

m = �� . �3�

Equation �3� assures that the operator W is positive for all
m-separable states. Thus as the subspace of m-separable den-
sity operators is convex and closed, a state � is
�m+1�-entangled if and only if there is a Hermitian operator
satisfying Eq. �3� such that Tr�W���0 �30�.

Usually one is interested in a selected group of witnesses
operators called optimal. Two different definitions of optimal
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entanglement witness �OEW� exist. The first, introduced by
Lewenstein et al. �16�, is based on how much entangled
states a given entanglement witness �EW� W is able to de-
tect: W is optimal if there is no other EW which detects all
the states detected by W and some other states not detected
by W. The second definition, due to Terhal �17�, establish the
concept of OEW relative to a chosen entangled state �. The
�-optimal entanglement witness W� is given by

Tr�W��� = min
W�M

Tr�W�� , �4�

where M is the intersection of the set of entanglement wit-
nesses, denoted by W, with some other set C such that M is
compact �31�. Note that every �-OEW is also an OEW ac-
cordingly to the first definition, whereas the converse may
not be true.

A general expression for entanglement witnesses was pre-
sented in Ref. �32�. Every EW acting on k-partite Hilbert
space can be written as

W = P + 	
i=1

k

Qi
Ti − �I , �5�

where P and the Qi’s are positive semidefinite, ��0, I is the
identity operator and Ti is the partial transposition with re-
spect to partite i. Note that even �m+1�-partite EWs can be
written in the form of Eq. �5� �33�. An important class of EW
is the decomposable entanglement witnesses �d-EW�, which
can always be written as

W = P + 	
i=1

k

Qi
Ti. �6�

This class will be particularly important in our discussion,
since the set of entangled states detected by d-EW is invari-
ant under LOCC �34�.

III. DEFINITIONS AND BASIC PROPERTIES

In this section we show how �-optimal EWs can be used
to quantify all the different kinds of multipartite entangle-
ment. First, a unifying approach, which includes several im-
portant entanglement measures �EM�, will be presented.
Then we will consider a new infinite family of entanglement
monotones �10�.

A general expression for the quantification of entangle-
ment via EWs is defined as

E��� = max�0,− min
W�M

Tr�W��� , �7�

where M=W�C, and the set C is what distinguishes the
quantities. We call witnessed entanglement any measure ex-
pressed by Eq. �7�.

Some well-known EM can be expressed as Eq. �7�. The
first, introduced by Bertlmann et al. �27�, is

B��� = max
�W − I�2�1

�min
	�S

Tr�W	� − Tr�W��� , �8�

where W�W. B��� was shown to be monotonic decreasing
under mixing enhancing maps �35� and to be equal to the

Hs-distance of � to the set S of fully separable states:

B��� = D��� = min
	�S

�� − 	�2. �9�

The second is the negativity, i.e., the sum of the negative
eigenvalues of �TA �the partial transpose of � with respect to
subsystem A� �36–38�. It is easily seen that N can be written
as

N��� = max�0,− min
0�W�I

Tr�WTA��� . �10�

Another quantie is the maximal fidelity of distillation un-
der PPT-protocols, introduced by Rains �39�,

Fd��� =
I

d
+ max�0,− min

W�M
Tr�WTA��� �11�

where M= �W � �1−d�I /d�W� I /d ,0�WTA �2I /d� �40�.
The last is the celebrated Wootter’s concurrence of two

qubits, which can be written, accordingly to Verstraete �41�,
as

C��� = max�0,− min
A�Sl�2,C�

Tr���A�
A��TB��� , �12�

where �A� denotes the unnormalized state �A � I� � I� with �I�
=	i�ii�, det�A�=1.

Assuming that the set C is also convex, which is the case
of all the quantities considered in this paper, except the con-
currence, it is possible to apply the concept of Lagrange
duality from the theory of convex optimization to the prob-
lems represented by Eq. �7� �42�. Remarkably, the dual mea-
sures obtained are those related to mixing properties, such as
the robustness of entanglement �43�, introduced by Vidal and
Tarach, and the best separable approximation measure �44�,
introduced by Karnas and Lewenstein. Moreover, since in all
the cases considered here there always exist a strictly fea-
sible point, i.e, a W�orelintM �denoted in the convex opti-
mization literature by Slater condition�, the optimal solution
of the primal and dual problems are the same, i.e., the primal
and dual measures are equal �42,45�.

We now show that the dual representation of the general-
ized robustness of entanglement RG��� �46�, i.e., the minimal
s such that

� + s


1 + s
�13�

is separable, where 
 is any, not necessarily separable, den-
sity matrix, is given by Eq. �7� with M= �W�W �W� I�.
Following Ref. �42�, the Lagrangian of the problem is given
by

L�W,g�	�,Z� = Tr�W�� + Tr�WZ� − Tr�Z�

− �
	�S

g�	�Tr�W	�d	 , �14�

where Z, g�	� are the Lagrange multipliers associated with
the constraints W� I and Tr�W	��0∀ 	�S, respectively.
Note that since the definition of EW is a composition of
infinite constraints, its Lagrange multiplier is a generalized
function �45�. The dual problem is then
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minimize Tr�Z�

subject to Z � 0

g�	� � 0, ∀ 	 � S

� + Z = �
	�S

g�	�	d	 . �15�

Since g�	��0, the integral in the constraints above is a sepa-
rable state. Conversely, any separable state 	o is obtained
with the choice of g�	�=��	−	o�. It is then easily seen that
the result of Eq. �15� is the generalized robustness. The dual
representation of the robustness of entanglement, R���, has,
instead of W� I, the constraint Tr�W	��1, ∀ 	�S.

The best separable approximation measure BSA��� �44� is
the minimum � such that there exist a separable state 	 and
a density operator �� satisfying

� = �1 − ��	 + ��� . �16�

It can been seen that the dual representation of BSA��� is
given by Eq. �7� with M= �W�W �W�−I�.

