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Abstract

Background: The ability to navigate obstacles and embrace iteration following failure is a hallmark of a scientific

disposition and is hypothesized to increase students’ persistence in science, technology, engineering, and

mathematics (STEM). However, this ability is often not explicitly explored or addressed by STEM instructors. Recent

collective interest brought together STEM instructors, psychologists, and education researchers through the

National Science Foundation (NSF) research collaborative Factors affecting Learning, Attitudes, and Mindsets in

Education network (FLAMEnet) to investigate intrapersonal elements (e.g., individual differences, affect, motivation)

that may influence students’ STEM persistence. One such element is fear of failure (FF), a complex interplay of

emotion and cognition occurring when a student believes they may not be able to meet the needs of an

achievement context. A validated measure for assessing FF, the Performance Failure Appraisal Inventory (PFAI) exists

in the psychological literature. However, this measure was validated in community, athletic, and general

undergraduate samples, which may not accurately reflect the motivations, experiences, and diversity of

undergraduate STEM students. Given the potential role of FF in STEM student persistence and motivation, we felt it

important to determine if this measure accurately assessed FF for STEM undergraduates, and if not, how we could

improve upon or adapt it for this purpose.

Results: Using exploratory and confirmatory factor analysis and cognitive interviews, we re-validated the PFAI with

a sample of undergraduates enrolled in STEM courses, primarily introductory biology and chemistry. Results indicate

that a modified 15-item four-factor structure is more appropriate for assessing levels of FF in STEM students,

particularly among those from groups underrepresented in STEM.

Conclusions: In addition to presenting an alternate factor structure, our data suggest that using the original form

of the PFAI measure may significantly misrepresent levels of FF in the STEM context. This paper details our

collaborative validation process and discusses implications of the results for choosing, using, and interpreting

psychological assessment tools within STEM undergraduate populations.
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Introduction
The ability to navigate obstacles and embrace an itera-

tive process in response to failure is considered a hall-

mark of the scientific disposition and has been

hypothesized to increase students’ persistence in STEM

(Harsh et al. 2011; Laursen et al. 2010; Lopatto et al.

2008; Simpson and Maltese 2017; Thiry et al. 2012). The

ways in which this ability can be fostered through under-

graduate science, technology, engineering, or mathemat-

ics (STEM) education is a topic both historically

underexplored by researchers and under-addressed by

explicit instructor-driven curricula (Simpson and Mal-

tese 2017; Traphagen 2015). However, recent increased

interest in investigating the effects of various intraper-

sonal attributes on STEM students’ ability to navigate

scientific obstacles has set the stage for promising edu-

cational research in this arena. Intrapersonal elements,

previously referred to more broadly as “noncognitive fac-

tors” (Henry et al. 2019), include a subset of one’s indi-

vidual competencies not related to one’s intelligence or

knowledge. For example, intrapersonal elements include

mindsets, attitudes, and beliefs, among other elements

related to one’s understanding of their own experience

(this is contrasted with interpersonal elements, such as

empathy and other social skills, which involve recogniz-

ing others’ perspectives and experiences; Farrington

2019; National Research Council 2012). Many of these

intrapersonal elements—such as fear of failure (FF), the

topic of this work—are predicted to influence students’

engagement with challenges, responses to failure, and

subsequent academic success (Henry et al. 2019). Yet,

unlike some predictors of success that can be measured

directly (e.g., prior achievement), most intrapersonal ele-

ments consist of latent variables, which cannot be dir-

ectly observed or measured. Such variables must be

assessed using multiple metrics (often multiple questions

on a survey) that together allow us to estimate levels of

the underlying construct (Knekta et al. 2019). Unfortu-

nately, measures for these elements often either do not

exist or may not be valid for our population of interest,

STEM undergraduates. This is the case for FF. In this

study, we build on prior work that describes the validity

of a measure of FF, the Performance Failure Appraisal

Inventory (PFAI). We investigate the validity of this in-

strument and work to improve and modify it for use

with STEM undergraduates. Our aim was to provide a

suitable revision of the PFAI and make it available to in-

structors and education researchers to measure FF in

undergraduate STEM contexts.

Fear of failure

FF involves a complex interplay of emotion (Martin and

Marsh 2003), personality (Noguera et al. 2013), and cog-

nition (Conroy 2001). Historically, research has focused

separately on these three aspects. Past researchers have

described FF as either (a) purely affective, consisting of

feelings of anxiety, nervousness, or worry when consid-

ering future failures; (b) an aspect of personality, for ex-

ample having a high degree of neuroticism that

consistently contributes to FF across all contexts; or (c)

a context-specific cognitive assessment that evaluates a

given situation as a threat to success (e.g., evaluation of

failing a class as being a determinant of admission to

medical school, and given this, fear of failing). However,

more recent work recognizes that all of these domains

are interrelated and contribute to the most comprehen-

sive explanation of FF (Henry et al. 2019). Specifically,

Cacciotti (2015) defined FF as a “temporary cognitive

and emotional reaction towards environmental stimuli

that are apprehended as threats in achievement con-

texts” (p. 59). An achievement context includes any situ-

ation in which (1) some task must be performed, (2) the

task will be evaluated against standards or expectations,

and (3) one must have certain competencies in order to

carry out the task to those standards (Cacciotti 2015). In

other words, FF is manifested in anxiety-based thoughts

and emotions when one believes they may be unable to

meet the demands of an achievement context. It is im-

portant to distinguish this multidimensional view of FF

from constructs that solely describe emotion, such as

anxiety. While these have been used as analogs for FF in

the past, our modern understanding of FF recognizes

that focusing only on the emotional aspects of the ex-

perience provides an incomplete understanding. For ex-

ample, focusing only on emotion fails to recognize the

cognitive appraisals of an achievement context that are

often the root cause of affective states and may consti-

tute specific targets for interventions seeking to alleviate

FF. In other words, exploring the emotions related to FF

(like anxiety) is necessary, but not sufficient, for a

complete understanding of FF (Henry et al. 2019).

A key component of this definition is that one’s level of

FF may change based upon the specific details of the

achievement context or other contextual factors (Conroy

2001). For example, if two students enrolled in introduc-

tory biology have different goals, they will create different

achievement contexts based on those expectations. If Stu-

dent A is only enrolled because the course fulfills a general

education requirement, the demands to satisfy the

achievement context may be relatively low (e.g., just pass

the class). The student is therefore less likely to experience

FF. However, Student B, who is pursuing graduate study

or a health career, is likely to judge the achievement con-

text to be much more demanding (e.g., anything less than

an A is unacceptable). While these students may generally

differ to some extent in their baseline levels of FF, Student

B will also likely experience greater FF, in part because

they perceive the stakes of failure to be higher.
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FF is broadly recognized as an element that can lead

to avoidance of challenge, lower motivation, and self-

impeding behaviors (e.g., making excuses, reduced effort,

etc.; Chen et al. 2009). It has been studied extensively in

K-12 contexts (e.g., Caraway et al. 2003; De Castella

et al. 2013; Pelin and Subasi 2020) and in certain nonac-

ademic contexts, such as entrepreneurship (e.g., Cac-

ciotti et al. 2016) and sports (e.g., Conroy et al., 2001;

Sagar et al., 2010). It has also been studied extensively in

undergraduate students broadly (Bartels and Herman

2011; Bledsoe and Baskin 2014; Chen et al. 2009; Elliot

and Church 1997; Elliot and Church 2003; Elliot and

McGregor 2001; Elliot and Thrash 2004). Yet, despite its

potential to impact achievement, FF has not been stud-

ied extensively in STEM undergraduate contexts. This is

surprising given that “embracing failure” is seen as a ne-

cessary skill for professional scientists and that STEM

individuals are known to view failures in ways distinct

from those in other fields (Simpson and Maltese 2017).

Although studies are few in number, several lines of evi-

dence suggest that STEM students experience FF and

that this may either limit engagement in STEM learning

or, in some cases, prevent engagement altogether. Re-

searchers have found that FF positively predicts procras-

tination behaviors for pre-health undergraduates (Zhang

et al., 2018) and that this relationship extends to STEM

graduate students in statistics courses (Onwuegbuzie,

2004). Similarly, work on understanding the causes of

student anxiety during active learning in STEM class-

rooms cites a closely related construct, fear of negative

evaluation by others, as an important cause of anxiety

that can hamper students’ motivation to participate in

class (Cooper et al. 2018; Downing et al. 2020). Ceyhan

and Tillotson (2020) found that undergraduate STEM

majors weighed their FF as an element influencing their

motivation to engage in undergraduate research, citing

the emotional cost of engagement. This is especially not-

able considering the enthusiasm for and movement to-

wards research-based courses that are more likely to

expose students to scientific failures (Auchincloss et al.

2014; Corwin et al. 2015; Gin et al. 2018). Indeed, FF

may become more salient to students engaged with these

new pedagogies. Prior work also suggests that FF differs

among male- and female-identified STEM undergradu-

ate students (Nelson et al., 2021), suggesting that we

need to consider differential effects of FF across iden-

tities in STEM. Finally, and most importantly, FF may

predict whether or not students ultimately choose a

STEM major or choose to remain a STEM major after

their first semester at college (Nelson et al. 2019). FF

may contribute to the extensive drop in STEM majors

typically seen after the first year in STEM fields (Nelson

et al. 2019; Seymour and Hunter 2019). STEM instruc-

tors recognize that assisting students in coping with

failure and alleviating FF are important priorities when

training future scientists (Gin et al. 2018; Henry et al.

2019; Simpson and Maltese 2017). However, we must be

able to accurately measure the effects of these efforts if

we are to understand how teaching practices can serve

to alleviate FF.

Measuring fear of failure

Given the complex nature of FF, it can be difficult to

conceptualize a valid measure which fully captures all of

its properties. For example, risk aversion was historically

used as a proxy for FF, but contemporary researchers

now acknowledge that, while risk aversion may tap into

some of the emotional aspects of FF, it likely does not

fully represent the personality or cognitive aspects

(Noguera et al. 2013), nor is it responsive to changes in

context (Conroy 2001). Beginning in 2001, Conroy and

colleagues addressed these concerns by attempting to

understand the causes of FF at the individual level,

resulting in the creation and refinement of a multidi-

mensional assessment measure: the PFAI.

To characterize FF, Conroy et al. (2001) conducted in-

terviews with eight adult elite athletes and eight adult

elite performing artists (50% female). In these interviews,

subjects provided insight into their definitions of failure,

what situations or contexts they considered “failures” in

the past, and how they reacted to experiencing those sit-

uations (Conroy et al. 2001). Based on a content analysis

of these interviews, Conroy et al. (2001) created 89 items

that could be classified under ten broad sources of FF

(e.g., fear of an uncertain future). They then asked 396

high school and college-aged student-athletes (mean age

= 19.3 years, SD = 4.3) to respond to these 89 items.

Each statement evoked a situation in which the student

was “failing” or “not succeeding” and students rated each

item on a scale of “Do not believe [this to be true] at all

(− 2)” to “Believe [this to be true] 100% of the time (+

2)”. For example, students read the statement “When I

am failing, my future seems uncertain” and then selected

whether they believed this to be true and to what degree.

