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Surface-wave dispersion retrieval method and synthesis technique for bianisotropic metasurfaces
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We propose a surface-wave dispersion retrieval method and synthesis technique that applies to bianisotropic

metasurfaces that are embedded in symmetric or asymmetric environments. Specifically, we use general

zero-thickness sheet transition conditions to relate the propagation constants of surface-wave modes to the

bianisotropic susceptibility components of the metasurface, which can themselves be directly related to

its scattering parameters. It is then possible to either obtain the metasurface dispersion diagram from its

known susceptibilities or, alternatively, compute the susceptibilities required to achieve a desired surface-wave

propagation. The validity of the method is demonstrated by comparing its results to those obtained with exact

dispersion relations of well known structures such as the propagation of surface plasmons on thin metallic films.

In particular, this work reveals that it is possible to achieve surface-wave propagation only on one side of the

metasurface either by superposition of symmetric and asymmetric modes in the case of anisotropic metasurfaces

or by completely forbidding the existence of the surface wave on one side of the structure using bianisotropic

metasurfaces.

DOI: 10.1103/PhysRevB.99.155140

I. INTRODUCTION

Metasurfaces are thin arrays of artificial scattering particles

engineered to control the propagation of light in ways that

are unachievable with conventional materials [1–10]. In recent

years, several metasurface synthesis techniques have been

developed to design these complex structures and allow one

to exploit them to their full potential [5–7,11]. The main

applications of these synthesis techniques have been to im-

plement metasurfaces controlling electromagnetic waves in

the far-field regime. In parallel, other synthesis techniques

have been developed for the specific near-field problem of

surface-wave propagation on artificial structures such as ten-

sor impedance surfaces [12–16]. However, these techniques

are restricted to the case of anisotropic material parameters

and hence do not include bianisotropic parameters. Moreover,

the methods in [12,13] are limited to impenetrable (opaque)

surfaces, while those in [14–16] have been only applied to

impedance surfaces lying on a dielectric substrate backed by

a ground plane. Overcoming these limitations is the initial

motivation of this work.

Concretely, this paper aims at providing the reader with a

general dispersion retrieval method for penetrable and impen-

etrable bianisotropic metasurfaces embedded in symmetric

or asymmetric environments. This work is an extension of

our metasurface synthesis technique developed in [6] with

the specific objective of studying the propagation of surface-

wave modes. It allows one to compute the dispersion diagram

of metasurfaces based on the knowledge of their surface

susceptibilities, which can themselves be directly related to

the metasurface scattering parameters. Our developments are

*karim.achouri@a3.epfl.ch, olivier.martin@epfl.ch

based on the generalized sheet transition conditions, which

represent the basis for our metasurface synthesis and analysis

framework [10,17]. Importantly, this work may also be used

for the synthesis of surface-wave guiding metasurfaces since

we also provide the analytical expressions of the dispersion

relations in the case of birefringent and bianisotropic (omega-

type) metasurfaces. This means that one may find the required

susceptibilities so as to achieve a specified propagation con-

stant and polarization of the surface-wave mode.

In order to evaluate the validity of the proposed dis-

persion retrieval method, we will use it to compute the

dispersion diagram of several well known structures for

which there exist exact expressions of their dispersion re-

lations. This will allow us to compare the dispersion dia-

gram predicted by the proposed method to that corresponding

to these exact solutions. Specifically, we will consider the

propagation of surface plasmon polaritons on (a)symmetric

thin metallic layers, which have been already widely

studied [18–21].

This paper is organized as follows: Section II introduces

the modeling of bianisotropic metasurfaces through sheet

transition conditions and presents the formulation of the

surface-wave dispersion retrieval method. Section III applies

this method to the situation of symmetric environments, i.e.,

when the metasurface is surround by the same medium on

both sides. This section illustrates the application of the

dispersion retrieval method with two examples: birefringent

and bianisotropic metasurfaces. Then, Sec. IV discusses the

case of asymmetric environments. Note that the proposed

dispersion retrieval method is based on a priori knowledge

of the metasurface susceptibilities. For the sake of complete-

ness, the Appendix provides a summarized discussion of the

susceptibility retrieval method presented in [10] and which
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allows one to compute the susceptibilities of a metasurface

from its scattering parameters.

II. MODELING OF BIANISOTROPIC METASURFACES

Metasurfaces may be conveniently and effectively mod-

elled by zero-thickness sheets of polarizable electric and

magnetic dipolar moments [5–8,22,23]. The most general

transition conditions that apply to this type of electromagnetic

discontinuity were initially derived by Idemen [24]. They have

been later successfully applied to the case of metasurfaces

and have been since then referred to as the generalized sheet

transition conditions (GSTCs) [6,22]. For a metasurface lying

in the xy plane at z = 0, the GSTCs with time dependence e jωt

read

ẑ × �H =
∂

∂t
P − ẑ × ∇Mz, (1a)

ẑ × �E = −μ
∂

∂t
M −

1

ǫ
ẑ × ∇Pz, (1b)

where �E and �H are the differences of the electric and

magnetic fields on both sides of the metasurface, and P and

M refer to the electric and magnetic polarization densities,

respectively. Note that, throughout the paper, the material

parameters, such as the permittivity as well as the wave

numbers that do not present any numeral subscript, refer to

vacuum.

While relations (1) are general, they are not necessarily

practical to use in their current form due to the presence

of the spatial derivatives of the normal components of the

polarization densities. Consequently, it has been common

practice to ignore the presence of normal polarizations within

metasurfaces and thus assume that Pz = Mz = 0 so as to

transform relations (1) into algebraic equations. This sim-

plification is, in most cases, justified by the fact that meta-

surfaces are so thin compared to the operating wavelength

that normal polarizations are negligible compared to their

tangential counterparts. However, in some particular cases, the

assumption Pz = Mz = 0 is not valid (e.g., metallic loops in the

xy plane generating strong Mz components), which produces

discrepancies between the purely tangential GSTCs model

and the actual electromagnetic responses of metasurfaces.