In Ref. �28� it was shown that the random robustness
Rr��� �43�, i.e., to the minimal s such that

� + s�I/D�
1 + s

�17�

is separable, is equal to Eq. �7�, with M= �W�W �Tr�W�
=1�. This result can also be derived using the concept of
duality. It is known that, unlike the robustness, Rr��� is not
an entanglement monotone �47�. However, using its dual rep-
resentation, we can state the following proposition.

Proposition 1. For every nonselective positive-partial-
transpose-preserving protocol 
,

Rr�
���� � Rr��� �18�

Proof.

Tr log2�W�
���� = Tr�
†�W���� , �19�

where 
† is the dual map of 
, which is unital, since 
 is
trace preserving and PPT-preserving. 
†�W�� is also an EW.
Indeed, Tr�
��W��	�=Tr�W
�	���1 for all 	�S, since W
is an EW and 
�	��S. Now we have to prove that
Tr�
†�W����1. Using that for every channel T, T�I�� I
�48�, and the decomposition �5� of EWs:

Tr�
†�W��� = Tr�
†�P�� + 	
i=1

k

Tr�
†�Qi
Ti�� − �I

� Tr�P� + 	
i=1

k

Tr�Qi
Ti� − �I

= Tr�W�� . �20�

In the next section we will introduce our new family of
entanglement monotones.

New family of entanglement monotones

If we let C be the set of Hermitian matrices W such that
−nI�W�mI, where n ,m�0, then the quantity derived from
Eq. �7� will be denoted by En:m.

Proposition 2. En:m is an entanglement monotone for ev-
ery n ,m�0, i.e.,

	
i

piEn:m��i�� � En:m��� , �21�

where �i� is the final state conditional on the occurrence of
the classical variable “i,” which occurs with probability pi at
the end of a LOCC protocol.

Proof. It suffices to consider final states of the form

�i� = Ai�Ai
†/pi �22�

with pi=Tr�Ai�Ai
†�, where the Kraus operators A1 , . . . ,AM

are given by Ai=Ai
1 � . . . � Ai

k and satisfy 	i=1
M Ai

†Ai� I:

	
i

piEW��i�� = 	
i

pi max�0,− Tr�W�i�
�i���

= 	
k

− Tr�Ak
†W�k�

Ak��

� − Tr�W��� = EW��� , �23�

where k sums only the terms such that max�0,−Tr�W�i�
�i���

is different from zero. In the last inequality we used
that W=	kAk

†W�k�
Ak�m	kAk

†Ak�mI, W=	kAk
†W�k�

Ak�

−n	kAk
†Ak�−nI, and that W� is optimal. �

Note that the proof of Proposition 2, with minor modifi-
cations, also applies to N and Fd.

The dual representation of Em:n��� is

minimize ms + nt

subject to � + s
1 = �1 + s − t�	 + t
2, �24�

where 
i are density matrices, 	 is a separable state, and
s , t�0. From Eq. �24� we find that

lim
m→�

En:m��� = nBSA���, lim
n→�

En:m��� = mRG���

Actually, the equalities above are already valid when one of
the numbers is sufficiently larger than the other. The ele-
ments of this new family of EMs can be interpreted as inter-
mediate measures between the generalized robustness and
the best separable approximation. Note that for every distinct
rational number n /m within a certain finite interval, the Em:n
are genuine different EMs, meaning that there is no positive
number c such that Em:n=cEm�:n� if n /m�n� /m�.

If we consider that C is the intersection of a set of Her-
mitian matrices W such that −nI�W�mI with the set of
decomposable entanglement witnesses, a new family of en-
tanglement monotones, denoted by En:m

PPT is defined. To see
that they are indeed EMs, all we have to note is that for every
Ai=Ai

1
� ¯ � Ai

k, Ai
†WAi is a decomposable EW whenever W

is. Therefore Proposition 2 also applies to them.
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It is possible to derive several other families of EMs con-
sidering intersections of the sets C of different entanglement
measures which can be written as Eq. �7�, such as those
given by Eqs. �10�–�12�.

IV. MULTIPARTITE ENTANGLEMENT HIERARCHY

We now discuss more about the different kinds of multi-
partite entanglement introduced in the second section. Usu-
ally the set of separable states is regarded to be composed of
all states which can be created by LOCC protocols. In this
sense, given a specific split and considering that each part of
the split can perform global quantum operations on its sub-
systems, only 1-separable states can be properly identified as
separable. However, one might also be interested in the situ-
ation where some of the parties are allowed to perform joint
operations. In this case, the different types of entanglement
play an important role. Consider, for example, the situation
where k parties want to create a common quantum state and
each one is connected to the others via a quantum channel. If
they all agree in using their channels, every state can be
prepared and the situation becomes trivial. However, suppose
that they agree that only m�k parties will use their quantum
channels, where the probabilities of which parties will be
involved are given by pi. At the end of the protocol they will
share an ensemble of states ��i , pi� which clearly does not
have m+1-partite entanglement. Now, since erasing classical
information cannot create entanglement, we are led to con-
sider the different kinds of entanglement discussed before.
This property is reflected in the condition that every good
entanglement measure should be convex, which we show for
every quantity defined according to Eq. �7�.

Proposition 3. E is a convex function for any choice of C,
i.e.,

E
	
i

pi�i� � 	
i

piE��i� �25�

whenever the �i are Hermitian, and pi�0 with 	ipi=1.
Proposition 3 follows from the convexity and the concav-

ity of the max and min functions, respectively.
Consider a given k-partite split of a multipartite system �.

It is possible to attribute �k−1� numbers, Em, 1�m�k−1,
where each one quantifies one type of multipartite entangle-
ment of the system. It is easy to see from Eq. �3� that all
constraints imposed to an EW which detects m-partite en-
tanglement �m-EW�, are also imposed to every n-EW, with
n�m. Hence the following order between the Em holds:

Em��� � En���, ∀ n � m . �26�

E1���, formed by the OEW with respect to the fully sepa-
rable states is an upper-bound to all other E���, including
those with respect to other splits formed by grouping several
original parties into one. This means, for example, that in a
3-split, E1��� is greater or equal to the bipartite entanglement
of any of the three 2-splits, namely A-BC, AB-C, and AC-B.
Actually, it is possible to establish a complete hierarchy in
the proposed measures �49�.