Conroy and colleagues then used factor analysis, which

groups items according to statistical relationships that

correspond to psychological constructs—in this case,

types of FF. This work narrowed the number of PFAI

items down to 41, loading strongly onto five factors

(meaning that the items cluster broadly into five mean-

ingful categories or dimensions, rather than the originally

proposed 10, see Knekta et al. (2019) for an explanation

of how factors are formed). Subsequent factor analyses

with samples of only college student participants further

reduced the number of items on the PFAI from 41 to

25, with five items measuring each dimension, or reason

for demonstrating FF (Table 1; Conroy et al. 2002).
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The current work

Addressing FF is especially important when considering

the broader challenge of finding and validating measures

of intrapersonal elements for STEM undergraduates

(Knekta et al. 2019; Rowland et al. 2019) and the more

specific challenge of assessing the influence of intraper-

sonal elements on students’ resilience, motivation to en-

gage in challenging tasks, and ability to navigate

obstacles when they arise (Henry et al. 2019). Previous

research utilizing the PFAI as an assessment measure

has found that increased FF is related to reduced chal-

lenge engagement (Bledsoe and Baskin 2014). This can

most clearly be seen in high-FF students who demon-

strate self-impeding behaviors by reducing effort or

making excuses before failure occurs, thereby protecting

their self-worth in the short term at the risk of long-

term success (Berglas and Jones 1978; Chen et al. 2009;

Cox 2009; Zuckerman and Tsai 2005). While these re-

sults were found in academic, community, and broad

college contexts, they have not yet been investigated spe-

cifically in undergraduate STEM education, a context in

which challenge engagement is likely critical for progress

(Henry et al. 2019) but where failure is also a commonly

accepted part of the process (Simpson and Maltese

2017). The contextual nature of both FF (Cacciotti 2015)

and human cognitive appraisals (Schwarz 1999) suggests

that FF is likely to manifest in significantly different ways

depending upon the achievement context(s) one is asses-

sing. Therefore, college students in a STEM context are

likely to experience FF differently than students in high

school or non-STEM courses. Many students enrolled in

STEM courses enter with intentions of pursuing gradu-

ate study or health careers (e.g., Gasiewski et al. 2012),

which can make achievement contexts more salient. In

addition, the active research that students may engage in

during the course of STEM education often includes

tasks that have a higher likelihood of failure or not

achieving a stated research goal (Auchincloss et al.

2014), and this may represent one of the first times stu-

dents encounter an academic situation in which judging

success against the achievement context is difficult or

unclear. All of these contextual factors influence how

STEM students experience FF and also how they will re-

spond to assessments of FF. To investigate and

understand FF in STEM contexts, we need to ensure

that we can accurately measure FF for STEM students.

Any education research conducted on a topic will only

be as strong as the assessment tools used for the con-

structs of interest (Cronbach and Meehl 1955). While

the PFAI was originally constructed using a sample that

included some college students, these students were only

used for factor analyses to reduce the number of items

and refine the measure for certain types of FF. They

were not interviewed as part of the initial creation of the

items or to ascertain how they interpreted the items and

if this interpretation matched the assumptions and defi-

nitions of FF researchers. This reveals a critical unmet

need, because there is much about college contexts—

and undergraduate STEM achievement contexts more

specifically—which could affect students’ responses and/

or alter response patterns to the PFAI. Such contextual

factors could make Conroy’s proposed factor structure

inappropriate and invalid for these specialized popula-

tions of interest. This is important, because if the PFAI

is not valid for undergraduate STEM samples, using it

for education research could lead to misrepresentation

of FF levels and faulty conclusions about levels of FF

present in STEM classrooms or the efficacy of interven-

tions that aim to reduce FF within that context. As such,

we set out to build upon the work of Conroy et al.

(2002) to (a) ascertain specifically how STEM under-

graduates interpret PFAI questions related to Conroy

et al.’s (2002) proposed dimensions of FF and (b) refine

the PFAI for assessing FF in undergraduate STEM con-

texts. First, we used confirmatory factor analysis (CFA)

to test whether Conroy’s proposed five-factor model is

appropriate for measuring STEM undergraduates’ FF.

Then, we used exploratory factor analysis (EFA) to con-

sider alternative factor structures and evaluate whether

any offer a better fit for data from an undergraduate

STEM sample. Once we identified the “strongest” factor

structure for the initial sample of STEM students, we

performed additional CFA analyses in several other sam-

ples to confirm this structure. We then asked whether

that factor structure remains a good fit for science

PEERs—persons excluded because of their ethnicity or

race (Asai 2020) using an additional CFA. Finally, we

conducted a series of cognitive interviews among

Table 1 Sample items representing the five dimensions of the original PFAI (Conroy et al. 2002)

Dimension/factor name Abbreviation Sample item

Fear of shame or embarrassment FSE “When I am not succeeding, I worry about what others think of me.”

Fear of devaluing one’s self-estimate FDSE “When I am failing, I blame my lack of talent.”

Fear of having an uncertain future FUF “When I am failing, it upsets my ’plan’ for the future.”

Fear of important others losing interest FIOLI “When I am not succeeding, some people are not interested in me anymore.”

Fear of upsetting important others FUIO “When I am failing, I lose the trust of people who are important to me.”
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students to assess the face and content validity of our

final revised measure to (a) ensure that students find all

items clear and easy to understand and (b) better

characterize the nuance with which STEM undergradu-

ate students interpret the PFAI items. The progression

of our analyses and their basic goals is outlined in Fig. 1,

with more details about each analysis’ sample and the lo-

cation of specific results detailed in Table 2. Below, we

describe each of these steps, their methods, results, and

a brief discussion of their findings before concluding

with a broad discussion of our modified measure and its

suitability for assessing FF in undergraduate STEM stu-

dent populations.

Step 1: Confirmatory factor analyses (CFAs) of
existing models
CFAs serve to test whether a measure of a construct—in

this case the PFAI—is consistent with the proposed un-

derstanding of that construct (i.e., FF) and its compo-

nents. A good “fit” of the data collected with a particular

measure to the proposed conceptual model indicates

that the measure is accurate with regard to the re-

searchers’ understanding of the construct and its compo-

nents. When there is strong a priori and/or empirical

evidence supporting a conceptual model—as in the case

of the PFAI—it is best to start with CFAs when explor-

ing measure utility for new populations (Knetaka et al.,

2019). Thus, the purpose of our initial CFA analyses was

twofold: (a) to investigate whether data collected from a

sample of undergraduate STEM students fit to the

current factor structure (twenty-five items on five fac-

tors) proposed by Conroy et al. (2002) and (b) to assess

whether or not a change in item wording to prompt stu-

dents to consider struggles and failures specifically in

STEM contexts improves the model fit. We reasoned

that the alternate wording would result in an improved

model fit, as it addresses the specific, unique (as dis-

cussed above) STEM education context in which stu-

dents find themselves frequently confronting academic

challenges and failures. We explored this possibility with

the aim of creating a version of the PFAI best suited to

assess STEM-related FF in undergraduate students.

Methods

Participants

Four hundred and twenty-three undergraduate students

were recruited for this study during Spring/Summer

2018. Students were recruited with the aid of STEM in-

structors at a diverse group of institutions—public and

private; rural and urban; liberal arts and research-

intensive—across multiple regions of the USA. Recruit-

ing instructors were members of FLAMEnet, an NSF-

funded research collaborative which brings together di-

verse STEM instructors, education researchers, and

social scientists to conduct research and create resources

aimed at fostering the next generation of resilient and

innovative scientists (https://qubeshub.org/community/

groups/flamenet/). Instructors announced the research

opportunity to students either during class, via the

course learning management system, via email, or on so-

cial media. All recruited students were enrolled in a

STEM course at the time of the study. Two hundred

and thirty-five students in this volunteer sample pro-

vided complete surveys and were included in the final

data set. Students in this sample predominantly identi-

fied as female (68.1%) and Caucasian (81.7%), with a ma-

jority describing themselves as STEM majors (90%). A

full breakdown of participant characteristics can be

found in Table 3, column 3.

Instruments

Fear of failure The 25-item version of the PFAI was

employed (Conroy et al. 2002; the original measure can

be viewed in Table S1). Using this measure, we asked

participants to endorse certain beliefs regarding the

likely consequence(s) of failure on a scale of 1 (“I believe

this is never true of me”) to 5 (“I believe this is true of

me all of the time”). This scale was modified from the

original 5-point scale of − 2 “Do not believe at all” to + 2

“Believe 100% of the time” based on anecdotal prelimin-

ary feedback from undergraduate research assistants that

the modified response scale is easier to understand. Evi-

dence of the validity and reliability of this 25-item ver-

sion of the PFAI (Conroy 2001) has previously been

gathered in a general college sample. In that study, Con-

roy et al. (2002) produced a final well-fitting model that

accounted for the five proposed dimensions—fear of

shame or embarrassment (FSE), fear of devaluing one’s

self-estimate (FDSE), fear of having an uncertain future

(FUF), fear of important others losing interest (FIOLI),

and fear of upsetting important others (FUIO)—each of

which consists of a group of five questions that corre-

sponds to the specified dimension, along with the

higher-order overall FF that can be derived from aver-

aging these five subscales. (From here forward, we refer

to these groups of questions as “dimensions” since they

are inseparable from the FF dimensions. When discuss-

ing the mathematical fit of items to these dimensions

resulting from factor analysis, we use the term “factors”.)

Fit statistics for this original model are provided at the

top of Table 4. Internal reliability for this form of the

PFAI has previously been demonstrated to be high, with

Cronbach’s alpha of all twenty-five items at 0.91 and for

the higher-order FF dimension derived by the mean of

the five factors at 0.82 (Conroy et al. 2002; Cronbach’s

alpha is a statistical measure which assesses the degree

to which items on a scale are correlated with each other,
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Fig. 1 Progression of research steps
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with values closer to one indicating stronger relation-

ships. If items on a scale do, in fact, all measure the

same construct, one would expect to see high

consistency as measured by Cronbach’s alpha; Cronbach

1951). In this study, PFAI items were framed in two

ways. In the “general” condition, the PFAI items were in-

troduced by asking students to “consider the way you

feel and act when you face failures and challenges.” The

PFAI items themselves were introduced with the follow-

ing: “For the following questions, please consider chal-

lenges and failures that you face in general. For each

question, indicate how often you believe each statement

is true of you.” By contrast, our “STEM” condition intro-

duced this section of the survey by asking respondents

to “consider the way you feel and act when you face fail-

ures and challenges in your STEM courses”. And the

questions themselves were introduced by reminding stu-

dents to “please consider challenges and failures that

you face specifically in your STEM course(s). For each

question, indicate how often you believe each

statement is true of you.” Students also provided

qualitative responses to a set of questions that asked

them to describe a recent time when they experienced

a failure or challenge (again, either in general or in a

STEM context specifically) and how upsetting they

found this event on a scale from 0 to 10, with 10 be-

ing the most upsetting. These qualitative items are

discussed more in Step 7 below.

STEM anxiety To quantify the overall level of anxiety

surrounding the academic context of STEM courses, we

asked students the following: “On a scale from 0 to 10,

how anxious are you about your performance in your

STEM classes?” Here, 0 indicated “not at all anxious”

while 10 indicated “extremely anxious.” Students utilized

the entire range of possible responses for this question,

with a mean response of 6.37 (SE 0.175; variance 6.670).

Cognitive interviews (see Step 7) were used to assess the

face validity of this question, with students indicating

that they found it simple and straightforward.