In this work, we will nonetheless use the assumption that

Pz = Mz = 0 for the sake of simplicity and will discuss the

implications of this simplification with several examples. Note

that it is possible to solve the general relations (1) in order

to compute the dispersion relations of metasurfaces without

the assumption of purely tangential polarizations. However,

the additional complexity that this would entail is beyond the

scope of this paper and may be the topic of future work.

We now remove the spatial derivatives of the normal polar-

izations and express the tangential components of P and M in

terms of the metasurface bianisotropic surface susceptibilities

such that (1) transforms into [6]

ẑ × �H = jωǫχ ee · Eav + jkχ em · Hav, (2a)

ẑ × �E = − jωμχmm · Hav − jkχme · Eav, (2b)

where Eav and Hav are the arithmetic averages of the electric

and magnetic fields across the metasurface, respectively.

Top medium

Metasurface

Bottom medium

xy

z

FIG. 1. Surface wave propagating on a metasurface surrounded

by two different media.

The objective of this work is to obtain the dispersion

relations of metasurfaces. To achieve this goal, we will solve

(2) so as to find the surface-wave modes, supported by the

metasurface, as a function of its susceptibilities. In this prob-

lem, the susceptibilities are considered to be known quantities,

while the propagation constants and the polarizations of the

surface waves are unknown. Therefore, the first step in order

to obtain dispersion relations of a metasurface is to find its

susceptibilities, which can be easily done using conventional

homogenization techniques [5–8,10]. For the completeness of

this work, the susceptibility retrieval technique presented in

[10] is summarized in the Appendix.

Now that we have a way to find the metasurface suscepti-

bilities, we transform (2) to be able to extract the polarizations

and propagation constants of the surface-wave modes. To do

so, we specify the electromagnetic fields corresponding to

surface waves propagating on the top and on the bottom of the

metasurface. Note that, in the forthcoming developments, we

will only consider the propagation of surface waves in the x
direction, as depicted in Fig. 1. Nevertheless, the propagation

of surface waves in any direction in the xy plane may be

easily obtained by simple matrix rotation of the susceptibility

tensors. For instance, each of the susceptibility tensors in

(2) may be rotated using χ rot = R · χ · R
−1

, where R is the

rotation matrix [25].

In a very general situation, the electromagnetic fields on the

top (z = 0+) and on the bottom (z = 0−) of the metasurface

may be expressed as superpositions of transverse electric

(TE) and transverse magnetic (TM) modes. In addition, we

consider here the case of a source-less (or undriven) problem,

which means that we do not have to specify any excitation.

Accordingly, the fields on the z = 0− side of the metasurface

are given by

E0− =
(

−x̂
k1z

k1

η1A0−

TM + ŷA0−

TE

)
e− jkxx, (3a)

H0− =
(

x̂
k1z

k1η1

A0−

TE + ŷA0−

TM

)
e− jkxx, (3b)
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where k2
1 = k2

1z + k2
x and A0−

TE and A0−

TM are the complex ampli-

tudes of the TE and TM surface-wave modes on the bottom of

the metasurface. Note that throughout the text, subscripts “1”

and “2” refer to the parameters of the bottom (z = 0−) and

top (z = 0+) media, respectively. Similarly, the fields on the

z = 0+ side of the metasurface are given by

E0+ =
(

x̂
k2z

k2

η2A0+

TM + ŷA0+

TE

)
e− jkxx, (4a)

H0+ =
(

−x̂
k2z

k2η2

A0+

TE + ŷA0+

TM

)
e− jkxx, (4b)

where k2
2 = k2

2z + k2
x and A0+

TE and A0+

TM are the complex am-

plitudes of the TE and TM surface-wave modes on the top of

the metasurface. Note that the propagation constant kx is, by

phase matching, the same for the surface waves on the top and

the bottom of the metasurface.

The difference and the average of the fields in (2) may now

be expressed in terms of the electromagnetic fields given in

(3) and (4). They respectively read

�E = E0+ − E0−
, (5a)

�H = H0+ − H0−
, (5b)

and

Eav = 1
2
(E0+ + E0−

), (6a)

Hav = 1
2
(H0+ + H0−

). (6b)

Finally, we transform the GSTCs relations (2) by substituting

(5) and (6) into (2) along with (3) and (4). After rearranging

the terms and simplifying the expressions, we obtain the

following system of equations:

χ · x = 0, (7)

where the matrix χ is defined in Eq. (10) below and the vector

x reads

xT =
(
A0−

TE, A0−

TM, A0+

TE, A0+

TM

)
, (8)

with “T” being the transpose operation.

In what follows, we will show how the general system (7)

may be solved to obtain the dispersion relations of different

types of structures.