An interesting measure of entanglement for multipartite

systems is the localizable entanglement, introduced by Ver-
straete et al. �50�. Given a quantum system of n parties �, the
localizable entanglement Eij��� is the maximal amount of
entanglement that can be created, on average, between the
parties i and j by performing a single-copy LOCC protocol
in the system �51�. More specifically, if at the end of a LOCC
protocol we have an ensemble of states �= �pk ,�k

ij�, where pk

is the probability that the reduced state of the parties i and j
is �k

ij, the LE is then given by

Eij = max
�

	
k

pkE��k
ij� , �27�

where E��� represents, in this paper, one measure based on
OEWs. The LE has the operational meaning which applies to
situations in which out of some multipartite entangled state
one would like to concentrate as much entanglement as pos-
sible in two particular parties �50�, which could be used later,
for instance, in some quantum information task.

Proposition 4. Consider a multipartite state �. Then

En:m
ij � En:m

1 ���, ∀ i, j,n,m . �28�

Proof. As in the proof of Proposition 2, it suffices to con-
sider final states of the form

�l
ij = Tr/ij�Al�Al

†/pl� , �29�

with pl=Tr�Al�Al
†�, where Tr/ij stands for the partial trace of

all parties, except i and j. The Kraus operators A1 , . . . ,AM are
given by Al=Al

1
� ¯ � Al

k and satisfy 	i=1
M Ai

†Ai� I.

En:m
ij = 	

l

plEn:m��l
ij� = 	

l

max�0,− Tr�I � W�l
ij�l��

= 	
k

− Tr�Ak
†I � W�k

ijAk�� � − Tr�W���

= En:m��� , �30�

where k sums only the terms such that max�0,−Tr�W�l�
�l��� is

different from zero. In the last inequality we used that the
EW W=	kAk

†I � W�k

ij Ak�m	kAk
†Ak�mI, W=	kAk

†I � W�k

ij Ak

�−n	kAk
†Ak�−nI and that W� is optimal. Note that Propo-

sition 5 also applies to En:m
PPT. �

The following relation between the negativity, N���, and
E�:1

PPT���=RG
PPT��� holds:

Proposition 5.

N��� � E�:1
PPT��� � dN��� . �31�

Proof. For every positive operator M, we have

�max�MTA� � �max�M� � d�max�MTA� , �32�

where the first �second� inequality is saturated for separable
�singlet� states. Hence as 0�W�1 implies WTA �1, we find

N��� = − min
0�W�I

Tr�WTA�� � − min
WTA�I

W�0

Tr�WTA�� = E�,1
PPT��� ,

�33�

where we have used that the optimal decomposable EW for a
bipartite system has always the form WTA, W�0. From Eq.
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�32� we also find that W�0, WTA � I implies 0�W�dI.
Thus

E�:1
PPT��� = − min

WTA�I

W�0

Tr�WTA�� � − min
0�W�dI

Tr�WTA�� = dN��� .

�34�

�
The second inequality is strict, for example, on the state

� =
I − d�P+�TA

d2 − d
, �35�

where P+ is the maximal d�d entangled state.

V. NUMERICAL CALCULATION

The lack of an operational procedure to calculate en-
tanglement measures in general is ultimately related to the
complexity of distinguish entangled from separable mixed
states, which was shown to be NP-hard �11�. Since an opera-
tional measure, which has positive value in every entangled
state, would also be a necessary and sufficient test for sepa-
rability, we should not expect to find one. Nonetheless, some
approximative numerical methods based on convex optimi-
zation have been proposed to the separability problem
�24–26�. What we will show in this section is that these
methods can also be used to calculate, approximately, the
witnessed entanglement.

The first one, proposed in Ref. �24� by Brandao and Vi-
anna, linked the optimization of EWs with a class of convex
optimization problems known as robust semidefinite pro-
grams �RSDP�. Although RSDPs belong to NP-hard, some
well-known probabilistic relaxations, which transform the
problem in a semidefinite program �SDP�, were applied,
leading to a method of optimizing pseudo-EWs �operators
which are positive in almost all separable states� to every
multipartite state and with respect to all types of entangle-
ment.

The second approach, due to Doherty et al. �25,34�, was
actually the first method to the separability problem based on

SDP. Using the existence of symmetric extensions for sepa-
rable states and the concept of duality in convex optimiza-
tion, a hierarchy of SDPs, where the �k+1�th test is at least
as powerful as the �k�th �but demands more computational
effort�, was constructed to detect entanglement. In each step
k, an OEW with respect to a restricted set of EWs, which
converges to the whole set of EWs in the limit of k→�, is
obtained. This method can be used, however, only for the
entanglement with respect to the fully separable states, E1.
Note that the further constraints that we demand to the EWs
can be incorporated in the SDP, since they are linear matrix
�in�equalities.

The last method, introduced by Eisert et al. �26�, is based
on recently developed relaxations of nonconvex polynomial
problems of degree three in a hierarchy of SDPs, which con-
verges to the solution of the original problem as the dimen-
sion of the SDP reaches the infinity �52�. One of the appli-
cations of this method is the minimization of the expectation
values of EWs with respect to pure product states. Therefore
it can be used together with the second method discussed to
lower the value of Tr�W��, where W is a nonoptimal EW
determined by some step of the hierarchy.

We would like to stress the complementary character of
these methods. Whereas the first method usually provides
upper bounds to E���, since it only determines pseudo-EWS,
the second and third provides lower bounds to E���, as the
EWs resulting from them are nonoptimal. Although only the
first one can calculate Em���, for m�1, the number of con-
strains imposed grows exponentially with m. Thus, in most
cases, we will restrict ourselves to the determination of E1,
which is an upper bound to all other types of multipartite
entanglement �see Sec. IV�.

Note that measures restricted to decomposable EWs can
always be exactly calculated, in the worst case, by a
semidefinite program.