Table 2 Order of tests

Sample

Analyses Recruited for validation
study, Summer 2018
(n = 235)

Pulled from existing
intervention study, Fall
2018
(n = 1309)

Pulled from existing
intervention study, Fall 2019
(n = 433)

PEER students across timepoints,
Summer 2018, Fall 2018, Fall 2019 (n =
280)

Step 1 CFA to test existing PFAI
structure (Conroy et al.
2002)
• Table 3, Column 3
(Participants)

• Table 4 (Results)

Step 2 EFA to define new factor
structure
• Table 3, Column 4
(Participants)

• Table 5, Rows 3-5 (Results)

Step 3 CFA to confirm revised
structure
• Table 3, Column 3
(Participants)

• Table 5, Row 7 (Results)

Step 4 CFA to confirm revised structure
in new dataset
• Table 3, Column 5 (Participants)
• Table 5, Row 8 (Results)

Step 5 CFA to confirm revised
structure in original data set
• Table 3, Column 3
(Participants)

• Table 5, Row 9 (Results)

Step 6 CFA to test fit of revised structure among
PEER undergraduates
• Table 3, Column 6 (Participants)
• Table 5, Row 10 (Results)

Step 7 Cognitive interviews to assess face validity
• Table 7 (Participants)
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Procedures

All activities conducted during this and all subsequent

research steps were completed with the approval of the

Emory University IRB (Protocols IRB00105275 and

IRB00114138). Subjects were recruited from STEM

courses over the Spring/Summer 2018 semester. Any

student enrolled in a participating STEM undergraduate

course was eligible to participate. After agreeing to

Table 3 Demographic characteristics of participants

Steps 1 and 5: Initial CFA
sample (Summer 2018; N =
235)

Steps 2 and 3 : EFA
sample (Fall 2018; N =
1309)

Step 4: Second CFA
sample (Fall 2019; N =
433)

Step 6: PEER CFA sample
(Summer 2018, Fall 2018, Fall
2019; N = 280)

Variable Value Frequency (%) Frequency (%) Frequency (%) Frequency (%)

Gender Female 160 (68.1) 888 (68.4) 272 (62.8) 195 (69.6)

Male 52 (22.1) 384 (29.6) 150 (34.6) 81 (28.9)

Non-binary 3 (1.3) 4 (0.3) 4 (0.9) 3 (1.1)

Prefer not to
answer

2 (0.9) 2 (0.2) 6 (1.4) 1 (0.4)

Major1 Biology 103 (43.8) 456 (36.05) - 40 (22.1)

Chemistry 39 (16.6) 100 (7.91) - 15 (22.1)

Engineering 15 (6) 8 (0.63) - 2 (1.1)

Env. Science 10 (4) 4 (0.32) - 2 (1.1)

Pre-health 12 (5) 101 (7.98) - 40 (22.1)

Kinesiology 11 (4.7) 20 (1.58) - -

Mathematics 3 (1.3) 54 (4.27) - 1 (0.05)

Neuroscience 15 (6) 89 (7.04) - 20 (11.05)

Physics 7 (3) 135 (10.67) - 2 (1.1)

Psychology 14 (6) 26 (2.06) - 10 (5.52)

Other 5 (2) 64 (5.06) - 25 (13.81)

Undeclared 1 (0.4) 208 (16.4) - 24 (13.26)

Age 18–20 191 (81.3) 1184 (90.4) 320 (73.9) 227 (81.1)

21–23 37 (15.7) 52 (3.9) 58 (13.4) 26 (9.3)

24 and older 7 (3.0) 64 (4.9) 55 (12.7) 24 (8.6)

Class
standing

First year 68 (28.9) 306 (23.6) 184 (42.5) 112 (40.0)

Second year 63 (26.8) 302 (23.3) 135 (31.2) 112 (40.0)

Third year 41 (17.4) 60 (4.6) 50 (11.5) 31 (11.1)

Fourth year 41 (17.4) 36 (2.8) 31 (7.2) 15 (5.4)

Other 4 (1.7) 6 (0.5) 32 (7.4) 10 (3.6)

Race American
Indian

1 (0.4) 6 (0.5) 3 (0.7) 62 (34.44)

Asian 15 (6.4) 217 (16.7) 115 (26.6) -

African
American

10 (4.3) 67 (5.2) 40 (9.2) 78 (43.33)

Pacific
Islander

4 (1.7) 3 (0.2) 4 (0.9) 7 (3.89)

Caucasian 192 (81.7) 419 (32.3) 243 (56.1) -

Other 4 (1.7) 29 (2.2) 32 (7.4) 33 (18.33)

Latino/
a/x?

No 202 (86) 1148 (88.4) 350 (80.8) 83 (53.2)

Yes 12 (5.1) 124 (9.6) 71 (16.4) 72 (46.2)

Prefer not to
answer

3 (1.3) 13 (1.0) 12 (2.8) 1 (0.6)

aData collection methods for “major” information varied across time point and collection location. Some instructors constrained students to 6-option forced choice

selection (including “Other”), while others allowed students to list their current major as they chose. Major data were not collected in fall 2019. This accounts for

some of the variation in rates of majors presented here
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participate in the study, subjects were randomly assigned

to one of two groups following a planned missingness

design. That is, we intentionally provided only half of

our items to 50% of the sample and the other half of the

items to the other 50%. While this creates a large

amount of missing data, as long as random assignment

is used to decide which participants receive which half

of the questions, responses for the remaining items can

be imputed (Little 2013; Little and Rhemtulla 2013;

Rhemtulla and Little 2012). This method of data collec-

tion was chosen to avoid survey fatigue. Students in this

sample were asked to answer survey items related to the

FF measure discussed in this paper and also to provide

survey data on a larger number of other intrapersonal

constructs of interest (i.e., coping behaviors, growth

mindset). Taken together, asking students to respond to

all of these items would have resulted in a survey

exceeding the recommended length of 10–20 min (Cape

and Phillips 2015; Revilla and Ochoa 2017). To ensure

we collected high-quality data from students on all mea-

sures, a planned missingness design was judged the best

approach. We also randomly assigned participants to ei-

ther the “general” or “STEM” group. The “general”

group received the PFAI items as they were validated by

Conroy et al. (2002). The “STEM” group received

versions of these same items that were preceded by lan-

guage that prompted respondents to consider failures

and challenges in STEM contexts specifically. Both

groups rated the items on a scale of 1 “I believe this is

never true of me” to 5 “I believe this is true of me all of

the time”. We randomly assigned these versions of the

survey to two groups because we wished to avoid survey

fatigue by not asking students to respond to both ver-

sions and because we wished to investigate whether or

not the language prompting students to explicitly

consider STEM contexts influenced FF responses. After

responding to the FF questions, all students were asked

to rate their level of anxiety specifically related to taking

STEM courses. Finally, participants completed demo-

graphic questions. We intentionally placed the demo-

graphic questions at the end of the survey to mitigate

any effects of stereotype threat that can be introduced

by such questions.

Results

Preliminary results

Missingness To confirm that the intentional patterns of

missingness (that is, what data are missing from partici-

pants) created as part of our planned missingness design

(Little 2013; Little and Rhemtulla 2013; Rhemtulla & Lit-

tle 2013) are missing completely at random (MCAR),

Little’s MCAR Test (Little 1988) was computed. Results

confirm that our data are missing at random (□2 (256) =

127, p > .05), and it is appropriate to impute missing

values. Missing values were imputed with five iterations

(Schafer et al. 1997) and the imputed datasets were used

for all further analyses. We calculated estimates separ-

ately for each imputed dataset and then averaged those

estimates to derive final model estimates based on

Rubin’s rules for multiple imputation (Rubin, 1978).

Descriptive analyses Outliers in the dataset were identi-

fied using the outlier labeling method (Hoaglin and

Iglewicz 1987; Hoaglin et al. 1986; Tukey 1977) which

labels identified outliers as “missing” to exclude them

from further analysis without removing them entirely

from a dataset. Visual inspection of skewness and kur-

tosis (George & Mallery, 2016), as well as Shapiro-Wilk’s

testing indicated that our data were not normally

Table 4 Fit statistics for nested confirmatory factor models of the PFAI in a STEM context

Model
[Result for “good fit”]

AIC
[Lower]

RMSEA
(90% CI)c

[< 0.06]

CFI
[> 0.90]

SRMR
[< .08]

Conroy et al. (2002)
5 factors predicting overall FF

Not provided 0.06 (.05–.06) 0.91 0.07

Model A:
Fit of Conroy’s 5 factors to undergrad students in STEM

18,802.92 0.151 0.570 0.121

Model B:
Fit of modified factorsa to undergrad students in STEM

15,247.87 0.150 0.638 0.112

Model C:
Predicting overall FF with modified factors

15,293.97 0.153 0.614 0.120

Model D:
Modified model to predict overall FFb

14,409.09 0.152 0.642 0.116

Model E:
Modified model using STEM-specific items

13,965.28 0.150 0.696 0.126

Notes:a items 1, 2, 3, 9, and 10 dropped in this model; b item 12 dropped in this model; c because an imputed dataset was used, 90% CI for RMSEA were not

computed by the MPlus software. Difference in fit for STEM-specific items was also tested at Models B and C. As fit did not improve significantly, values are not

reported here for parsimony.
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distributed (p < .05; Shapiro and Wilk 1965), so the ro-

bust maximum likelihood ratio (MLR) was the most ap-

propriate for main analyses in MPlus (Asparouhov and

Muthén 2018; Muthén and Muthén 1998-2018). Prelim-

inary analyses also indicated that students in our sample

reported relatively low levels of FF, with dimension aver-

ages ranging from 1.46 (SE = .030; FSE) to 3.30 (SE =

0.30; FUF) on a 5-point scale where higher scores indi-

cate more FF.

Main results

Main analyses were carried out in MPlus v. 8.1 (Muthén &

Muthén,1998-2018). Factor analyses examined the fit of a

variety of nested models, beginning with a CFA of the five-

factor model of FF proposed by Conroy et al. (2002). In ac-

cordance with recommendations from Knekta et al. (2019),

model fit was assessed using Akaike’s Information Criterion

(AIC), Root Mean Square Error Approximation (RMSEA),

Comparative Fit Index (CFI), and Standardized Mean Square

Residual (SRMR). AIC compares each proposed model to a

theoretical “true” model, calculating how far data fit to the

model fall from this theoretical ideal. AIC also allows for

comparison of the fit between models fit to the same sample;

the AIC value for each model will be that respective model’s

distance from the “true” fit for the data. So, the model with

the lowest AIC represents the best fit for those data (Akaike

1998; Kenny 2020). RMSEA values describe the “badness of

fit,” so once again a lower number is preferred. CFI assesses

incremental improvements in model fit above a baseline

model; thus, higher values indicate better fit (Kline 2010;

Taasoobshirazi and Wang 2016). And, finally, SRMR repre-

sents the standardized difference between a predicted correl-

ation among error residuals and the actual observed

correlations. Since a smaller difference between these correl-

ation values would indicate closer convergence between pre-

diction and observation, a smaller SRMR value indicates

good fit (Kline 2010; Taasoobshirazi and Wang 2016). See

Knetkta et al. (2019) for more complete descriptions of how

each metric is calculated and their meaning. Fit statistics for

all models can be found in Table 4, along with cut-off criteria

used to assess goodness of fit. For all models discussed

below, changes made for earlier models are carried over to

later models unless otherwise stated.

Model A: CFA of Conroy’s structure As described

above, Conroy et al. (2002) proposed a five-factor struc-

ture to capture different sources of FF (Table 1). CFA

was used to determine whether items in the college

STEM sample loaded on the factors proposed a priori by

Conroy et al. (2002; i.e. supported the proposed concep-

tual model). Fit statistics suggest that this model has

weak to mediocre fit for students in STEM contexts

(Table 4). Analysis of standardized factor loadings for in-

dividual items indicates that Question # 9 (“When I am

failing, I lose the trust of people who are important to

me“) does not load onto the FUIO factor ( = 0.450, p

> .05) as proposed by Conroy et al. (2002). Further in-

vestigation of beta output provided by the MPlus pro-

gram suggests that, in our sample, the following items

do not load onto any of the proposed factors: 1 (“When

I am failing, it is often because I am not smart enough

to perform successfully”; FDSE), 2 (“When I am failing,

my future seems uncertain”; FUF), 3 (“When I am fail-

ing, it upsets important others”; FUIO), 9, and 10

(“When I am not succeeding, I am less valuable than

when I succeed”; FSE).

Model B: Modified factor structure Based on the results

of Model A, items 1, 2, 3, 9, and 10 were removed from the

item inventory, and the CFA based on Conroy’s PFAI model

was rerun. Model fit improved substantially (see Table 4)

though overall fit was still considered to be “poor” and indi-

vidual factor loadings did not suggest that model fit would

be improved by the further removal of items.

Model C: Using modified factor structure to predict

overall FF Conroy et al. (2002) also hypothesized that their

instrument would explain differences in students’ overall FF.

Model C tests that hypothesis using our modified factor

structure (with items 1, 2, 3, 9, and 10 dropped from their re-

spective dimensions). For this model, an additional step was

added in which, after individual items predicted factor forma-

tion, the factors together predicted overall mean level of FF.

We see (Table 4) that model fit worsens, but not back to the

level of Model A. Also, examination of standardized beta

weights suggests that the negatively coded item 12 (“When I

am failing, I am not worried about it affecting my future

plans“) on the FUF factor is a poor fit for this sample of

undergraduate STEM students when predicting overall FF (□

= − 0.331, p > .05).

Model D: Modified overall model Removing item 12

from the overall model improves model fit (Table 4) and

does not yield any further suggestions for improved

model fit for either the individual composition of factors

or to increase the model’s ability to predict overall FF.