As a side note, we provide here the Lorentz reciprocity

conditions, which will be of practical interest for the forth-

coming developments since they relate the susceptibility ten-

sors in the following fashion [26]:

χ
T

ee = χ ee, χ
T

mm = χmm, χ
T

me = −χ em. (9)

A direct consequence of these reciprocity conditions is that

they reduce the number of degrees of freedom available to

control the propagation of surface waves, by relating several

susceptibility components to each other:

χ =

⎛
⎜⎜⎜⎜⎜⎝

jωǫχ
xy
ee + jk1zkχ xx

em

k1η1
−2 + jkχ

xy
em − jk1zη1ωǫχ xx

ee

k1
jωǫχ

xy
ee − jk2zkχ xx

em

k2η2
2 + jkχ

xy
em + jk2zη2ωǫχ xx

ee

k2

jωǫχ
yy
ee + k1z (2+ jkχ

yx
em )

k1η1
jkχ

yy
em − jk1zη

2
1ωǫχ

yx
ee

k1η1
jωǫχ

yy
ee + k2z (2− jkχ

yx
em )

k2η2
jkχ

yy
em + jk2zη

2
2ωǫχ

yx
ee

k2η2

−2 − jkχ
xy
me − jk1zωμχ xx

mm

k1η1
− jωμχ

xy
mm + jk1zη1kχ xx

me

k1
2 − jkχ

xy
me + jk2zωμχ xx

mm

k2η2
− jωμχ

xy
mm − jk2zη2kχ xx

me

k2

− jkχ
yy
me − jk1zωμχ

yx
mm

k1η1
− jωμχ

yy
mm − k1zη1(2− jkχ

yx
me )

k1
− jkχ

yy
me + jk2zωμχ

yx
mm

k2η2
− jωμχ

yy
mm − k2zη2(2+ jkχ

yx
me )

k2

⎞
⎟⎟⎟⎟⎟⎠

. (10)

III. DISPERSION IN A SYMMETRIC ENVIRONMENT

We start by discussing the case of symmetric environments, which means that the media on both sides of the metasurface are

the same and thus that η = η1 = η2, k = k1 = k2, and kz = k1z = k2z. This greatly simplifies the system (7), which may now be

written in the form of an eigenvalue problem to be subsequently solved for the metasurface dispersion relations. Specifically, we

split the matrix χ in (10) into a matrix A, which does not contain kz, and a matrix B, which does. The system (7) thus transforms

into

A · x = kzB · x, (11)

where the matrices A and B are given by

A =

⎛
⎜⎜⎜⎝

−kχ
xy
ee −2 jη − kηχ

xy
em −kχ

xy
ee 2 jη − kηχ

xy
em

k2χ
yy
ee k2ηχ

yy
em k2χ

yy
ee k2ηχ

yy
em

−2 j + kχ
xy
me kηχ

xy
mm 2 j + kχ

xy
me kηχ

xy
mm

k2χ
yy
me k2ηχ

yy
mm k2χ

yy
me k2ηχ

yy
mm

⎞
⎟⎟⎟⎠, (12a)

B =

⎛
⎜⎜⎜⎝

χ xx
em −ηχ xx

ee −χ xx
em ηχ xx

ee

2 j − kχ
yx
em kηχ

yx
ee 2 j + kχ

yx
em −kηχ

yx
ee

−χ xx
mm ηχ xx

me χ xx
mm −ηχ xx

me

−kχ
yx
mm 2 jη + kηχ

yx
me kχ

yx
mm 2 jη − kηχ

yx
me

⎞
⎟⎟⎟⎠. (12b)
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TABLE I. Dispersion relations of birefringent metasurfaces.

Propagation

Eigenvalues, kz Eigenvectors, xT constants, kx

2 j
χxx

mm
(−1, 0, 1, 0) TE, symmetric, ω− ±

√
4+k2χ2xx

mm

χxx
mm

2 j
χxx

ee
(0,−1, 0, 1) TM, symmetric, ω− ±

√
4+k2χ2xx

ee

χxx
ee

− 1

2
jk2χ yy

ee (1,0,1,0) TE, asymmetric, ω+ ± 1

2
k
√

4 + k2χ
2yy
ee

− 1

2
jk2χ yy

mm (0,1,0,1) TM, asymmetric, ω+ ± 1

2
k
√

4 + k2χ
2yy
mm

Then, by matrix inversion of B, we obtain the eigenvalue

problem

M · x = kzx, (13)

where the matrix M is simply given by M = B
−1

· A. This

equation may now be solved to obtain the eigenvalue kz,

which is directly related to the propagation constant using

k2 = k2
z + k2

x , and the corresponding eigenvector x, which

provides the amplitude of the TE and TM surface-wave modes

supported by the metasurface. It follows that, if the meta-

surface susceptibilities are known, it is trivial to retrieve the

metasurface dispersion diagram.

In what follows, we will analytically solve the eigenvalue

problem (13) for the two particularly common and important

cases: (A) birefringence and (B) bianisotropy (omega type).

A. Dispersion of birefringent metasurfaces

Birefringent metasurfaces are anisotropic structures, which

represent the most common class of metasurfaces that have

been studied and reported in the literature so far [27]. Accord-

ingly, they are expected to be the most likely candidate for

controlling the propagation of surface waves. They have the

advantage of being relatively simple to model since they only

possess the following nonzero susceptibilities components

χ xx
ee , χ

yy
ee , χ xx

mm, and χ
yy
mm. Moreover, the relations that will be

derived in what follows are also valid for isotropic structures

since isotropy is a particular case of birefringence, which

occurs when χ xx
ee = χ

yy
ee and χ xx

mm = χ
yy
mm.

To obtain the dispersion relations of birefringent meta-

surfaces, we set all the susceptibility components in (12) to

zero except for the four terms mentioned above and solve the

eigenvalue problem (13). This yields a set of four eigenvalues,

four associated eigenvectors, and their corresponding propa-

gation constants, which are provided in Table I.

We see that a birefringent metasurface may support both

TE and TM modes, which are decoupled from each other since

this kind of structure does not induce rotation of polarization.