A. Example I

As a first example we calculated En:1
1 and En:1

2 , 0�n�1,
for the following family of states:

FIG. 1. �Color online� En:1
1 ��q� for 0�n�4 and 0�q�1. FIG. 2. �Color online� En:1

2 ��q� for 0�n�4 and 0�q�1.
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�q = q�W�
W� + �1 − q��GHZ�
GHZ�, 0 � q � 1, �36�

where �W�= ��001�+ �010�+ �100�� /�3 and �GHZ�= ��000�
+ �111�� /�2. The results are plotted in Figs. 1 and 2. When
n�1, En:1

1 =nBSA and we see that for all q there is no prod-
uct vectors and even biseparable vectors in the range of �q.
In the other limit, where En:1

1 =RG, we find that the general-
ized robustness of entanglement with respect to biseparable
states is the same for all �q with q�0.7.

B. Example II

The classes of entangled states equivalent by SLOCC for
2�2�n systems were determined in Ref. �53� and can be
represented by the states �1�–�5� of Fig. 3. The arrows indi-
cate which transformations are probabilistic possibles. En:1

1 ,
0�n�1, was calculated for each of these and plotted in Fig.
4. Note that for all n considered, the incomparable states �2�
and �3� and �4� and �5� with respect to state transformations
have approximately the same En:1

1 .

C. Example III

As a final example, we present a numerical comparison
between N and E�,1=RG

PPT. The bipartite PPT-generalized

robustness can be determined as easily as the negativity. Ac-
tually, it can be written as

RG
PPT��� =

1

�max�PTA�
N��� , �37�

where �max�PTA� is the maximum eigenvalue of the partial
transposed projector onto the negative eigenspace of �TA. We
have generated 105 random states using the algorithm pre-
sented in Ref. �38� and plotted in Figs. 5 and 6.

Although dN�RG
PPT�N �see Sec. IV�, we see from Fig.

3 that RG
PPT�2N for the majority of states.

VI. GAUSSIAN STATES

We considered n distinguishable infinite dimensional sub-
systems, each with local Hilbert space H=L2�Rn�. A Gauss-
ian state is characterized by a density operator whose char-
acteristic function ���x�=Tr��W�x�� is a Gaussian function
�54�. We can write, for every Gaussian state �

FIG. 3. Representative states of the five distinct classes of
3-entangled states.

FIG. 4. En:1
1 ��q�, 0�n�4.5, for the states �1�–�5� of Fig. 3.

FIG. 5. RG
PPT vs N for 105 4�4 random states.

FIG. 6. RG
PPT vs N for 105 6�6 random states.
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� = 
−n�
R2n

dxe−1/4xT�x+idTxW�x� , �38�

where W�x�=exp�−ixTR� are the displacement operators and
R= �X1 , P1 ,X2 , . . . , Pn�, with �Xk , Pl�= i�kl. The matrix �
� iJn is a 2n�2n real matrix called correlation matrix �CM�
and d is a 2n real vector called displacement �54�. The sym-
plectic matrix is given by

Jn = �
k=1

n

J1, J1 = 
0 − 1

1 0
� . �39�

Note that the displacement of a state can always be adjusted
to d=0 by a sequence of unitaries applied to individual
modes. This implies that d is irrelevant for the study of en-
tanglement. Thus we set d=0 for now on without loss of
generality.

The optimization of EWs for states of infinite dimension
is completely infeasible. Nonetheless, we can still obtain
meaningful quanties if we restrict it to a simpler, but suffi-
ciently large, set of operators. An obvious choice would be
the restriction to Gaussian entanglement witnesses �GEW�,
i.e., Gaussian operators which are positive in separable
Gaussian states. Unfortunately, no Gaussian entangled state
is detected by a GEW. Assuming that G is a GEW with
covariance matrix �, we find

Tr��G� = �
R2n

dxe−1/4xT��+��x+c � 0. �40�

Another possible class of operators then is given by

WG = �Q � B�H � H��Q = 2nI − G� , �41�

where G is a Gaussian operator and I the identity operator
�55�. In the next proposition we show that E�:m

G ��� given by

E�:1
G ��� = max�0,− min

Q�WG,Q�I
Tr�Q��� �42�

can be very efficiently numerically calculated by a simple
semidefinite program.

Proposition 6.

E�:m
G ��� = max�0,det�� + ��−1/2 − 2n� , �43�

where the matrix ��M2n�R� is obtained by the following
SDP determinant maximization problem:

max
�,�,�,sij

det�� + ��−1/2

subject to − 1 � � � 1, � � 0


�̃2 + i�J �̃12
T

�̃12 �̃1 − iJ
� � 0,


Jn + � �

� D���
� � 0, 
sk−1,2l−1 sk,l

sk,l sk−1,2l
� � 0,

sk−1,2l−1 � 0, sk−1,2l � 0, skl � 2,

k = 1, . . . ,l, i = 1, . . . ,2l−k, �44�

where � is a n�n lower triangular matrix comprised of ad-
ditional variables, D��� is a diagonal matrix with the same
diagonal entries as those of �, l is the smallest number such
that 2l�n, and s0,i=�ii if 1� i�n and s0,i=2 if n� i�2l.

Proof. Consider the following structure for the bipartite
Gaussian operator G:

G = �
R2n

dxe−1/4xT�xW�x� , �45�

where �T=��0�M2n�R�, with modes 1 to m and m+1 to n
belonging to Alice and Bob, respectively. The optimization
objective Tr�Q��, where Q=2n−G, can be written as

2n − 
−n�
R2n

dxe−1/4xT��+��x = 2n − det�� + ��−1/2. �46�

From the Jamiolkowski isomorphism, Q is an EW iff the
map Q defined as Q= I � Q�P+�=2nI− I � G�P+� �56� is posi-
tive, which is equivalent to ��= I � G����2nI, for every den-
sity operator �. The covariance matrix of ��,��, can be writ-
ten as �57�

�� = ST	S , �47�

where S�Sp�2n ,R� and 	 is the covariance matrix

	 = diag��1,�1, . . . ,�n,�n�

corresponding to a tensor product of states diagonal in the
number basis given by