Model E: Modified model with STEM-specific items

Our final model in this step tested our hypothesis that

question wording which primed students to think specif-

ically about STEM contexts when completing the PFAI

survey would lead to a better model fit. To test this, we

took our best-fitting model from our work with the

existing PFAI items (Model D) and substituted data

from our STEM-specific questions. We assessed the ef-

fect of STEM-specific language after finding the best

overall model fit with Conroy’s original items because

we wished to see if this change affected model fit above
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and beyond other modifications. When these STEM-

specific item variants were used, model fit improved to

its highest level. While we would still not classify this as

a strong model fit, it is nonetheless markedly improved

and better represents the population of interest.

Convergent validity Convergent validity of the PFAI in

general—that is, the degree to which FF measured by

the PFAI is correlated with other constructs which, the-

oretically, should be related to FF—has been extensively

addressed by Conroy and colleagues in their original val-

idation protocol (see Conroy et al. 2001; Conroy et al.

2002). Another variable within our dataset which ad-

dresses affective components thought to be related to FF

is STEM anxiety, measured via one question: “On a scale

from 0 to 10, how anxious are you about your perform-

ance in your STEM classes?” Assuming that our refined

model for the PFAI has good convergent validity, we

would expect mean overall FF and STEM anxiety to be

highly correlated. Overall, this sample reported moderate

levels of STEM anxiety (M = 6.37, SE = 0.175). Re-

sponses ranged from 0 to 10 with a variance of 6.670, in-

dicating that this question has sufficient variance to be

used in assessments of convergent validity. Overall FF

obtained by our measure is significantly correlated with

STEM anxiety (r = 0.568, p < .0001), supporting the con-

vergent validity of the modified PFAI.

Brief discussion

Our initial CFA demonstrated that the PFAI best reflects

university STEM students’ fear of failure when the lan-

guage of the survey specifically directs them to consider

their experiences within the STEM academic context.

This use of STEM-specific language significantly im-

proved model fit above the original model; however, it

still did not result in a model that was well-fitting overall

(Akaike 1998; Kline 2010; Taasoobshirazi and Wang

2016). This implies that the underlying model structure

of the PFAI might be inappropriate to assess FF in

undergraduate STEM students. To explore this possibil-

ity, and to find the model structure with the greatest ef-

ficiency for measuring FF in undergraduate STEM

samples, an EFA was conducted next.

Step 2: Exploratory factor analysis (EFA) to define
new model structure
In contrast to the CFA described above, EFA frees indi-

vidual items from any a priori organizational constraints,

allowing them to reorganize into new factors based on

responses of participants, rather than researchers’ pre-

formed hypotheses regarding how the items should clus-

ter together. Thus, compared to CFA, which investigates

whether data “fit” an existing conceptual model, EFAs

suggest new models that best fit the data (Knetka et al,

2019). We hypothesized that EFA with the STEM-

specific items would yield a well-fitting model of the

PFAI for undergraduate STEM students by allowing re-

moval or reorganization of some of the items among

Conroy’s (2001) five proposed dimensions (described

above in “Introduction”) or organization into new factors

representing different dimensions. Our justification of

this hypothesis is that students in STEM contexts may

view failures differently than other undergraduate stu-

dents. STEM professionals view failure in unique ways

not generalizable to all populations (Simpson & Maltese,

2014), and STEM students describe FF as occurring as a

result of specific STEM contexts and not as a more gen-

eral cross-context fear (e.g., Ceyhan and Tillotson 2020;

Cooper et al. 2018; Onwuegbuzie 2004), supporting the

idea that FF is highly context-specific (Cacciotti 2015).

Thus, the constructs proposed for other undergraduate

populations may require revision for STEM undergradu-

ate populations.

Participants and procedures

In accordance with best practices in psychometrics, es-

pecially with regard to statistical power (Knekta et al.

2019), data for this EFA were acquired from a new data-

set that included approximately 1800 undergraduate

STEM students. These participants were drawn from the

same research network as those in “Step 1: Confirmatory

factor analyses (CFAs) of existing models,” which was

expanded to include more minority serving and 2-year

institutions. These data were collected in Fall 2018 as

part of a pre-survey completed by students within the

first month of the semester, prior to the first major as-

sessment in their participating STEM course. The vast

majority of courses included in this sample were trad-

itionally targeted for first- or second-year students. Once

the data were cleaned (e.g., outliers truncated, cases with

majority missing data deleted), a sample of 1309 college

students in STEM contexts remained for analyses (Hoa-

glin and Iglewicz 1987; Hoaglin et al. 1986, and Tukey

1977). Demographics for this sample can be viewed on

Table 3, column 4. Because the STEM-specific items

provided a better fit in the initial CFA study (see “Step

1: Confirmatory factor analyses (CFAs) of existing

models”), students in this study were only asked to

complete versions of the original twenty-five items of

the PFAI which had been modified to be STEM-specific.

Independent samples t-tests comparing the key demo-

graphics of this sample to the sample in our first ana-

lyses found no significant differences between

participants on race, parents’ level of education, or re-

ported STEM anxiety (all p’s > .05). There were signifi-

cant differences observed between participants on age,

class standing, and gender, with participants in this sam-

ple tending to be older, less academically advanced, and
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male. However, these differences were relatively small

(see Table S2). Table 3 displays frequencies of other key

demographic variables for all samples.

Results

Eigenvalues and Scree plots are first steps in EFA that

are used to determine how many factors a researcher

should consider including in their measurement model

by exploring how much variance might be explained by

the addition of more factors. Eigenvalues provide a basic

measure of how much unique information each assumed

factor provides. For that reason, factors with higher ei-

genvalues are considered more useful; in general, re-

searchers should only include factors with eigenvalues

above one in their models (Knetka et al., 2019). Scree

plots help provide a visual aide for this determination by

plotting eigenvalues against the number of factors. Re-

searchers should limit the number of factors at the point

in the Scree plot where the curve experiences its first

sharp drop (Cattell 1966; Knetka et al., 2019). These

general guidelines can be widely interpreted and are

meant only to help researchers limit the beginning num-

ber of factors considered for EFAs. It is important to

carefully examine the quantitative fit statistics (e.g., AIC,

RMSEA) generated for all potential models before mak-

ing conclusions regarding the optimum number of fac-

tors or goodness of fit for any model. It is also

important to consider the theory underlying the gener-

ation of survey items and the ultimate proposed use of a

measurement (Knetka et al., 2019). Exploration of the

Scree plot (see Fig. 2) and eigenvalues suggested that a

model having between one to five factors would be the

most effective for this sample of STEM undergraduates.

This determination was based on established criteria of

visual inspection of the Scree plot for initial leveling of

slope (Kaiser 1960) and eigenvalues greater than 1.0

(Cattell 1978). MPlus v. 8.1 (Muthén & Muthén, 1998–

2018) was used to successfully carry out EFA for each of

the proposed factor structures. Model fit was assessed

using Akaike’s Information Criterion (AIC), Root Mean

Square Error Approximation (RMSEA), Comparative Fit

Index (CFI), and Standardized Mean Square Residual

(SRMR) as described in the “Results” section of “Step 1:

Confirmatory factor analyses (CFAs) of existing models,”

above (Kline 2010; Taasoobshirazi and Wang 2016).

Model fit statistics are in Table 5.

Both the four-factor model and five-factor model pro-

vide a good fit of the PFAI items for STEM under-

graduate students (Table 5). Therefore, to further

investigate fit, we examined the factor structures them-

selves. Any item that loaded onto a factor with a load-

ing above 0.40 and a distance of at least 0.20 from any

cross-loadings was retained on that factor (Masaki

2010). Using these criteria, items that failed to load

clearly onto a unique factor were dropped from the

measure. From this evaluation of the factor structures,

the four-factor model emerged as both conceptually

and practically stronger than the five-factor model, as

the five-factor model contained two factors having only

one item each and a total of twelve dropped items. In

contrast, the four-factor model required dropping only

ten items, and the remaining fifteen PFAI items were

more evenly distributed across factors that echo the

original dimensions proposed by Conroy et al. (2001).

Our revised form of the PFAI can be viewed in Fig. 3,

and the factor loadings, R2, and residual variances for

the four-factor model are displayed in Table 6. Correla-

tions among latent factors can be seen in Table S3 and

are within acceptable bounds (Brown 2015; Watkins

2018).

Fig. 2 Scree plot for determining number of factors in EFA
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Brief discussion

Use of EFAs allowed us to further refine the PFAI for use

in college-aged STEM student samples. Our best-fitting

model significantly reduced the number of items from

twenty-five to fifteen, which may aid with increasing com-

pliance and decreasing cognitive load when surveying

college-aged STEM students (reviewed in Peytchev and

Peytcheva 2017). Based on a series of qualitative cognitive

interviews with STEM undergraduates (see Step 7, below),

it appears that several of the dropped items contained

words or phrases that made them unclear or ambiguous

to students. One dimension, FDSE, contained items with

the words “talent,” “hate,” and “not in control” to describe

situations in which students might devalue their own self-

estimate. In cognitive interviews, students objected to

these words, and ultimately, FDSE was not supported by

factor analysis as a unique dimension. It is likely the word-

ing of items did not align with STEM students’ views of

themselves when responding to failures. Interestingly, one

item was retained in the scale from the original group of

Table 5 Model fit statistics

Model [result for “good fit”] AIC
[Lower]

RMSEA (90% CI)
[< 0.06]

CFI
[> 0.90]

SRMR
[< 0.08]

EFA for new model structure

3 Factors 88,741.92 0.080 (0.077–0.083) 0.877 0.044

4 factors 87,379.252 0.051 (0.048–0.055) 0.954 0.023

5 factors 87,162.627 0.047 (0.043–0.051) 0.965 0.019

CFA of new model structure

EFA sample
(Fall 2018)

52,459.976 0.054 (0.049–0.060) 0.960 0.040

Second CFA sample
(Fall 2019)

16,733.419 0.060 (.051–0.070) 0.964 0.049

Initial CFA sample
(Summer 2018)

52,459.98 0.054 (0.049–0.060) 0.960 0.040

PEER sample 5971.960 0.071 (0.051–0.090) 0.936 0.058

Fig. 3 Modified version of the PFAI
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questions for the FDSE dimension. “When I am failing, I

blame my lack of talent,” now loads onto the FUF factor.

This suggests that perhaps STEM students at the college

level view talent as a potential advantage (or stumbling

block) for future success, rather than a reflection on their

current self-estimate.

Ultimately, four of the five Conroy-proposed dimen-

sions were still represented in the final fifteen-item re-

vised model, and a majority of items present loaded onto

their “original” dimension (Fig. 3), with four items

assessing Fear of an Uncertain Future (FUF), five items

assessing Fear of Important Others Losing Interest

(FIOLI), three items assessing Fear of Upsetting Import-

ant Others (FUIO), and three items assessing Fear of

Shame and Embarrassment (FSE). It is worth noting that

several residual variances for the individual items in the

model remain high (Table 6). This suggests that there is

still some variability in students’ responses to the PFAI

items that is not explained by the current model. Thus,

it is possible that more factors could remain to be

Table 6 Factor loadings for four-factor model of PFAI

Factor loadings a R2 Estimated residual
variance

Item FUF FIOLI FUIO FSE

When I am failing, my future seems uncertain. .795 .393 .313 .468 0.74 0.380

When I am failing, I blame my lack of talent. b .714 .424 .307 .502 0.57 0.533

When I am failing, I believe that my future plans will change. .814 .366 .343 .417 0.77 0.298

When I am failing, it upsets my “plan” for the future. .804 .368 .409 .486 0.76 0.320

When I am not successful, people are less interested in me. .413 .807 .461 .489 0.72 0.322

When I am not successful, people seem to want to help me less. .301 .733 .406 .292 0.70 0.493

When I am not successful, people tend to leave me alone. .323 .736 .411 .365 0.71 0.461

When I am not successful, some people are not interested in me anymore. .361 .846 .492 .424 0.84 0.268

When I am not successful, my value decreases for some people. .411 .826 .462 .476 0.74 0.303

When I am failing, it upsets important others. .280 .276 .689 .260 0.81 0.563

When I am failing, important others are not happy. .273 .471 .820 .329 0.92 0.332

When I am failing, important others are disappointed. .304 .515 .875 .413 0.78 0.203

When I am failing, it is embarrassing if others are there to see it. .446 .412 .439 .778 0.75 0.364

When I am failing, I worry what others think about me. .489 .446 .378 .855 0.84 0.242

When I am failing, I worry that others may think I am not trying. .417 .348 .379 .698 0.50 0.514

Dropped itemsc

When I am failing, it is often because I am not smart enough to perform
successfully.