Due to the symmetry of the environment, the absolute value

of the amplitude of the surface waves on both sides of the

metasurface is the same. However, the interaction of the top

and bottom surface waves at the metasurface results in a sym-

metric and asymmetric mode splitting, where the symmetric

mode corresponds to in-phase tangential electric fields and

the asymmetric mode corresponds to out-of-phase tangential

electric fields. For a given value of the propagation constant

kx, the symmetric mode is associated with a frequency ω−

lower than the frequency ω+ of the asymmetric mode.

In order to demonstrate the validity of the dispersion

relations provided in Table I, we will use them to evaluate

the dispersion of some relatively simple structures. Before

discussing the case of a birefringent metasurface, we will

first consider the case of thin isotropic slabs for which there

exist exact dispersion relations directly derived using Maxwell

equations and by applying the boundary conditions at both

interfaces.

In the case of a slab surrounded by vacuum on both sides,

the dispersion relations of the symmetric and asymmetric

modes are respectively given by [19]

ω− : ǫrskz + ksz coth

(
kszd

2 j

)
= 0, (14a)

ω+ : ǫrskz + ksz tanh

(
kszd

2 j

)
= 0, (14b)

where d is the thickness of the slab, ǫrs is its relative permit-

tivity, and kz and ksz are the normal wave numbers in vacuum

and in the slab, respectively, The corresponding dispersion

diagram of the slab can now be obtained by numerically

solving relations (14). In what follows, we will compare the

dispersion diagram found using relations (14) to that found

from the relations in Table I.

To compute the dispersion diagram using the GSTCs

method, we first have to obtain the surface susceptibilities

of the slab. This operation of homogenization may be eas-

ily achieved by relating the susceptibilities to the normal

reflection and transmission coefficients, as explained in the

Appendix. In our case, the susceptibilities are directly ob-

tained using (A3) as

χaa
ee =

2 j

k

(
Saa

21 + Saa
11 − 1

Saa
21 + Sxx

11 + 1

)
, (15a)

χbb
mm =

2 j

k

(
Saa

21 − Saa
11 − 1

Saa
21 − Saa

11 + 1

)
, (15b)

where aa, bb = {xx, yy} and Saa
11 and Saa

21 are the slab reflection

and transmission coefficients for a-polarized waves, respec-

tively. Since the slab is isotropic, we have that χ xx
ee = χ

yy
ee and

χ xx
mm = χ

yy
mm, as said previously.

Note that even though the slab has a relative permeability

μrs = 1, it does not mean that its corresponding magnetic

susceptibility is zero. Indeed, due to the nonzero thickness

of the slab, there is a variation of the electromagnetic field

distribution within it. Within the zero-thickness model of the

GSTCs, this variation of the field distribution inside the slab

can only be modeled by a combination of nonzero electric and

magnetic susceptibilities.

The reflection and transmission coefficients of the slab are

easily found analytically. Then, substituting relations (15) in

the dispersion relations in Table I, we compute the dispersion

diagrams of two different metallic slabs. The resulting disper-

sion diagrams are plotted in Fig. 2, for a slab made out of

silver, and in Fig. 3, for a slab made out of gold. For these two

slabs, we consider a thickness of d = 20 nm and d = 60 nm,

and the material parameters are found from [28]. In the two
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FIG. 2. Dispersion diagrams for silver slabs with thicknesses

(a) d = 20 nm and (b) d = 60 nm. The black curve is the light line.

The dashed curves correspond to the GSTCs method, while the solid

curves correspond to the exact solutions. The blue and red curves

correspond to the symmetric and asymmetric modes, respectively.

figures, the dashed curves correspond to the GSTCs method,

while the solid curves correspond to the exact solutions.

Overall, there is a very good agreement between the two

methods, with the exception of the region near the plasmon

resonance where we notice some discrepancies. This may

be explained by the fact that, near resonance, the fields are

more confined within the slabs, thus increasing the role played

by the normal susceptibility components that we initially

decided to ignore in (1). This suggests that it may be possible

to achieve an even better result by taking into account the

presence of normal susceptibility components, but the devel-

opments required to consider these susceptibilities are beyond

the scope of this work.
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FIG. 3. Dispersion diagrams for gold slabs with thicknesses

(a) d = 20 nm and (b) d = 60 nm. The black curve is the light line.

The dashed curves correspond to the GSTCs method, while the solid

curves correspond to the exact solutions. The blue and red curves

correspond to the symmetric and asymmetric modes, respectively.

We note that the two metallic slabs support the propagation

of both symmetric (blue curves) and asymmetric (red curves)

TM modes. An illustration of these two modes is presented in

Fig. 4 for comparison. As a general observation, the thinner

the slab, the more decoupled are the two modes, with the

asymmetric mode converging more and more towards the

light line for very thin slabs. In contrast, when the thickness

of the slabs increases, the two modes converges and finally

completely overlap for very thick slabs.

In terms of synthesis, the expressions provided in Table I

may be directly used to find the susceptibilities required to

achieve the propagation of a desired surface-wave mode.

Let us for instance consider the synthesis of a metasurface
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FIG. 4. Simulated real part of Ex for surface waves, with (a) sym-

metric and (b) asymmetric field distributions, propagating on a 60-

nm-thick silver slab at λ = 400 nm.

supporting a TM surface-wave mode with a specified propaga-

tion constant kx,spec > k and associated normal wave number

k2
z,spec = k2 − k2

x,spec. Using the eigenvalues provided in the

table, we simply have that χ xx
ee = 2 j/kz,spec, for a symmet-

ric mode, and χ
yy
mm = 2 jkz,spec/k2, for an asymmetric mode.

Implementing either of these two susceptibilities will allow

one to achieve TM surface-wave propagation of either a

symmetric or an asymmetric mode.