M� = �
i

2

�i + 1	
k=0

� 
�i − 1

�i + 1
��k�ii
k� , �48�

�k�i being the kth number state of the Fock space Hi �58�.
The symplectic transformation �47� is reflected in the Hilbert
space level by an unitary transformation: G=U�S�†G�U�S�.
Since we are considering bounded operators, the �i must be
non-negative. We thus see the positiveness of Q is equivalent
to

�max���� = �
j=1

n 
 1

1 + � j
� � 1, ∀ ��. �49�

Since we are only considering Gaussian operators, Eq. �49�
is satisfied iff ���0 for every �� iJ, where �� and � are the
covariance matrices of �� and �, respectively. Following
Giedke and Cirac �54�, one finds that Q is positive iff

min
z�C2n

max�z†�M + iJ�z,z†�M − iJ�z� � 0, �50�

where M = �̃2− �̃12
T ��̃1�−1�̃12 and �̃= �I � 
���I � 
�, with 


=diag�1,−1,1 ,−1 , . . . ,−1�. The matrices �i are such that

� = 
 �1 �12

�12
T �2

� .
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We now express condition �50� as a linear matrix inequal-
ity. Equation �50� is equivalent to

z†�M + iJ�z � 0 ∀ z � C2n such that z†�M − iJ�z � 0,

z†�M − iJ�z � 0 ∀ z � C2n such that z†�M + iJ�z � 0.

An important theorem of matrix analysis, known as
S-procedure, can be stated as follows: a quadratic function in
the variable x, G�x�, is positive for all x such that H�x��0,
where H�x� is another quadratic function, iff there exists a
positive real number � such that G−�H�0, for all x �59�.

Applying it to the two conditions above we find that Eq.
�50� holds iff there exists a positive number � such that

M + �iJ � 0, − 1 � � � 1. �51�

We now use another fact of matrix analysis which says that
the constraints on the Schur complement R�0, Q−SR−1ST

�0 and ker�R��ker�Q� are equivalent to


Q S

ST R
� � 0.

Hence, applying it to Eq. �51�, we find that a Gaussian op-
erator G is an EW iff there exists a real number −1���1
such that Eq. �44� holds.

From the Williamson decomposition, we see that Q� I is
equivalent to

�
i=1

n 
 2

�i + 1
� = 2n det�I + �ST�−1�S−1�−1 � 1, �52�

where �i ate the symplectic eigenvalues of Q. Since S is
symplectic, one has STJnS=Jn, so that det�I+ �ST�−1�S−1�−1

=det�Jn
T�ST�−1�Jn+��S−1�−1=det�Jn+��−1. The proposition

then follows from Ref. �60�, which presents a LMI represen-
tation for the inequality det�A�1/m� t, where A is a positive
m�m real matrix. �

VII. STATES WITH SYMMETRY

Entanglement measures usually have their calculation
greatly simplified when the state in question has certain sym-
metries. Following Ref. �61�, let G be a closed group of
product unitary operators of the form U=U1 � U2. Defining
the projection

P�A� =� dUUAU* �53�

for any operator A on H1 � H2 �63�, where dU is the Haar
measure of G, we say that an operator M is invariant under G
if P�M�=M, which is equivalent to �U ,M�=0 for all U�G.
Consider now the determination of any measure expressed
by Eq. �7�. If the state in question has the property P���=�,
then one can restrict the optimization in Eq. �7� to operators
with the same symmetry. More specifically,

E��� = − min
W�M

Tr�W�� = − min
W�M

Tr�WP����

= − min
W�M

Tr�P�W��� = − min
W�P�M�

Tr�W�� , �54�

where P�M�= �W�M �W=P�W�� �62�.
Consider, for example, the isotropic states �p on Cd � Cd

�p = pP+ + �1 − p�
I

d2 , �55�

where P+= ��+�
�+� is the maximally entangled state. It can
be shown that P+ and the identity are the only operators
which commute with all unitaries of the form U � U*. Hence
the OEWs for �p can be written as

W��p� = a�p�P+ + b�p�I . �56�

Since 
��P+����1/d, for every separable state ���, we find

En:1��p� = ��n + 1�p +
�1 − p��n + 1�

d2 − 1, n � d − 1,

dp +
1 − p

d
− 1, n � d . �

�57�

As the OEWs for this family of states are decomposable, Eq.
�57� is also valid to En:1

PPT.

VIII. SUPERSELECTION RULES

The effect of superselection rules �SSR� in theory of en-
tanglement has been studied recently under a number of dif-
ferent perspectives �64–67�. Two striking features emerge
from the existence of a SSR. The entanglement of a given
state under SSR is usually reduced �65� and the notion of
nonlocality has to be redefined, as there exists separable
states that cannot be created by LOCC �64�. In this section
we show how the witnessed entanglement fit in each of these
scenarios.

Following Bartlett and Wiseman �65�, we define a SSR as
a restriction on the allowed local operations on a system,
associated with a group of physical transformations G. An
operation O is G-covariant if

O�T�g��T†�g�� = T�g�O���T†�g� �58�

for all group elements g�G and all density operators �.
Then the SSR associated to G is the restriction on the al-
lowed operations on the system to those G-invariant. As
these restrictions make a state � indistinguishable from the
states T�g��T†��� for all g�G, it is convenient to describe �
by the G-invariant state

G��� = �
G

dgT�g��T†�g� , �59�

where dg is the group-invariant Haar measure. For multipar-
tite systems, where the SSRs are local, we have G���
=G�¯�G���. As it was shown in Ref. �65�, the maximal
amount of entanglement, measured by any EM, which can be
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produced by LOCC in a register shared by all the parties,
initially in a product state and not subjected to SSRs, from a
state �, constrained by a G-SSR, is given by the entangle-
ment they can produce from G��� by unconstrained LOCC. If
E is an entanglement monotone, any LOCC applied to G���,
can, on average, at most maintain E�G����. Since it is always
possible to reach this bound applying local swap operators,
we have that the maximal amount of entanglement produced
by SSR is exactly E�G����. Hence, from Sec. VII, it follows
that, under a G-SSR

E��� = max�0,− min
W�G�M�

Tr�W��� , �60�

where G�M�= �W�M �W=G�W�� �68�.
We now consider the effect of SSRs in the notion of lo-

cality. The states that can be prepared locally in the presence
of a G-SSR are those which can be written as Eq. �1�, with
each ��i�k being G-invariant. It is possible to detect nonlocal
states with witness operators, defining a G-nonlocality wit-
ness �GW� as a Hermitian operator which satisfies Eq. �3�,
with ���Pk

mPk
m
��=G����Pk

mPk
m
���, for all i and k. This nonlocal

character of some states in the presence of a SSR can be
quantified �67�. We can then, as it was done with entangle-
ment, use GWs to perform this quantification. A witnessed
nonlocality measure, NG, will be any quantie given by Eq.
�7�, with the set of EWs substituted by the set of nonlocality
witnesses. It is easy to see that all properties discussed for E
are valid for NG.