.510 .263 .206 .293

When I am failing, I expect to be criticized by important others. .416 .450 .618 .498

When I am failing, I am afraid that I might not have enough talent. .752 .386 .265 .588

When I am failing, I lose the trust of people who are important to me. .380 .655 .521 .227

When I am not successful, I am less valuable than when I succeed. .554 .632 .413 .550

When I am failing, I am not worried about it affecting my future plans. d −

.254
.178 −

.029
−

.149

When I am not successful, I get down on myself easily. .598 .291 .290 .691

When I am failing, I hate the fact that I am not in control of the outcome. .512 .291 −

.233
.599

When I am failing, I believe that everybody knows I am failing. .470 .533 .403 .720

When I am failing, I believe that my doubters feel they were right about me. .462 .622 .411 .675

Cronbach’s alpha .832 .854 .818 .730

R squared .482 .606 .481 .625

aFactor loadings over .50 appear in bold. Factor loadings below .30 appear in lighter gray font
b This item original loaded on the FDSE subscale; all other items load onto their original subscale
cItems were dropped from the scale for one of two reasons: (1) no factor loadings were above .40 or (2) the difference among factor loadings above .40 was less

than .2, indicating too high a degree of cross-loading
dThis item is reverse scored (i.e., higher scores actually indicate lower FF, contrary to all other items on the scale)
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extracted (Pett et al., 2003; Watkins 2018). More qualita-

tive work within a STEM context could elucidate add-

itional FF dimensions relevant for STEM undergraduates

which could augment the current instrument in future

iterations of scale development.

Steps 3–5: CFAs to confirm fit of new factor
structure
After determining a new factor structure, it was import-

ant to verify that the structure fit well in more than only

the sample of STEM students used to conduct the EFA.

We subsequently performed a series of CFAs using simi-

lar methods to those described above on this newly sug-

gested structure.

Step 3

We first verified the fit of our model within the sample

of students used for the EFA in Step 2. This sample in-

cluded 1309 students recruited from the FLAMEnet re-

search network during Fall 2018 (Table 3, column 4).

CFA within this sample yielded excellent model fit

(Table 5, row 7).

Step 4

We next wanted to confirm the revised factor structure

in a separate sample of STEM undergraduates to verify

the stability of the model. FLAMEnet participants during

Fall 2019 provided data on 433 students (see Table 3,

column 5 for demographics). This analysis also proved

to have excellent fit (Table 5, row 8).

Step 5

Finally, we wanted to return to our original sample of

235 students recruited during Summer of 2018 (Table 3,

column 3) to see if the revised model provided good fit

given that our efforts with CFA in “Step 1: Confirmatory

factor analyses (CFAs) of existing models” improved

model fit significantly but did not reach the threshold of

good fit. The model demonstrated excellent fit in this

sample as well (Table 5, row 9).

Brief discussion

We conducted three separate CFAs to verify that the

new model structure for the PFAI indicated by the EFA

(Step 2) could be replicated in multiple samples of

STEM undergraduates. In all three cases, fit statistics in-

dicated excellent model fit. Independent samples t-tests

among the various samples identified some significant

differences among demographic variables (see Table S2).

These differences, while statistically significant, were

small, and the model’s continual good fit despite them

demonstrates its robustness as an assessment tool across

undergraduate STEM samples.

Step 6: Model fit among persons excluded
because of their ethnicity or race (PEERs)
The work described thus far represents a novel presenta-

tion of the PFAI which we have shown to be a stronger

fit for undergraduates’ actual conceptualization of FF in

STEM contexts. While work aimed at improving the val-

idity and applicability of interventions and assessment

represents a worthy goal of service for all students, it is

especially salient for PEER students, who are more likely

to leave STEM academic programs (Asai 2020; National

Science Board 2018; Steele 1997; Stinebrickner and Sti-

nebrickner 2014). Factors such as FF are likely to be im-

portant leverage points for improving STEM students’

ability to persevere through academic challenges and

failures. The implied long-term impact of aligning peda-

gogical practices to reduce FF is increased inclusion and

success in STEM education and careers (e.g., retention

within STEM majors, Nelson et al. 2019). For the PFAI

to be an effective assessment tool, then, it is critically

important to ensure that the same factor structure is

valid for people at higher risk of leaving STEM, such as

PEERs (Asai 2020). Additionally, previous intervention

studies with psychological constructs that influence stu-

dents’ responses to challenge and failure (e.g., mindset)

suggest that these interventions may be most effective

for PEER students (Aronson et al. 2002; Fink et al. 2018;

Yeager et al. 2016). Thus, we conducted separate model

fit analyses with a sample of only PEER undergraduate

STEM students to explore how this instrument func-

tions when assessing this critically important population.

Participants and procedures

Participants for this analysis were drawn from the same

dataset of approximately 1309 undergraduate STEM stu-

dents described in the previous EFA section (Step 2),

along with two other datasets collected in Fall 2019 (Step

4) and Summer 2018 (Step 1). While these data were

pulled from surveys collected at different times, there

were no differences in the method by which surveys

were presented. These data were then coded to classify

each student as either a “PEER” (1) or “not a PEER” (0).

Any student who self-identified as “White/Caucasian” or

“Asian” on a demographic survey question was not con-

sidered a PEER; all other students were coded as a PEER.

This classification was based on data from the NSF

which indicates that Asian students are not typically un-

derrepresented in STEM and health-related sciences in

the USA (Asai 2020; National Science Foundation 2020).

In total, 280 PEER students were identified. Full demo-

graphics for this sample are included in Table 3, column

6. In our sample, PEER students identified as belonging

to African American or Black; American Indian or Al-

askan Native; Arabic or Middle Eastern; Hispanic or

Latinx; and/or some other racial or ethnic group. All
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further analyses described in this section have been con-

ducted with only those students classified as PEERs. In-

dependent samples t-tests (see Table S2) verify that this

combined sample of PEER students contained a signifi-

cantly higher number of PEER students than the samples

from which it was drawn (by an average factor of 10).

Small differences existed among other demographics,

but in general PEER demographics were intermediate or

roughly equivalent to other samples (Table S2) with all

differences being small. The only difference which might

also have impacted students’ FF was that PEER students

reported that their parents received a lower overall level

of education compared to students in our other samples.

This has often been used as a proxy for socioeconomic

status (SES; Pascarella and Terenzini 1991; Snibbe and

Markus 2005) and could mean PEER students are under

financial stress, making them more likely to fear failure.

However, PEERs, in general, are more likely to hail from

first-generation or lower SES backgrounds in the USA

(Cullinane 2009; Kuh et al. 2006); thus, this observed dif-

ference is not surprising. Indeed, differences in educa-

tional background that correlate with race and ethnicity,

in part, contribute to the need to understand, study, and

create measures specific to PEER groups. PEER students

also reported equivalent levels of STEM anxiety, which

suggests they are not, overall, more anxious about STEM

courses than non-PEER STEM students.

Results

MPlus v. 8.1 (Muthén & Muthén,1998-2018) was used

to conduct CFA for the four-factor, 15-item model de-

scribed above (see Tables 4 and 5). Model fit was

assessed using AIC, RMSEA, CFI, and SRMR as de-

scribed in the “Results” section of “Step 1: Confirmatory

factor analyses (CFAs) of existing models” above (Kline

2010; Taasoobshirazi and Wang 2016). Model fit statis-

tics are displayed in Table 5, row 10. All fit statistics are

within acceptable ranges for a “good” fitting model

(Kline 2010; Taasoobshirazi and Wang 2016). While the

RMSEA value of 0.071 slightly exceeds our established

criterion of RMSEA < 0.06 for a “good” fitting model,

the 90% confidence interval does include this value. In

addition, disagreement abounds regarding appropriate

cut-off points for fit indices (e.g., Hayduk et al., 2007),

with some researchers arguing that RMSEA can rise as

high as 0.08 before a model is considered a “poor” fit

(MacCallum et al. 1996). RMSEA, along with SRMR, is

also the fit index perhaps most susceptible to inflation

with small sample sizes (Kenny et al. 2015). The differ-

ence in sample size between samples in Step 2 (N =

1309 in the full EFA) and Step 6 (N = 280 in our CFA

with PEER students) may partially explain the increase

in RMSEA.

Brief discussion

By conducting this sub-analysis, we demonstrate that

our 15-item modified form of the PFAI does provide a

statistically good fit for PEER students in STEM. Given

past research on both the disproportionate difficulties of

pursuing a STEM career as a PEER student and the in-

creased effectiveness of interventions for PEER students

(e.g., Sisk et al. 2018), this implies that the modified

PFAI could be an especially powerful assessment tool for

future research. More research is needed to assess if this

is a broad effect across all classes of underrepresented

and excluded identities. Our sample was restricted to ra-

cial and ethnic exclusion and, even then, all possible

identities were not represented (e.g., we did not collect

data on subgroups within the broad category “Asian”).

In addition, other types of underrepresentation and

exclusion, such as gender, sexual orientation, first-

generation status, and religious affiliation, likely influ-

ence FF and may affect responses on the PFAI. Future

studies should investigate the fit of our modified PFAI

among these groups and for students with identities that

intersect multiple underrepresented groups.

Step 7: Cognitive interviews
Cognitive interviews were conducted to assess face valid-

ity of all twenty-five items proposed by Conroy et al.

(2001). Face validity describes the extent to which a test

or survey measures what it purports to measure. Cogni-

tive interviews are an excellent way to assess face validity

of survey questions measuring latent intrapersonal con-

structs because they allow the researcher to directly ask

participants about their interpretation of survey items

and to then assess whether this interpretation matches

with the intended purpose of the item. They also assess

participants’ understanding of the content of the instru-

ment in addition to elucidating what the participant is

thinking and feeling while responding, which can often

influence the valence of responses (Willis 2015). For our

study, we used cognitive interviews as the last step in

our data collection to (a) check the face validity of our

items (were the items interpreted by STEM undergradu-

ates as we intended), (b) help elucidate potential reasons

that certain items did not have good fit in our CFA and

EFA analyses, and (c) provide clarity and additional in-

formation about how students were interpreting cer-

tain phrases that were more ambiguous in the PFAI

items.

Participants and procedures

In accordance with results from our initial CFA (Step

1), students who participated in cognitive interviews

were asked to consider the wording of the PFAI ques-

tions specifically in the context of their STEM

courses and research (e.g., “For the following
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questions, please consider challenges and failures that

you face specifically in your STEM course(s) and re-

search”). Eleven students completed interviews of ap-

proximately 20 min each via Zoom in return for a

$20 Amazon gift card. The research opportunity was

announced to students by FLAMEnet instructor part-

ners. Interested students completed an initial screen-

ing questionnaire. From this information, the research

team selected students to participate in a deliberate

attempt to achieve a sample with approximately equal

gender and racial distribution and who represented

STEM fields similar to those seen in our larger sam-

ple(s). Demographic characteristics of these students

are described in Table 7. During these interviews, stu-

dents were asked (a) if the meaning of each question

was clear and how they interpreted the question, (b)

if answer choices seemed appropriate, (c) if there

were any suggestions for improving the question, and

(d) if they had any other thoughts. In addition, stu-

dents were asked to clarify their thought process re-

lated to the somewhat ambiguous phrase “important

others,” which appears in many of the items (e.g.,

“Which specific people come to mind when they hear

this phrase?” “Is it the same or different for each

question which uses this phrase?” etc.). Students were

also asked to provide their thoughts on three ques-

tions added by the researchers prior to the PFAI

items on the survey. These items asked respondents

to describe a time when they recently encountered a

challenge or failure in their STEM course(s) and then

to rate how upsetting they found that event on a

scale from 0 to 10, with 10 being the most upsetting.