At this point, one may ask the question: what happens if a

metasurface is implemented so as to simultaneously have that

χ xx
ee = 2 j/kz,spec and χ

yy
mm = 2 jkz,spec/k2 for the same value of

k? In that case, the metasurface is able to simultaneously sup-

port the propagation of both a symmetric and an asymmetric

TM surface-wave mode at the same frequency. Therefore, by

constructive or destructive superposition of these two modes,

the surface wave will only exist on the bottom or on the top of

the metasurface, respectively, which corresponds to the results

already discussed in [29]. Note that this peculiar effect is

purely based on the interference between the symmetric and

asymmetric modes. Consequently, if they are not exactly in

phase or out of phase, then the surface wave will partially

exist on both sides of the metasurface. In the next section, we

will see a method which allows one to completely forbid the

existence of a surface wave on one side of the metasurface;

a phenomenon that is not based on the superposition of two

surface waves like the one presented here.

Now that the validity of the GSTCs dispersion model has

been established, we will use it to compute the dispersion

diagram of a birefringent metasurface structure. We have

selected a unit cell which was previously used to realize a

microwave surface-wave guiding metasurface [29]. The unit

cell structure is made of three metallic layers separated by

two dielectric spacers. Each of the metallic layer takes the

shape of a Jerusalem cross as shown in Fig. 5. The structure is

designed for a central frequency of f = 10 GHz. The lateral

dimension of the unit cell is l = 6 mm and its thickness is d =
3.04 mm. This structure was numerically optimized, using

CST MWS eigenmode solver, so as to support the propagation

of surface waves [29]. The resulting optimal dimensions of the

Jerusalem crosses are reported in Table II.

The dispersion diagram computed using the eigenmode

solver is now compared to the approximate dispersion dia-

gram found using the GSTCs method, where the scattering

parameters of the unit cell were obtained by full-wave sim-

FIG. 5. Representations of a generic Jerusalem cross with dimen-

sions that can be modified. The metal is copper and the dielectric slab

is a Rogers RO3003 substrate with ǫr = 3 and tan δ = 0.001.

ulations. The resulting dispersion diagrams are plotted for

comparison in Fig. 6. Due to the complex geometry of the unit

cell, this metasurface supports several modes, among which

only three are plotted in the figure. Interestingly, we note that

this kind of structure supports both TE and TM asymmetric

modes.

The comparison between the dispersion curves obtained

with the eigenmode solver and the GSTCs method reveals an

overall good agreement, at least for the TE modes. Below 9

GHz, the two methods yields almost identical results for the

TM mode; however, a non-negligible discrepancy is present

near the resonance. As explained previously, this discrepancy

is likely to stem from the presence of normal susceptibility

components that are ignored in the GSTCs method. The

reason that the discrepancy is more important for the TM

mode than the TE modes is explained by the fact that this

type of unit cell structure exhibits a normal electric suscep-

tibility, χ zz
ee , that is much more important than its magnetic

counterpart, χ zz
mm, due to the tendency of the field component

Ez to be strongly confined between the metallic layers near the

resonance. Moreover, this effect is maximized in the case of a

TM asymmetric mode since, for this mode, the Ez components

of the top and bottom surface waves are in phase within the

TABLE II. Geometrical dimensions (in mm) of a Jerusalem

cross. OL denotes the outer layers and ML the middle layer.

Layer Lx Ly Wx Wy Ax Ay Bx By

OL 5.5 4 0.5 1 0.5 0.5 2.25 2.25

ML 5 5 0.25 1 0.5 0.5 3.75
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FIG. 6. Dispersion diagram of a symmetric metasurface unit cell.

The black curve is the light line. The dashed curves correspond to the

GSTCs method, while the solid curves correspond to the full-wave

numerical solutions.

structure, which magnifies the effect of χ zz
ee and thus increases

the discrepancy.

B. Dispersion of omega-type metasurfaces

Omega-type metasurfaces are a particular class of struc-

tures that induce no rotation of polarization and that are struc-

turally asymmetric in their longitudinal (here z) direction [30].

Due to their asymmetry, they exhibit reflection coefficients

that are different for forward and backward illuminations,

which has been recently leveraged to realize refractive meta-

surfaces without spurious diffraction [31–33]. Their asym-

metry may thus be seen as a source of additional degrees

of freedom to control the propagation of surface waves.

Specifically, one may ask the question, can this asymmetry

be leveraged to arbitrarily control the amplitude of the TE or

TM surface-wave modes on both sides of the metasurface?

To answer this question, we will now solve the eigenvalue

problem (13) for the case of omega-type metasurfaces.

An omega-type metasurface is a bianisotropic structure,

which possesses the following nonzero susceptibility com-

ponents: χ xx
ee , χ

yy
ee , χ xx

mm, χ
yy
mm, χ

xy
em, χ

yx
em, χ

xy
me, and χ

yx
me. The

relationships between these susceptibilities and the scattering

parameters are provided in (A7). For simplicity, we restrict

our attention to the case of reciprocal metasurfaces, which

relates some of the susceptibility components to each other

through (9). We may now solve the eigenvalue problems

(13) for TE and TM surface-wave propagation. The resulting

eigenvalues and eigenvectors are given in Table III, while

the corresponding propagation constants are not provided for

the sake of briefness but may be straightforwardly found by

solving k2 = k2
x + k2

z for each eigenvalue. The distinction

between symmetric and asymmetric modes is more difficult

with an omega-type metasurface, specifically for the reason

that the relative amplitude and phase difference between the

top and bottom waves depend on the susceptibilities.

TABLE III. Dispersion relations for omega-type metasurfaces.

The propagation constants, kx , are easily calculated by solving k2 =
k2

z + k2
x .