As an example, consider the following state:

� =
1

4
��0�A
0� � �0�B
0� + �1�A
1� � �1�B
1�� +

1

2
��+�AB
�+� ,

�61�

where ��+�AB= ��0�A�1�B+ �1�A�1�B� /��2�. Verstraete and
Cirac �64� have shown that, although this state has a sepa-
rable decomposition, it is not local when a particle number
SSR exists, since all possible separable decompositions have
local states involving superpositions of a different number of
particles. Any Hermitian matrix with positive diagonal en-
tries is a G-nonlocality witness in this case. This should be
contrasted with the case of a general EW, where an infinite
number of inequalities are necessary for its characterization.
Calculating, for example, the nonlocal measure equivalent to
E�:1=RG,

NG��� = max�0,− min
G�G

Tr�G��� ,

where G= �G �Gii�0,G� I�, we find NG���=1/2, with G=
−�01�
10 �−�10�
01�.

IX. INDISTINGUISHABLE PARTICLES

The study of entanglement in systems of indistinguishable
particles has been the subject of recent controversy �69–73�.
At least three different approaches to the problems have been
proposed, namely, the entanglement of modes �69�, the quan-
tum correlations �72�, and the entanglement of particles �73�.
Each of these has its own advantages and drawbacks, and no

consensus has been reached on which one is the most suit-
able. In this section we show how the proposed measures
based on EW can be used to quantify entanglement in each
of the three methods.

We start with the entanglement of modes, proposed by
Zanardi �69�, which suggests that the entanglement of indis-
tinguishable particles should be calculated by any regular
entanglement measure, using the density matrix in the mode-
occupation, or Fock, representation. In this case it is clear
that the determination of the witnessed entanglement follows
straightforwardly.

The quantum correlations, introduced by Schliemann et
al. �72�, are motivated by the belief that no quantum corre-
lations due to symmetrization �for bosons� or antisymmetri-
zation �for fermions� should be considered as true entangle-
ment. Then, the characterization of entanglement, for pure
states, is determined by the Slater rank of the state, as op-
posed to the Schimdt rank usually considered in distinguish-
able particles. Furthermore, Schliemann et al. have shown
that the concept of entanglement witness is also applicable to
multipartite systems of indistinguishable particles �74� and,
thus, the witnessed entanglements are well defined in this
case too.

The last approach, due to Wiseman and Vaccaro �73�, is
probably the best motivated one. The entanglement of par-
ticles is defined as the maximal amount of entanglement,
computed by a standard measure, which Alice and Bob can
produce between a quantum register, shared by them, com-
posed of distinguishable particles by local operations. The
amount of entanglement will clearly depend on the physical
constraints imposed, which are in most cases expressed as a
SSR. Therefore the approach presented in the previous sec-
tion to SSR can also be applied in this case.

X. TELEPORTATION DISTANCE

In this section we derive lower bounds to the teleportation
distance, using En:m. We consider a quantum state � shared
by k parties and ask what is the best possible teleportation
distance attained by a LOCC protocol when the parties form
two groups and teleport a quantum state from one group to
the other.

Consider a teleportation protocol where a bipartite state
�AB is used as a quantum channel between Alice and Bob.
Following the approach of Vidal and Werner to the negativity
�36�, we will first consider the single distance of a bipartite
state defined as

��P+,�� � inf
P

�P+ − P����1, �62�

where P+ is the maximally entangled state and the infimum
is taken over LOCC protocols P. Using the convexity and
the invariance under unitary transformations in the two terms
of the absolute distance, and the invariance of P+ under uni-
tary transformations of the form U � U*, we may assume that
the optimal state which minimizes Eq. �62�, Popt���, has un-
dergone a twirling operation �75� and, therefore, is a noise
singlet,
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�p = pP+ + �1 − p�
I � I

d2 . �63�

The absolute distance of �p is given by �P+−�p�1
=2�1− p��d2−1� /d2. From Eq. �57�,

�P+ − �p�1 = 2
1 −
1 + En:1

PPT��p�
d

� . �64�

From the monotonicity of En:1
PPT under LOCC, we find that,

for n�d,
Proposition 7.

��P+,�� � 2
1 −
1 + En:1

PPT���
d

� . �65�

Since En:1
PPT��p�=2N��p�, for n�d, we see that En:1

PPT pro-

vides, when En:1
PPT�2N, a sharper bound than the one derived

from the negativity. In the limit case n→� already, where
En:1

PPT is equal to the PPT-generalized robustness, we see from
Sec. V that the new bound is indeed sharper for the majority
of states.

A measure of the degree of performance of a quantum
channel is the teleportation distance

d�
� =� d��� − 
����1. �66�

As it was shown by the Horedecki family �6�, the minimal
teleportation distance that can be achieved when using the
bipartite state � to construct an arbitrary teleportation chan-
nel is given by

dmin��� =
d

d + 1
��P+,�� . �67�

Therefore

dmin��� �
2d

d + 1

1 −

1 + En:1
PPT���
d

�, n � d . �68�

Until now we have just adapted Vidal and Werner’s reason-
ing for the negativity to the En:1

PPT. Nevertheless, as opposed
to N, En:1

PPT are also defined to multipartite systems.
Proposition 8. Consider a quantum state � shared by k

parties. Let �1¯m:�m+1�¯k denote a bipartite split of the sys-
tem, where the parties 1 to m and m+1 to k form two groups.
Then,

dmin��1¯m:�m+1�¯k� �
2D

D + 1

1 −

1 + �En:1
PPT�1���
D

� �69�

∀ 1�m�k, where D stands for the minimum of the dimen-
sions of the two groups.