Students were also asked to report how anxious they

were about their performance in their STEM

course(s) on a scale from 0 to 10, with 10 indicating

the highest levels of anxiety (see “STEM anxiety”

under “Step 1: Confirmatory factor analyses (CFAs) of

existing models”, above).

Results

Overall, students found the survey instructions clear

and appropriate. Students reported that our additional

questions, which asked them to describe a recent

challenge or failure in a STEM context and to rate

how upsetting that experience was, along with their

general levels of anxiety in STEM contexts, did not

prompt any confusion, discomfort, or concern during

the interviews.

Student responses to the ten items dropped

through EFA (Step 2) both support the removal of

these items from the measure and provide some ex-

planations for why these items may not fit well for

students in undergraduate STEM contexts. With a

majority of these items, there appear to be specific

words or phrases that generate confusion for the re-

spondent. For example, with item 7, “When I am

Table 7 Demographic characteristics of participants in cognitive interviews

Student1 Gender Age Class
standing

Major Race STEM anxiety (0–
10)

CE Male 21–
23

4th Year Chemistry White or Caucasian 4

DQ Male 18–
20

4th Year Biology White or Caucasian 1

HS Female 18–
20

3rd Year Integrative Physiology; Language
Sciences

White or Caucasian 3

HA Male 18–
20

2nd Year Chemistry; Psychology Asian 4

LF Female 21–
23

4th Year Nuclear Medicine American Indian or Native Hawaiian;
Black or African American

10

MZ Female 21–
23

4th Year Engineering Black or African American 6

MB Female 21–
23

4th Year Psychology Asian 9

PO Male 18–
20

3rd Year Biology American Indian or Native Hawaiian;
Black or African American

8

PW Male 18–
20

3rd Year Chemistry Black or African American 9

UN Female 18–
20

3rd Year Chemistry White or Caucasian 6

VH Female 21–
23

4th Year Engineering Management Black or African American 4

1Student pseudonym initials follow quotes from cognitive interviews
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failing, I am afraid that I might not have enough tal-

ent,” students expressed hesitation with the word

“talent,” especially since they felt it did not describe

STEM contexts.

Why “talent”? I would expect to see “intelligence.”

I’m not used to thinking about talent in this context

[science and STEM].—CE

Talent—is that specific for that subject? It’s not as

clear as “smart enough”? Talent is

associated more with singing, dancing, etc.”—MB

Similarly, for item 16, “When I am failing, I hate the

fact that I am not in control of the outcome,” students

objected to the use of “hate,” often stating that hate was

too “strong” a word. They also felt that “not having con-

trol” was inappropriate in this context.

My initial reaction is that you’re always in control a

little bit; I just don’t think anyone is not in control

of the outcome. Is there a different way to word

this?—CE

For the other dropped items, students expressed simi-

lar objections to specific words or phrases they found

confusing.

General themes in students’ interview responses also

provide important insight into how students interpreted

the survey items. Throughout the measure, the item

stems “When I am failing” and “When I am not succeed-

ing” are alternated and, presumably, are thought to be

synonymous. However, students said that they interpret

these two phrases differently and would actually have

responded to some questions differently, had the oppos-

ite stem been used.

“Not succeeding” is more broad than “failing.” Fail-

ing is an “F” vs. not succeeding is not getting

straight 100 s when [you] wanted to. Depending on

what your standard was for “succeeding,” it might

change [your] response.”—UN

One student expressed that these changing stems were

useful because they could respond about a broader range

of experiences instead of only responding about the

more extreme scenario of failing, which they narrowly

defined as getting an “F.”

I like the changing stems because ‘failing’ and ‘not suc-

ceeding’ are two different things. You can ‘not succeed’

without ‘failing’. You could just be doing not as good as

you thought you could do. [Getting a] ‘B’ instead of an

‘A’. [You’re] not failing though, because it’s not an ‘F’. I

like that both are assessed with these questions.—PO

This conflict can especially be seen in student responses

to item 10, the first time that the phrase “not succeeding”

is introduced as an alternative question stem to “failing” in

the original Conroy structure: “When I am not succeed-

ing, I am less valuable than when I succeed.”

Wording change to ‘not succeeding’ is weird. I had

to read it twice.—MB

This change could explain why this item was one of

the ten items dropped by EFA. Multiple students

expressed confusion at this word change and a need to

reread the question. However, as indicated by the above

students’ responses, students were generally able to in-

terpret this phrase after considering it and used it to

broaden the scope of scenarios they responded about.

Finally, these interviews help provide insight into the

identities and roles of individuals the students called to

mind when they encountered the phrase “important

others.” Interestingly, student responses suggest that the

specific people brought to mind by this phrase may

change depending on the actions being attributed to

those important others. When important others were

described as losing interest (e.g., items 11 or 21), stu-

dents described current or future professors, research

supervisors, and employers (“they may ‘give up’ on

you”—CE) or friends and classmates (“maybe [they]

wouldn’t want to study with you anymore”—LF). De-

scribing important others as upset prompted students to

think more broadly, with answers including professors,

family, and friends. However, the language of some of

these items specifically pointed students towards family.

For example, item # 3, “When I am failing, it upsets im-

portant others,” elicited the wide range of responses pre-

viously mentioned. However, item # 19, “When I am

failing, important others are disappointed,” keyed stu-

dents into thinking more specifically of “mostly family

and relatives/caretakers” (PW). Similarly, item 6, “When

I am failing, I expect to be criticized by important

others,” was largely associated specifically with instruc-

tors and others with academic authority such as

“teachers, professors, and mentors” (CE) and also “aca-

demic advisors, tutors, etc.” (MZ). In general, it appears

that the most salient “important others” are brought

to mind for various aspects of the STEM academic

context with these items. That is, students tend to

think of the important others that are most likely, in

their estimation, to experience a given emotion or re-

spond in a specific way to their failures or lack of

success.
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Brief discussion

Overall, results from our cognitive interviews support

the general structure of the revised survey. There were

no major confusions or issues with instructions or over-

all question wordings. Student responses supported the

statistical decision to remove dropped items. In explor-

ing student responses to items involving “important

others,” we found that students may think of different

people depending on the particular aspects of the STEM

context that are evoked by the action phrases of the item

(e.g., “criticize” vs. “upset” vs. “disappoint”). This ability

of items to draw on the most salient people in students’

minds grants flexibility to these questions and reduces

concerns that the phrasing of “important others” might

be restrictive or otherwise confusing for respondents.

This phrasing allows students to consider a broad range

of relationships and histories among an individual stu-

dent and those they consider to be “important.” How-

ever, it restricts survey interpretation in some ways

because we cannot know the exact identity of the “im-

portant other” that comes to mind for students. We can

only assume, based on these results, that that important

other is an important person that is also likely to be per-

ceived by the student as responding in accordance with

the question language (e.g., being disappointed, upset,

critical). Finally, these interviews suggest that some stu-

dents do not view the phrases “when I am failing” and

“when I am not succeeding” as interchangeable. How-

ever, this may, in fact, be a benefit of the measure. In

most cases, students view “failing” as more negative,

damaging, and permanent than “not succeeding.” By

using the more mild “not succeeding” items, this meas-

ure may allow one to assess FF (or fear of not perform-

ing to a specific standard) in students who have rigid

definitions for what constitutes “failure.”

Limitations
As with any research aimed at instrument validation,

this work has several limitations. A priori power analysis

using GPower 3.0 (Erdfelder et al. 1996) indicated that a

sample size of 500 would be ideal for our initial planned

CFA. While we recruited close to 500 participants in

Step 1 (N = 423), only 54% of these participants (N =

235) provided data that were complete enough for ana-

lysis. This sample size limits our power to detect the

small yet meaningful differences (Little 2013), which are

increasingly recognized as large effects in the educa-

tional community (Kraft 2020). This may have affected

model fit in our initial CFA, as fit indices are influenced

by sample size (The precise effect varies by fit index;

Kyriazos 2018). However, since our total sample for the

initial CFA still exceeded the level at which the most

conservative fit statistics begin to be affected (n = 200)

and our CFA model had many indicators estimating

each factor (5 items per factor in the original model), it

is unlikely that our sample size influenced fit statistics to

such an extent that erroneous conclusion were drawn

(Boomsma and Hoogland 2001; Marsh and Hau 1999).

In addition, our knowledge of likely recruitment difficul-

ties led to our choice to use a planned missingness de-

sign (Little and Rhemtulla 2013; Rhemtulla & Little

2013), which resulted in the imputation of large sections

of our data. This limitation is not present in our EFAs,

which had a much larger sample size of 1309 and in-

volved no data imputation. Likewise, our samples for the

CFAs of our modified factor structure in a novel mixed

sample and PEER-only sample did not involve multiple

imputation or planned missingness. However, they both

fell short of 500 participants (N = 433 and N = 280,

respectively).

All of our mixed samples (used for Steps 1–5 and 7)

contained low levels of academic, racial, and gender di-

versity. In particular, our samples contain a majority of

students identifying as female. While women do cur-

rently comprise approximately half of the undergraduate

STEM population and these percentages are higher in

the life sciences (National Science Board 2018), female

students are still likely overrepresented in our sample.

While we were able to conduct a separate fit analysis for

PEER students, racial and ethnic diversity of the other

samples overall were not completely representative of

national trends (U.S. Department of Education, 2012)

and there may be finer grained variations between stu-

dents from different racial and ethnic groups that our

data are not able to elucidate. In addition, in our PEER

analysis Asian students were treated as non-PEERs based

on NSFs’ definition of Asian as not underrepresented in

STEM. While this is true for the broad category, it does

not take into account different Asian subgroups (e.g.,

Korean, Vietnamese) which may be underserved and ex-

cluded in STEM. If the goal is to assess interventions

which would target underserved populations in STEM, it

is especially important that assessment measures, such

as the PFAI, accurately assess members of all under-

served populations. Our investigation of the modified

PFAI fit for PEERs starts this, but only scratches the sur-

face. Future studies of the utility of the modified PFAI

should consider nuances among PEER groups and other

types of underserved groups (e.g., first-generation stu-

dents). In addition, our sample contained a majority of

Biology and Chemistry students and did not represent as

many students from other STEM disciplines (e.g., Phys-

ics, Geoscience, Computer Science, Psychology). This

should be taken into account when interpreting the re-

sults of this work. Also, a significant majority of partici-

pants across all samples reported pursuing a STEM

major (e.g., Biology, Chemistry, Engineering). While the

language modifying the PFAI is not specific to STEM
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majors and simply asks respondents to consider their re-

sponses to failure and challenges within STEM contexts,

which may be equally applicable to STEM majors and

students pursuing other majors who enroll in STEM

classes to fulfill graduation requirements, it is nonethe-

less possible that the reason for enrolling in the course

influences students’ goals within the STEM context and

affects their responses to the PFAI. Future work should

more carefully consider this possibility.

Finally, none of these samples were randomly selected.

Participation was voluntary, with announcements of the

research opportunity disseminated by instructors who

value good pedagogy and may have previously encour-

aged more adaptive outcomes (like lower FF) in their

classrooms. This, combined with possible self-selection

of the most motivated or achievement-driven students

among these classrooms, may have biased our partici-

pant group. However, our concerted efforts to collect

data across multiple disciplines and multiple institutions

representing diverse contexts may have partially miti-

gated this selection bias.

Discussion
The aim of this study was to evaluate, revise, and present

a modified version of an existing instrument, the PFAI,

for STEM undergraduate populations. This work is par-

ticularly important since prior evidence suggests that FF

may contribute to STEM student procrastination

(Onwuegbuzie, 2004; Zhang et al., 2018), threaten motiv-

ation (Ceyhan and Tillotson 2020), and even lead to at-

trition from STEM (Nelson et al., 2019). Our results

support the modification of the original version of the

PFAI to effectively measure STEM-specific FF. Our ana-

lyses supported a more parsimonious reduced scale: fif-

teen items as opposed to twenty-five items and four

factors corresponding to different dimensions as op-

posed to five. In addition, we found support for the hy-

pothesis that STEM-specific items provide the best fit

for STEM undergraduate students. Notably, our reduced,

STEM-specific scale functions well for both PEER and

non-PEER samples and has good face validity. We also

present evidence that our reduced, STEM-specific scale

estimates different levels of FF in STEM student samples

than the original Conroy measure—a finding supporting

the importance of the scale’s revision and modification.