Eigenvalues, kz Eigenvectors, xT

k2 (χ
2yx
em +χ

yy
ee χxx

mm )−4+CTE

4 jχxx
mm

(
4 jkχ

yx
em+CTE

k2 (χ
2yx
em +χ

yy
ee χxx

mm )+4
, 0, 1, 0

)

k2 (χ
2yx
em +χ

yy
ee χxx

mm )−4−CTE

4 jχxx
mm

(
4 jkχ

yx
em−CTE

k2 (χ
2yx
em +χ

yy
ee χxx

mm )+4
, 0, 1, 0

)

k2 (χ
2xy
em +χxx

ee χ
yy
mm )−4+CTM

4 jχxx
ee

(
0,

4 jkχ
xy
em+CTM

k2 (χ
2xy
em +χxx

ee χ
yy
mm )+4

, 0, 1
)

k2 (χ
2xy
em +χxx

ee χ
yy
mm )−4−CTM

4 jχxx
ee

(
0,

4 jkχ
xy
em−CTM

k2 (χ
2xy
em +χxx

ee χ
yy
mm )+4

, 0, 1
)

CTE =
√

k4χ
4yx
em + 2k2χ

2yx
em (k2χ

yy
ee χ xx

mm − 4) + (k2χ
yy
ee χ xx

mm + 4)2

CTM =
√

k4χ
4xy
em + 2k2χ

2xy
em (k2χ xx

ee χ
yy
mm − 4) + (k2χ xx

ee χ
yy
mm + 4)2

As for the case of birefringent metasurfaces discussed in

the previous section, the expressions provided in this table

may be used to perform a metasurface synthesis. Specifically,

we see from the expressions of the eigenvectors, that it is

possible to control the amplitude of the TE/TM modes that

propagate on both sides of the metasurface. These expressions

notably suggest that, for a specific TE or TM mode, it should

be possible to achieve surface-wave propagation only on one

side of the metasurface, while completely forbidding the

existence of surface waves of the same mode on the other side.

In order to demonstrate that this is indeed possible, we

now derive the susceptibilities that allow the propagation of

a TM surface wave only on the bottom side of an omega-

type metasurface. This is achieved by solving (13) for the

susceptibilities and propagation constants such that the eigen-

vector xT = (0, 1, 0, 0), which corresponds to TM surface-

wave propagation only on the bottom side of the metasurface

according to (8), is the only solution to that system. This leads

to the following susceptibilities and propagation constant:

χ yy
mm = 0, χ xy

em =
2 j

k
, kx = ±

√
16 + k2χ2xx

ee

χ xx
ee

, (16)

where χ xx
ee is left as a free parameter that may be used to

achieve the desired propagation constant. Note that all the

other susceptibilities not defined in (16) are also left as free

parameters since the TM wave does not interact with them.

We have performed a numerical simulation to verify that

the susceptibilities in (16) allow the propagation of a TM

surface only on the bottom of the metasurface and prevent

the propagation of TM surface waves on its top. We have

arbitrarily specified that kx = 1.2k, which leads to χ xx
ee ≈

6.03/k according to (16). The simulation is performed using

an homemade two-dimensional finite-difference frequency-

domain (FDFD) scheme [17,34]. The surface wave is excited

by a line source and reflections are prevented using perfectly

matched layers (PML). The resulting real part of Ex is plotted

in Fig. 7. As can be seen, the metasurface, which is imple-

mented as a zero-thickness sheet at z = 0, only supports a

surface wave on its bottom side.

Following the same procedure, we provide in Table IV

the conditions for unilateral surface-wave propagation for
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FIG. 7. FDFD simulated real part of Ex of a bianisotropic meta-

surface allowing the propagation of a TM surface wave only on its

bottom side.

the four different combinations of TE/TM polarizations and

top/bottom propagations.

IV. DISPERSION IN AN ASYMMETRIC ENVIRONMENT

We are now interested in the case where the media on

both sides of the metasurface are different from each other,

which implies that η1 �= η2, k1 �= k2, and k1z �= k2z. As a

consequence, the latter inequality prevents the reduction of

the GSTCs model to the convenient eigenvalue problem of

Eq. (13) since this equation is only valid when k1z = k2z.

Nevertheless, it is still possible to obtain the dispersion re-

lations in this asymmetric environment by directly solving

Eqs. (7) and by noting that, even if the normal wave numbers

are different from each other, the propagation constant, kx,

must be the same on both sides of the metasurface by phase

matching. Therefore, one may obtain the dispersion relations

by respectively substituting k1z and k2z by k1z = ±
√

k2
1 − k2

x

and k2z = ±
√

k2
2 − k2

x and solving Eqs. (7) for kx. The general

solution to this system of equations is particularly cumber-

some and is thus not presented here. In what follows, we

will rather consider a simplified but still experimentally very

relevant situation, which is that of an isotropic thin structure

surround by two different media.

Let us consider the two-dimensional asymmetric environ-

ment depicted in Fig. 8. In order to find the dispersion

relations of this thin metallic slab, we first have to obtain

its susceptibilities. As before, this may be achieved by using

TABLE IV. Synthesis conditions for unilateral surface-wave

propagation on omega-type metasurfaces.