Proposition 8 follows from the upper bound to all types of
entanglement provided by E1. Equation �57� is saturated, for
example, on the k-partite GHZ state ��GHZ�=1/�2��00¯0�
+ �11¯1��.

XI. UPPER BOUNDS FOR THE DISTILLABLE
ENTANGLEMENT

We now move on to show another application of the fam-
ily E1:m, namely bounds to the distillable entanglement of
bipartite mixed states. We first derive the following additivity
property.

Proposition 9.

En:1�� � �� � En:1���2 + 2En:1���, ∀ n � 1. �70�

Proof. Consider the dual representation �24� of En:1. Let s,
t, 	, 
1, and 
2 be variables which minimize Eq. �24�. Then
we find En:1���=s+nt, with

� = �1 + s − t�	 + t
2 − s
2. �71�

Thus

� � � = �1 + s − t�2	 � 	 + t�1 + s − t�	 � 
2 − s�1 + s − t�	

� 
1 + t�1 + s − t�
2 � 	 + t2
2 � 
2 − st
2 � 
1

− s�1 + s − t�
1 � 	 − st
1 � 
2 + s2
1 � 
1

= �1 + �2s + s2 + t2� − �2t + 2st��	 � 	

+ �t�� � 
2 + 
2 � �� + st�
1 � 
2 + 
2 � 
1��

− �s�� � 
1 + 
1 � �� + s2
1 � 
1 + t2
2 � 
2� ,

where in the last two lines we used that

	 =
1

1 + s − t
�� + s
1 − t
2� .

It is therefore easily seen that if En:1�� � ��=s�+nt�, then
s�+nt��s2+ t2+2s+n�2t+2st�. Hence, as n�1,

En:1���2 + 2En:1��� − En:1�� � ��

= s2 + n2t2 + 2nst + 2s + 2nt − s� − nt�

� s2 + n2t2 + 2nst + 2s + 2nt − s2 − t2 − 2s − 2nt − 2nst

= t2�n2 − 1� � 0.

�
We can define a family of quantities closely related to En:1

by

LEn:1��� = log2�1 + En:1���� . �72�

The LEn:1��� are nonincreasing under trace preserving sepa-
rable operations. From Proposition 9 we find that they are
also weakly subadditive. Indeed, for n�1,

LEn:1�� � �� � log2��1 + En:1����2� = 2LEn:1��� . �73�

Note that the same results are also valid to En:1
PPT. We now can

state the main result of this section.
Proposition 10.

ED��� � LEn:1���, ∀ n � 1, �74�

where ED��� is the distillable entanglement of the bipartite
state �.

Proof. The proof of Proposition 10 is basically an appli-
cation of a theorem due to the Horodeckis �76� which can be
stated as follows: any function B satisfying the conditions
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�1�–�3� below is an upper bound for the entanglement of
distillation.

�1� Weak monotonicity: B����B�
���� where 
 is any
trace-preserving superoperator realizable by means of LOCC
operations.

�2� Partial subadditivity: B��n��nB���.
�3� Continuity for isotropic states �p given by Eq. �55�.

Suppose that we have a sequence of isotropic states �p such
that Tr��pP+�→1, if d→�. Then we require

lim
d→�

1

log2 d
B��p� → 1. �75�

We have already shown that LEn:1���, for n�1, satisfies
conditions �1� and �2�. From Eq. �54�

LEn:1��p� = log2
dp +
1 − p

d
�, ∀ n � 1. �76�

By evaluating this expression now for large d, we easily
obtain that condition �3� is satisfied. �

It is also possible to state a Proposition like 8 to the
bounds on the distillable entanglement. E1 will in this case
provide an upper bound to ED of all bipartite partitions.

XII. LOWER BOUNDS FOR THE ENTANGLEMENT
OF FORMATION

One of the most celebrated entanglement measures is the
entanglement of formation �77�

EF��� = min
p1,�i

	
i

piEE���i�� , �77�

where EE is the entropy of entanglement. Although this mea-
sure has a very meaningful physical interpretation and good
properties, its calculation has been done only for a very few
class of states �78�. We show in this section that any en-
tanglement witness can be used to provide lower bounds to
the entanglement of formation.

Let �= ���
�� be a pure bipartite state with the following
Schmidt decomposition:

��� = 	
j=1

d

cj�j j�, c1 � c2 � ¯ � cd. �78�

An analytic expression for the random robustness Rr and the
generalized robustness RG of a pure state given by Eq. �78� is
�43�

RG��� = 
	
j=1

d

cj�2

− 1, �79�

Rr��� = c1c2. �80�

We start with two bounds for the entropy of entanglement,
i.e., the Von Neumann entropy of the reduced density matrix
of a pure state ���. In the case of two qubits, Wootters has
shown that �79�

H
1 + �1 − 4c1
2c2

2

2
� = EE����� ,

where H�x�=−x log�x�− �1−x�log�1−x�. That is a particular
case of the more general inequality

H
1 + �1 − 4c1
2c2

2

2
� � − 	

i

d

ci
2 log�ci

2�, 	
i

d

ci
2 = 1.

�81�

Another similar inequality is

log�d� − 1

d �
	
i

d

ci� − 1� � − 	
i

d

ci
2 log�ci

2� . �82�

Equations �72� and �73� can be proved maximizing the left-
hand side minus the right-hand side and noting that the maxi-
mum is null in both cases.