Our results can be used to guide the use and interpret-

ation of our new STEM-specific version of the PFAI

within STEM undergraduate contexts.

A reduced, more parsimonious, version of the PFAI

Shorter, more parsimonious scales are generally pre-

ferred as they help to mitigate survey fatigue, improve

response rates, and increase measure accuracy (reviewed

in Peytchev and Peytcheva 2017). Based on our factor

analyses, we were able to drop ten of Conroy’s original

twenty-five items, including one entire dimension

(FSDE) from the measure, resulting in a shorter, more

parsimonious, scale of fifteen items. Our final best-

fitting model of the PFAI specifically includes the FUF,

FIOLI, FUIO, and FSE scales. We assert that Conroy’s

(2001) original definitions of these dimensions continue

to be appropriate for use in STEM populations since our

cognitive interviews indicated that the items retained in

the scale had reasonable face validity.

After our final examination of the EFA, the FDSE di-

mension proposed by Conroy et al. (2001) did not

emerge among the responses of STEM undergraduates.

This may mean that, within STEM academic contexts,

undergraduates are not worried about damage to their

self-estimate as a result of failure. However, this is not

well supported in the literature, which implies that stu-

dents who identify with a field of study may experience

lower self-efficacy as a result of STEM failures (Bandura

et al., 1999; Pajares 2005). Alternatively, it could suggest

that the current PFAI items for this dimension (e.g.,

“When I am failing, I am afraid that I may not have

enough talent.”) do not accurately articulate threats to

students’ self-estimate within STEM contexts. Indeed,

responses to cognitive interviews support this latter

view, as students expressed confusion over considering

“talent” in regard to STEM, as opposed to a more arts-

based environment. Several studies provide evidence that

people have different views of whether “talent” or similar

attributes such as “brilliance” are determinants of suc-

cess in certain fields (Leslie et al. 2015; Storage et al.

2016). It could be that, for the STEM fields included in

this study, “talent” is not seen as a determinant of failure

or success, and therefore, it did not make sense when in-

cluded in some items. However, it is of note that one

item that was originally on the FDSE factor (“When I

am failing, I blame my lack of talent”) loaded onto the

FUF factor based on STEM students’ responses. So,

while some students were uncertain if “talent” was the

right word to use when discussing science, their re-

sponses to the survey nevertheless indicate that feeling

as if they possess a lack of talent in STEM contexts is

linked to future uncertainty. Additional studies could ad-

dress whether STEM students do, or do not, experience

fear of devaluing their self-estimate when experiencing

STEM failures and how students might describe this

using words other than “talent” in order to generate po-

tential new items within this dimension.

Interestingly, while all of Conroy’s other proposed di-

mensions still emerged from students’ responses, we

noted that items dropped from the scale often included

items with particularly strong and direct wording (e.g.,

“When I am failing, I expect to be criticized by important

others” or “When I am failing, I believe that everybody
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knows I am failing). Responses to such questions may

have been impacted by individuals’ tendency to, know-

ingly or unknowingly, underreport thoughts, feelings, or

behaviors which run contrary to established social norms

or are perceived to invade their privacy (Gnambs and

Kaspar 2014). For example, Fisher (1993) showed that

social desirability bias in survey responses was affected

by direct versus indirect questioning. Indirect questions,

which ask subjects to respond from the perspective of

another person, alleviated social desirability bias while

direct questions did not. In addition, research has found

that bias tends to be enhanced when respondents view

survey questions as sensitive or seeking to invade their

privacy (Gnambs and Kaspar 2014; Krumpal 2013).

While the PFAI questions are not indirect, it could be

that the most strongly worded PFAI questions do not

load well onto factors because they more blatantly con-

front the respondent with constructs which are viewed

as too personal or extreme to endorse. In addition, if re-

spondents associate FF constructs with social norms and

a related potential to generate personal discomfort or

negative reactions, they could be less likely to endorse

these beliefs (Fisher, 1993). Our cognitive interviews

support these conclusions as students were often op-

posed to strongly valenced words such as “hate,” words

that carried specific connotations such as “talent,” and

phrases that brought into question their personal agency

or privacy such as “not in control” and “everybody

knows.” Given our findings from cognitive interviews

and EFA analyses, in addition to findings from other

studies, we feel that removal of the ten items improves

the modified PFAI scale not only because it makes it

shorter, but also because it may avoid introducing

biases as a result of emotional reactions to question

wording.

A STEM-specific version of the PFAI

This work demonstrates support for our hypothesis that

a STEM-specific version of the PFAI is more appropriate

to measure FF in undergraduate STEM students than a

non-STEM-specific version. Conroy and colleagues’ ori-

ginal factor structure model for the PFAI did not yield a

good fit with the undergraduate STEM student sample.

Model fit improved significantly by removing explicit

items and the one reverse-code item and by adding lan-

guage to the items which specifically evoked the STEM-

specific academic achievement context. This version of

the PFAI corresponded better to data provided by un-

dergraduates enrolled in STEM than the original PFAI

model (Conroy et al. 2002; AIC of 13965.28 vs.

18802.92). However, even our best-fitting model from

the first round of CFA analysis (Step 1) was not what is

considered to be a “good” fitting model (Akaike 1998;

Kline 2010; Taasoobshirazi and Wang 2016). Thus, we

moved forward by allowing the PFAI items to recon-

verge into a new factor structure via an EFA (see Step 2)

which yielded a better fitting model for STEM under-

graduates (Steps 2–6). Our final model, which uses

STEM-specific language to introduce the items, provides

a “good” fit and can be used reliably to measure the

listed dimensions of FF (Akaike 1998; Kline 2010; Taa-

soobshirazi and Wang 2016).

Given that FF is specific to defined achievement con-

texts, varies from context to context (Cacciotti 2015;

Conroy 2001), and is seen in nuanced ways by STEM

professionals (Simpson and Maltese 2017), it is not sur-

prising that prompting students to consider the PFAI

items within a STEM context led to a better fit than con-

sidering the items in a non-specific context. It is also not

surprising that the organization of the PFAI items into

each dimension needed revision when used with a

STEM audience. This context specificity is not unique to

FF. Other intrapersonal elements such as mindset

(Dweck 2006) and ability to cope (Lazarus 1993; Skinner

et al. 2003) are known to be context specific. Yet, much

like FF, scales that measure such contexts are often

written for broad contexts and general audiences (e.g.,

Carver 1997; Dweck 2006). Given improvements to

model fit for FF when a STEM context was considered,

it is worth asking whether other measures of intraper-

sonal elements also need to be refined to address more

specific contexts and how specific those contexts need

to be for measurement accuracy. We also feel that there

is continued need for work on how to best assess FF in

STEM populations. The STEM-specific version of the

PFAI that we present as a result of this work is useful

for measuring the proposed dimensions. However, add-

itional qualitative interview studies could help elucidate

whether there are additional dimensions of FF unique to

STEM students that should be added to more com-

pletely measure the construct as a whole (Knekta et al.

2019). This, however, is beyond the scope of the current

work.

The STEM-specific version of the PFAI: valid for use with

undergraduate PEER populations

Results of our PEER CFA analyses (Table 5, row 10) re-

vealed that the modified PFAI was a good fit for a sam-

ple of solely PEER students. Likewise, our cognitive

interviews, which included PEER and non-PEER stu-

dents, did not uncover differences in interpretations of

items that could be attributed to race or ethnicity. Thus,

we assert that our modified STEM-specific version of

the PFAI can be used effectively to measure FF for

STEM PEERs. We consider this result a highly import-

ant finding of our work. As outlined in our introduction,

PEERs have historically been excluded from STEM

fields, and they continue to experience difficulties and
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leave (or be excluded from) STEM at higher rates than

their majority peers (Asai 2020; Huang et al., 2000;

NCSES, 2019). PEER leaving is highly detrimental to

STEM and society since losing diversity threatens scien-

tific creativity and innovation (Freeman and Huang

2014; Page, 2007), and may result in scientific communi-

ties failing to address questions that are relevant and im-

portant for PEER communities (Hacker 2013). Notably,

PEER departure from STEM continues to happen des-

pite decades of research and efforts to better understand

what helps PEER students to persist (e.g., Barbosa 1975;

Chang et al. 2014; Estrada et al. 2011; Estrada et al.

2016; Estrada et al. 2018; Estrada and Matsui 2019; Hur-

tado et al. 2010; Maton et al., 2009; Matthews 1990) and

consistent support for programs that assist PEER stu-

dents (e.g., HHMI Inclusive Excellence, NSF IN-

CLUDES). And, attrition of PEER students occurs at

disproportionately higher rates from STEM majors than

other fields of postsecondary study (Riegle-Crumb et al.,

2018). It is clear that we do not understand the whole

picture. However, we do know that STEM failures or

lack of achievement to an expected standard may pre-

cipitate a decision-making process that results in PEERs

leaving STEM or disengaging from STEM challenges

(Corwin et al. 2020; Henry et al. 2019). In addition, FF

may contribute to that critical decision to leave STEM

(Nelson et al. 2019). FF, then, may be a key component

in understanding how “failing” (or even failing to meet

one’s own high expectations) can affect PEER students’

success and persistence.

To understand how this construct acts, it is crucial

to be able to accurately measure it for PEER popula-

tions, and we cannot assume that an instrument

valid for the majority of undergraduates is valid for

PEERs. As Knekta et al. (2019) explain, “validity is

not a property of the measurement instrument,” ra-

ther it describes how well that instrument functions

for a specific population in a specific context (p. 2).

Any conclusions drawn from the instrument are only

as strong as the instrument itself (Cronbach and

Meehl 1955). Therefore, the evidence that the modi-

fied STEM-specific PFAI functions well for PEER

students is an important result of this work and can

be applied in future research on developing inclusive

practices in STEM education. However, we wish to

again highlight that more work can be done to fur-

ther understand FF in PEERs. Extensive interview

studies with PEERs specifically may be able to un-

cover other dimensions of FF specific to PEERs.

This, unfortunately, is beyond the scope of our work.

If this work were to be done, however, additional di-

mensions specifically relevant to PEERs could be

added to our version of the PFAI to further improve

STEM PEER FF measurement.

Differences in estimated FF among models

When embarking on this work, we predicted that FF,

and specifically the constructs measured by the items

in the PFAI, might be interpreted differently by

STEM students considering them in a STEM context.

We predicted that different interpretations might lead

some items to function well while others may not

and that this might result in the original version of

the instrument either over- or under-estimating FF in

STEM contexts. Since FF has potential to influence

student motivation, behavior, and even persistence in

STEM, we felt that it was very important to investi-

gate the validity of the PFAI for STEM students in

STEM contexts and to understand how use of the ori-

ginal, unmodified, version of the instrument might

misrepresent results.

This was a particularly important question for us to

address given that our aim was to modify the PFAI to

ensure accurate measurement of FF for STEM students

considering STEM contexts. An accurate measure will

allow future researchers to (a) determine how STEM

students across contexts and from different demographic

groups experience FF, (b) monitor changes in FF as a re-

sult of specific efforts or interventions designed to ad-

dress it, and (c) assess what experiences lead to more or

less FF in STEM. Our results support the claim that the

final modified version of the PFAI is more accurate than

the original unmodified version for assessing FF in

STEM undergraduates.