Propagation

Description Susceptibilities constants, kx

TM wave at z = 0− χ yy
mm = 0 χ xy

em = 2 j
k kx = ±

√
16+k2χ2xx

ee

χxx
ee

TM wave at z = 0+ χ yy
mm = 0 χ xy

em = − 2 j
k kx = ±

√
16+k2χ2xx

ee

χxx
ee

TE wave at z = 0− χ yy
ee = 0 χ yx

em = 2 j
k kx = ±

√
16+k2χ2xx

mm

χxx
mm

TE wave at z = 0+ χ yy
ee = 0 χ yx

em = − 2 j
k kx = ±

√
16+k2χ2xx

mm

χxx
mm

Vacuum, r2, k2

Gold, r3, k3

Silica, r1, k1

SPP

x

z

FIG. 8. Asymmetric environment consisting of a 20-nm gold

layer surrounded by vacuum and silica, which supports the propa-

gation of a surface plasmon.

the relationship between the susceptibilities and the scattering

parameters discussed in the Appendix. However, due to the

asymmetry of this environment, it is not possible to use the

simple relations (15), as done in the case of the symmetric

environment. Indeed, these relations can only be used if the

slab can be modeled by an (an)isotropic zero-thickness sheet,

which is not the case of the slab in Fig. 8. This is because

an (an)isotropic sheet exhibits the same scattering parameters

irrespectively of the direction of the illumination, while the

structure in Fig. 8 exhibits different reflection coefficients for

forward and backward illumination. Therefore, the correct

way to model this slab is to replace it by a zero-thickness

bianisotropic sheet, whose susceptibilities are found using

(A3) along with (A5) in the Appendix. Note that we have here

specifically chosen for simplicity a structure that is isotropic

and which thus does not induce rotation of polarization and/or

coupling between TE and TM modes. Consequently, the sys-

tem (A3) may be significantly reduced and the susceptibilities

may be found from the scattering parameters directly using

(A7) in the Appendix.

Since we may treat TE and TM modes independently from

each other, the system (7) splits into two separates systems,

one for each mode. We thus have

χTM ·

(
A0−

TM

A0+

TM

)
= 0, (17a)

χTE ·

(
A0−

TE

A0+

TE

)
= 0, (17b)

where the matrices χTM and χTE are given below in Eqs. (19).

These two sets of equations cannot be cast into the convenient

eigenvalue formulation that was used in (13). However, they

may still be solved to extract the propagation constant, kx.

To do so, we first substitute the kz wave numbers by k1z =
±

√
k2

1 − k2
x and k2z = ±

√
k2

2 − k2
x , and use the fact that we

are not interested in the exact values of the TE and TM

modes amplitude but rather on the ratios between the top and

bottom waves, i.e., A0+

TM/A0−

TM and A0+

TE/A0−

TE. Accordingly, we

arbitrarily chose that A0+

TM = A0+

TE = 1, which reduces (17) to

two systems of two equations in two unknowns.

For the problem of Fig. 8, the metal layer only supports

TM modes and we thus only have to solve (17a) for the surface
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wave propagation constants. For such a simple structure, there

exists an exact solution for the dispersion relation, which

we will use to compare our model to. This exact dispersion

relation reads [35]

e−2k1d =
(

k3/ǫr3 + k1/ǫr1

k3/ǫr3 − k1/ǫr1

)
·
(

k3/ǫr3 + k2/ǫr2

k3/ǫ3r − k2/ǫr2

)
, (18)

where d is the thickness of the metal layer and ǫri and k2
i =

k2
ix + k2

iz respectively refer to the relative permittivity and the

wave number of each medium in Fig. 8.

The resulting exact and approximate dispersion curves of

the metal layer of Fig. 8 are plotted in Fig. 9 with solid and

dashed lines, respectively. Note that we have assumed that the

permittivity of silica is constant over the specified bandwidth

and equal to ǫr1 = 2.09, while the dispersion of gold is found

from [28].

As for the other cases previously discussed, we see a

good agreement between the exact TM mode of the structure

and the TM mode predicted by the GSTCs method. This

example thus demonstrates the capabilities of the GSTCs

method to approximate the dispersion of bianisotropic meta-

surfaces in both symmetric and asymmetric environments:
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10
7

200

400

600

800

1000

1200

TM

kx (m
−1)

W
av
el
en
g
th
(n
m
)

FIG. 9. Dispersion diagram of a 20-nm gold layer surrounded by

vacuum and silica. The black curve is the light line. The dashed curve

corresponds to the GSTCs method, while the solid curve corresponds

to the exact solution.

χTM =

(
−2 + jkχ

xy
em − jk1zη1ωǫχ xx

ee

k1
2 + jkχ

xy
em + jk2zη2ωǫχ xx

ee

k2

− jωμχ
yy
mm − k1zη1(2− jkχ

yx
me )

k1
− jωμχ

yy
mm − k2zη2(2+ jkχ

yx
me )

k2

)
, (19a)

χTE =

(
jωǫχ

yy
ee + k1z (2+ jkχ

yx
em )

k1η1
jωǫχ

yy
ee + k2z (2− jkχ

yx
em )

k2η2

−2 − jkχ
xy
me − jk1zωμχ xx

mm

k1η1
2 − jkχ

xy
me + jk2zωμχ xx

mm

k2η2

)
. (19b)

V. CONCLUSION

In this work, we have established a connection between the susceptibilities of bianisotropic metasurfaces and their capability

of supporting the propagation of surface waves. Based on several examples, we have demonstrated the effectiveness of the

GSTCs method to retrieve and approximate the dispersion of such structures. This work has also revealed that ignoring the

presence of normal polarizations leads to a simplified system of equations, which yields dispersion curves that are in very good

agreement with the expected response of these structures, at least away from the plasmon resonance. Near the resonance, the

strong field confinement within the structures triggers the normal polarizations, which leads to an inaccuracy of the model in this

particular frequency region.

In addition of providing a framework for computing the dispersion of bianisotropic metasurfaces, this work also provides

the tools required to theoretically synthesize surface-wave guiding metasurfaces. Indeed, the analytical expressions relating the

propagation constants of the surface-wave modes to the susceptibilities may be used to obtain the susceptibilities required to

achieve a specified surface-wave propagation. In particular, we have shown that an omega-type bianisotropic metasurface can be

synthesized to completely forbid the existence of a surface wave on one of its sides.