Choosing �pi , ��i�� to be an optimal ensemble in Eq. �71�,
we have

EF��� = 	
i

piEE���i�� � 	
i

piH
1 + �1 − 4�c1
2�i�c2

2�i

2
�

� H
1 + �1 − 4Rr
2���

2
� ,

where we have used the convexity of Rr and f�x�=H��1
+�1−4x2� /2�. Similarly, we find

EF��� �
log�d� − 1

d
RG��� . �83�

The bound derived from Rr is suitable for slightly entangled
states, where the Schimdt coefficients of the optimal ��i�
decay fast enough, making the truncation in the second
Schimdt coefficient a good approximation.

As a first example, we consider the Horodecki 3�3 states
�80�. These states exhibit bound entanglement, since they
have positive partial transposition. They are given by

��a� = �
a 0 0 0 a 0 0 0 a

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

0 0 0 0 a 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0
1 + a

2
0

�1 − a2

2

0 0 0 0 0 0 0 a 0

0 0 0 0 0 0
�1 − a2

2
0

1 + a

2

� .

�84�

This family of states is interesting to test the first bound since
their entanglement of formation was numerically calculated
by Audenaert et al. �81� and was found to be very low.
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Figure 7 shows the bound provided by Rr for the states ��
=e��a�+ �1−e��I /D�.

For our second example we consider one of the unique
states for which an analytic formula for EF is known. It was
shown by Terhal and Vollbrecht �78� that for the isotropic
states �82�

�F =
1 − F

d2 − 1
�I − P+� + FP+.

EF��F� =
d log�d − 1�

d − 2
�F − 1� + log�d�, F � �4�d − 1�

d2 ,1� .

�85�

From Sec. VII we find

EF��F� � �log�d� − 1�
F −
1

d
� . �86�

We see that, in this case, for sufficiently large d, the differ-
ence of the bound and the actual value of EF is always less
than F.

Note that every entanglement witness W, after being nor-
malized such that either Tr�W�=1 or W� I holds, can be
used to deliver lower bounds to the entanglement of forma-
tion.

XIII. ENTANGLEMENT, THERMODYNAMICS,
AND LATTICE SYSTEMS

The study of entanglement properties of many-body sys-
tems, mainly condensed matter, has received much attention
recently �18,19,83–92�. Several important models have been
analyzed and connections with thermodynamic variables,
such as internal energy and magnetization, have been raised
�18,86–89�. The negativity and concurrence have been the
most used measures, partly due to their easy computation,
but also because they made possible the derivation of some
interesting simple thermodynamics like equations. This can
be understood from the view of the witnessed entanglement.

Every quantie derived from Eq. �7� not only defines a mea-
sure of the degree of entanglement, but also gives a Hermit-
ian operator, which vary for each state, whose expectation
value quantifies the entanglement of the state in question. It
is exactly the possibility of measuring experimentally the
amount of entanglement, which is a feature shared by all
common thermodynamics variables, that makes quantities
expressed by Eq. �7� useful to the study of entanglement
thermodynamical properties.

In this section we present, as an example, the study of
entanglement in the XXX Heisenberg model with a magnetic
field and in the dimerized Heisenberg model using E�:1
=RG. The corresponding spin Hamiltonians are given by

H1 = J	
i=1

N

	� i · 	� i+1 + B	
i=1

N

	i
z, �87�

H2 = 	
i=1

N

J1	� i · 	� i+1 + J2	� i+1 · 	� i+2. �88�

We first consider B=0, in which case both Hamiltonians
have SU�2� symmetry. According to Sec. VII, we can restrict
the EWs in Eq. �7� to the ones that also have SU�2� symme-
try. Then, from a standard result from representation theory
�93,94�, we find that all EWs with this symmetry can be
written as

W = 	
i

�iVi, �89�

where Vi are unitary permutation operators. From analytic
and numerical studies for the XXX Heisenberg model of odd
N in the fundamental state and in the thermodynamical limit
�95�, we find that all other correlators are very small com-
pared to the first neighbor correlators. We, thus, use the fol-
lowing ansatz for the optimal entanglement witness for the
thermal states, at very low temperatures, of Hamiltonians
�79� and �80�

W = 
NI + 	
i=1

N

�	i
x	i+1

x + 	i
y	i+1

y + 	i
z	i+1

z ��� 2N ,

�90�

where the factor 2N in the denominator comes from W� I.
Note that this is the EW introduced by Toth et al. �96�. As-
suming that �B�� �J�, and using the continuity of OEWs, we
find that for the XXX Heisenberg model, at temperatures
sufficiently close to zero,

RG �
U − BM

2NJ
−

1

2
, �91�

where the magnetization and the internal energy are given,
respectively, by M =	i
	i

z� and U= 
H�.
We now proceed analyzing the relation between entangle-

ment and the magnetic susceptibility ��� in thermal states of
H2. According to Brukner, Vedral, and Zeilinger �19�, under
temperatures close to zero and at zero external magnetic
field, �= �g2�B

2 /kT��NI+ �1/3�	i	� i ·	� i+1�. Thus

FIG. 7. �Color online� Lower bound for the Horodecki states
using Rr.
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� �
2Ng2�B

2

3kT
+

2NRG

3kT
. �92�

Remarkably, we see that the susceptibility is given by a term
which resembles the classical Curie law more than a term
which takes into account the entanglement presented in the
state. The equation above can be seen as a quantitative ver-
sion of the experimental result of Ghose et al. �92�, who have
shown that at very low temperatures the magnetic suscepti-
bility of certain materials is affected by the existence of en-
tanglement.

XIV. CONCLUSION

Summarizing, we have presented a new perspective to the
quantification of entanglement based on witness operators.
Several important EMs were shown to fit into this scenario
and a new infinite family of EMs was introduced. The use-

fulness of the witnessed entanglement was illustrated by the
study of diverse features of entanglement, including superse-
lection rules constraints and efficiency of quantum informa-
tion protocols. Finally, we have shown some interesting pre-
liminary results in the study of thermodynamical properties
of entanglement in macroscopic systems.

We believe the results presented in this paper are only
preliminary. The quantification on entanglement with EWs
might be a very fruitful approach to development of the
theory of entanglement, especially in the new applications of
entanglement, such as in identifying quantum phase transi-
tions and improving the approximation of mean field theories
�97�.
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