To evaluate how measurement of FF improved as a re-

sult of iterative changes to the PFAI scale, we compared

mean differences in FF across scale iterations within the

same sample of students. Mean and standard error for

all factors across our iterations with our Fall 2018 data

including (a) Conroy et al.’s original PFAI, (b) the PFAI

with STEM-specific language added (Step 1), and (c) our

post-EFA modified version (Step 5) are displayed in

Table 8. In addition, we present a comparison of mean

differences among a subsample of our PEER data be-

tween the original PFAI model with STEM-specific lan-

guage added and our fully modified model. Mean

differences among these groups were tested using paired

samples t-tests. In both our mixed and PEER samples,

we find significant differences in the mean levels of the

majority of the FF dimensions. This confirms our con-

cern that existing assessment measures, such as the ori-

ginal PFAI, might misrepresent the actual level of FF

experienced by undergraduates in STEM contexts. This

may be a result of students not focusing their responses

on STEM-specific contexts when completing the original

PFAI or a result of poor fit of the factor structure of the

original PFAI when considering STEM contexts. Regard-

less, these results support the need for the revised struc-

ture presented in this study.
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The specific mean value differences within and across

the FF dimensions and models yield several interesting

findings. In our Fall 2018 sample, for both the original

Conroy model and the version of the PFAI with STEM-

specific language added, internally driven causes of fail-

ure (i.e., FSE, FDSE) were reported in the highest

amounts, followed by the more immediate external

causes (i.e., FUIO, FIOLI), with the lowest levels of FF

reported for the most distal FUF. However, when means

were re-computed after the factor structure was modi-

fied via EFA, FUF became the second-highest driver of

FF. Among PEER students, FUF was already a prominent

worry, although significant increases were still observed

with the modifications to the model. This suggests that,

compared to the original PFAI, FUF seems to be espe-

cially sensitive as a motivation to avoid failure for under-

graduate STEM students, particularly for PEERs. While

poor exam grades are not the only challenge or failure

that students face in the STEM context, they are a highly

cited one. When given the opportunity to provide a re-

cent example of a failure, approximately 50% of both

samples presented in Table 8 responded with stories that

involved poor scores on tests or exams. Research sug-

gests that the perceived utility of exam results to assist

with future goals is second only to perceived test diffi-

culty in predicting student test anxiety (Bonaccio and

Reeve 2010). In addition, multiple studies of premedical

students found that a leading cause of STEM attrition is

difficulty meeting the high demands of science courses

(Lin et al. 2013). If the PFAI prompts undergraduates to

specifically consider the context of their struggles and

challenges within STEM, a majority may consider past

failures on tests or other achievement measures. Rumin-

ating on achievement measures that could impact their

admission to graduate/medical school or other future

aspirations is likely to lead to increased FUF. PEER stu-

dents especially may feel like the loss of an entire career

or life goal is one failure away since they must often

cope with added academic pressures from their own

families and communities that result from being a mi-

nority (e.g., Robinson 2013; see also work on tokenism

theory: Kanter 1977).

Another interesting change occurred among mean

levels of those factors related to important others either

losing interest (FIOLI) or becoming upset (FUIO). While

significant mean differences can be seen for both FIOLI

and FUIO, the direction of these differences is not con-

sistent. Considering failures in the STEM context in-

creased students’ FUIO; however, it decreased their

FIOLI. Also, in both samples, students reported the low-

est levels of FIOLI compared to all other FF dimensions.

The current generation of traditional university students

express that parents are often sources of both emotional

support and pressure. Specifically, many students have

described the pressure they feel from parents to choose

certain majors or careers and to graduate within a cer-

tain timeframe (Montag, 2012). If STEM students ex-

perience this increased parental (or other) pressure to

succeed, they might expect struggles and failures to yield

disappointment (higher FUIO), but not necessarily a de-

crease in interest (that is, interest will continue in the

form of continued pressure; lower FIOLI). Observing

mean levels, it appears that FUIO may be reported at

higher levels by PEER students, suggesting that this may

be a more salient fear for minoritized students in STEM.

The impact of this pressure may be particularly high for

students who feel that they represent their entire family

or identity group (or are made to feel this way by their

instructors and peers) and thereby feel the weight of ex-

pectation and attendant disappointment in the face of

any perceived struggle or failure (Kanter 1977; Robinson

2013; Robinson et al. 2013; Winkle-Wagner 2009). This

is further seen in the fact that, while fears around experi-

encing shame and embarrassment remained the same

Table 8 Mean and standard error of PFAI dimensions by model type

Complete Fall 2018 sample
Mean (SE) a

PEER subsampleb

Mean (SE) a

Original Conroy
model

Original model + STEM-specific
language
(Step 1)

Revised
model;
(Step 5)

Original model + STEM-specific
language
(Step 1)

Revised
model;
(Step 5)

Overall
FF

2.43 (.024)A 2.47 (.023)A 2.55 (0.13)A 2.63 (0.07)A 2.69 (0.07)B

FUF 1.46 (.030) A 1.69 (.034)B 2.76 (0.09)C 2.68 (0.07)A 2.82 (0.09)B

FIOLI 2.22 (.031)A 2.12 (.030)B 2.12 (.030)B 2.08 (0.08)A 2.08 (0.08)A

FUIO 2.30 (.031)A 2.40 (.031)B 2.65 (0.12)C 2.60 (0.08)A 2.75 (0.09)B

FSE 3.30 (.030)A 3.24 (.032)A 3.18 (0.06)A 2.98 (0.09)A 3.12 (0.10)B

FDSE 2.87 (.029)A 2.88 (.032)A N/Ac 2.80 (0.08) N/Ac

Notes:a Means with differing subscripts are significantly different at p < .05 based on paired samples t-tests b Approximately 60% (n = 166) of our total PEER

sample responded to the full set of the 25 original PFAI items with STEM-specific language, allowing for direct comparison of means between the original model

with STEM-specific language and the revised model. cThe FDSE subscale was dropped from the revised measure, so there is no descriptive information to display
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across models for the full Fall 2018 sample, there was a

significant increase in FSE observed in the PEER sub-

sample by using the revised model. It is also interesting

to note that the FIOLI dimension was the only one

which did not result in any further improvements under

our EFA. It is possible that, while the modified version

of the PFAI may capture unexpressed variation in the

other dimensions, the FIOLI dimension already reflected

a valid expression of respondents’ experiences.

While the scope of this work is insufficient to draw

conclusions regarding what precisely distinguishes an

“effective” item from one that is less so with regard to

assessing STEM-specific FF in undergraduate students,

our results clearly suggest that students responding in

this context do so in ways that are characteristically

unique from Conroy’s validation sample. Given the over-

all direction of these results, it appears that the original

version of the PFAI is likely to significantly underesti-

mate students’ reported experiences of FF within aca-

demic STEM contexts. Future qualitative studies could

explore the potential explanations proposed for varia-

tions in dimension means and seek to better understand

the qualities of “good” items to assess FF in STEM

contexts.

Conclusions and future directions
Taken together, our results support a revision of Con-

roy’s original PFAI to address STEM students’ unique

experiences of FF. First, students’ responses appear to be

STEM context-dependent. This is not surprising consid-

ering that Conroy et al. (2001) initially began classifying

perceived consequences of failure with the argument

that it was important to delineate such information

across performance contexts. Second, STEM undergrad-

uates show significant differences in their levels of FF

based on the individual items they agree or disagree with

on the PFAI. While in nearly all cases students’ re-

sponses produced the same factors as the original PFAI

(that is, the same types of items still clustered together

during factor analysis), fewer of the items emerged for

most dimensions. Clarification is needed on whether and

why students feel certain items represent their fears re-

lated to failure in STEM contexts while others do not.

Any basic practices or principles discovered could be ex-

tended to assessment of intrapersonal elements in STEM

contexts in general.

Overall, there appears to be a pattern in our results

suggesting that FSE may be reported at high levels re-

gardless of specific context. However, FUF and FUIO are

the individual PFAI dimensions reported at the highest

levels specifically by STEM undergraduates while FIOLI

is of overall least concern. However, this only reflects di-

mensions which were previously proposed and included

in the PFAI. Given that our results demonstrate the

uniqueness of FF within the STEM context, research

with the potential to identify other reasons STEM stu-

dents may fear failure is also warranted. The purpose

and scope of this work was limited to refining the PFAI

for more accurate assessment within a specific context.

Extensive qualitative work is recommended to elucidate

whether there are additional dimensions influencing

STEM students’ FF.

Finally, this work underscores the point that under-

graduate STEM students represent a unique population

in academic achievement contexts and that accurately

assessing the effects of interventions, especially those on

intrapersonal elements such as FF, requires modified (or

even brand new!) assessment tools. It is also especially

important that we ensure our assessment tools accur-

ately account for the experiences of nontraditional and

underserved STEM students, especially PEERs, since

these students are likely to leave STEM at higher rates

(Asai 2020; National Science Board 2018; Steele 1997;

Stinebrickner and Stinebrickner 2014). Results of our

factor analyses and student interviews strongly suggest

that our shorter, 15-item STEM-specific version of the

PFAI provides the best fit for assessing levels of FF in

STEM undergraduate students and STEM PEERs. Use of

this measure will allow a more accurate assessment of

FF in these populations and conveniently reduces survey

burden on students.

We hope that future studies of FF will seek to bridge

research with practice for STEM education improvement

via the use of the modified PFAI. Research that relates

levels of the various FF dimensions to STEM

undergraduate academic outcomes (emotional, behav-

ioral, or cognitive) using appropriate predictive statistical

methods would be highly informative. Such work would

not only help to explain and predict positive academic

outcomes, but also be valuable when designing interven-

tions to improve student success and retention in STEM

majors. For interventions that target FF as a means of

improving STEM student success (e.g., reducing evalu-

ation anxiety, Hjeltnes et al. 2015; failure attribution

retraining, Haynes et al. 2009), the modified PFAI could

be used as a pre- and post-survey to quickly assess inter-

vention efficacy. In particular, we would encourage re-

searchers and practitioners using the PFAI to consider it

as a tool to assess the emotional cost of engaging in

research-based and active pedagogies as these contexts

may both exacerbate FF and also help students to

better cope with future failures via exposure to chal-

lenge. As instructors, we must consider not only the

learning implications of incorporating active, research-

based pedagogies, but also the emotional, social, and

intrapersonal elements affected by our choices, espe-

cially with regard to situations in which failure is a

possibility.
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Future research should also investigate assessment of

other intrapersonal elements, such as coping style and

sense of belonging, that could be context-dependent and

may require careful consideration of the population of

interest. It is clear from this work and others (e.g., Knekta

et al. 2019; Knekta et al. 2020; Rowland et al. 2019) that

considering how to accurately assess these complex ele-

ments in STEM contexts may be imperative to gain an un-

derstanding of their roles in influencing student

outcomes. Currently, there is a paucity of instruments

available to measure intrapersonal elements in STEM con-

texts (Henry et al. 2019) and more generally a need to im-

prove the quality of measurements for latent variables in

STEM populations (Knekta et al. 2019; Limeri et al. 2020;

Rowland et al. 2019). Intrapersonal elements tend to con-

sist of latent variables that require more complex means

of assessment, often construction of survey instruments

with multiple items (Knekta et al. 2019). In addition, due

to colloquial use of terms, intrapersonal elements are

often confused with other constructs (e.g., interest and

curiosity; Rowland et al. 2019) as is the case with anxiety

and FF (Cacciotti et al. 2016; Lazarus 1991). Investigating,

designing, and exploring validity of assessments for these

elements can help to both clarify definitions while also en-

suring their accurate measurement for the population in

question. Beginning with existing measures valid for other

populations can serve as an excellent starting point to im-

prove upon a measure for undergraduate STEM popula-

tions (Knekta et al. 2019).

In conclusion, we recommend that researchers inter-

ested in exploring the effects of intrapersonal elements on

student outcomes in STEM undergraduates make use of

our modified STEM-specific PFAI assessment measure,

consider revalidating other assessments of intrapersonal

elements that may be context-dependent for STEM stu-

dents, and continue considering best assessment practices

for undergraduate STEM education research (Knekta

et al. 2019). The results of this study highlight the inability

of existing measures to fully capture intrapersonal ele-

ments such as FF in undergraduate STEM populations

and the need for even more specific focus on assessing

these elements for students from underserved groups in

STEM. This underscores the continuing need to refine

and develop context-specific assessment measures as we

work towards a better understanding of the complex rela-

tionships between these elements and student outcomes.

Only with such confidence in our assessment tools will

STEM educators succeed in developing pedagogical strat-

egies to nurture a diverse and persevering STEM work-

force poised to meet and answer the complex scientific

challenges of the twenty-first century.
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