ACKNOWLEDGMENT

We gratefully acknowledge funding from the European Research Council (ERC-2015-AdG-695206 Nanofactory).

APPENDIX: SUSCEPTIBILITY RETRIEVAL METHOD

In this Appendix, we briefly summarize the main steps required to retrieve the susceptibilities of bianisotropic metasurfaces

[10]. The first step consists in casting equations (2) into the following matrix system:

⎛
⎜⎝

�Hy

�Hx

�Ey

�Ex

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

χ̃ xx
ee χ̃

xy
ee χ̃ xx

em χ̃
xy
em

χ̃
yx
ee χ̃

yy
ee χ̃

yx
em χ̃

yy
em

χ̃ xx
me χ̃

xy
me χ̃ xx

mm χ̃
xy
mm

χ̃
yx
me χ̃

yy
me χ̃

yx
mm χ̃

yy
mm

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎝

Ex,av

Ey,av

Hx,av

Hy,av

⎞
⎟⎠, (A1)
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where the susceptibilities have been normalized according to the following convention:

⎛
⎜⎜⎜⎝

χ xx
ee χ

xy
ee χ xx

em χ
xy
em

χ
yx
ee χ

yy
ee χ

yx
em χ

yy
em

χ xx
me χ

xy
me χ xx

mm χ
xy
mm

χ
yx
me χ

yy
me χ

yx
mm χ

yy
mm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

j
ωǫ0

χ̃ xx
ee

j
ωǫ0

χ̃
xy
ee

j
k0

χ̃ xx
em

j
k0

χ̃
xy
em

− j
ωǫ0

χ̃
yx
ee − j

ωǫ0
χ̃

yy
ee − j

k0
χ̃

yx
em − j

k0
χ̃

yy
em

− j
k0

χ̃ xx
me − j

k0
χ̃

xy
me − j

ωμ0
χ̃ xx

mm − j
ωμ0

χ̃
xy
mm

j
k0

χ̃
yx
me

j
k0

χ̃
yy
me

j
ωμ0

χ̃
yx
mm

j
ωμ0

χ̃
yy
mm

⎞
⎟⎟⎟⎟⎠

. (A2)

Next, the matrix system (A1) is compactly rewritten as

� = χ̃ · Av, (A3)

where �, χ̃ , and Av refer to the field differences, the normalized susceptibilities, and the field averages, respectively. This system

can easily be solved, by matrix inversion, to compute the susceptibilities in terms of specified fields. Conventionally, these fields

are specified to be normally propagating incident, reflected, and transmitted waves. In a very general situation, a normally

incident x-polarized wave propagating in the positive z-direction may excite the metasurface such that it reflects and transmits

x- and y-polarized waves. Accordingly, the corresponding electric fields of such an operation are, at z = 0, given by

E i = x̂, Er = Sxx
11x̂ + Syx

11ŷ, E t = Sxx
21x̂ + Syx

21ŷ, (A4)

� =

(
−N/η1 + N · S11/η1 + N · S21/η2 −N/η2 + N · S12/η1 + N · S22/η2

−J · N − J · N · S11 + J · N · S21 J · N − J · N · S12 + J · N · S22

)
, (A5a)

Av =
1

2

(
I + S11 + S21 I + S12 + S22

J/η1 − J · S11/η1 + J · S21/η2 −J/η2 − J · S12/η1 + J · S22/η2

)
, (A5b)

where Suv

ab , with a, b = {1, 2} and u, v = {x, y}, are the scattering parameters. The subscripts “1” and “2” refer to the regions z < 0

and z > 0, respectively. We may now define relations similar to (A4) in the case of a y-polarized incident wave propagating in

the positive z direction and also x- and y-polarized incident waves propagating in the negative z direction. Inserting the definition

of all of these waves into (A3) allows us to define the matrices � and Av , which are explicitly provided in Eqs. (A5) below and

where we have used the following additional matrices:

Sab =
(

Sxx
ab Sxy

ab

Syx
ab Syy

ab

)
, N =

(
1 0

0 −1

)
, (A6)

χ xx
ee = χ yy

ee =
4 j

ǫω

(S11 − 1)(S22 − 1) − S2
21

η1[S11(S22 − 1) + S22 − (1 + S21)2] + η2[S11(1 + S22) − S22 − (1 + S21)2]
, (A7a)

χ xx
mm = χ yy

mm =
4 j

μω

η1η2(1 + S11 + S22 + S11S22 − S2
21)

η1[S11(S22 − 1) + S22 − (1 + S21)2] + η2[S11(1 + S22) − S22 − (1 + S21)2]
, (A7b)

χ xy
em = −χ yx

em = χ xy
me = −χ yx

me =
2 j

k

η1[S22 + S11(S22 − 1) − (1 + S21)2] + η2[S22 − S11(1 + S22) + (1 + S21)2]

η1[S11(S22 − 1) + S22 − (1 + S21)2] + η2[S11(1 + S22) − S22 − (1 + S21)2]
. (A7c)

The procedure to obtain the susceptibilities is thus as follows: (1) the scattering parameters for normal incidence of the

metasurface are computed by full-wave simulations, (2) they are then used to define the matrices � and Av in (A5), and (3) the

susceptibilities are finally found by matrix inversion of (A3) along with (A2).

A typical application of this procedure is that of relations (15) for a birefringent metasurface surrounded by vacuum, or in

relations (A7) for a bianisotropic metasurface surrounded by two different media.
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