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Quantifying Generalization from Trial-by-Trial Behavior of
Adaptive Systems that Learn with Basis Functions: Theory
and Experiments in Human Motor Control
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During reaching movements, the brain’s internal models map desired limb motion into predicted forces. When the forces in the task
change, these models adapt. Adaptation is guided by generalization: errors in one movement influence prediction in other types of
movement. If the mapping is accomplished with population coding, combining basis elements that encode different regions of movement
space, then generalization can reveal the encoding of the basis elements. We present a theory that relates encoding to generalization using
trial-by-trial changes in behavior during adaptation. We consider adaptation during reaching movements in various velocity-dependent
force fields and quantify how errors generalize across direction. We find that the measurement of error is critical to the theory. A typical
assumption in motor control is that error is the difference between a current trajectory and a desired trajectory (DJ) that does not change
during adaptation. Under this assumption, in all force fields that we examined, including one in which force randomly changes from trial
to trial, we found a bimodal generalization pattern, perhaps reflecting basis elements that encode direction bimodally. If the DJ was
allowed to vary, bimodality was reduced or eliminated, but the generalization function accounted for nearly twice as much variance. We
suggest, therefore, that basis elements representing the internal model of dynamics are sensitive to limb velocity with bimodal tuning;
however, it is also possible that during adaptation the error metric itself adapts, which affects the implied shape of the basis elements.
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Introduction
The brain appears to predict forces that are necessary for an up-
coming movement and programs muscle activations accordingly
(Lackner and DiZio, 1994; Shadmehr and Mussa-Ivaldi, 1994).
When force prediction is incorrect, movement errors drive adap-
tation of the motor commands (Thoroughman and Shadmehr,
1999). Interestingly, error experienced in a single movement has
broad effects. It influences subsequent movements to other direc-
tions (Sainburg et al., 1999), at other arm configurations (Shad-
mehr and Moussavi, 2000), with different trajectories (Conditt et
al., 1997; Goodbody and Wolpert, 1998), and even movements of
the other arm (Criscimagna-Hemminger, et al., 2002) One hy-
pothesis is that through practice, the brain builds an internal
model of the novel forces. The internal model is a mapping from
the arm’s position and velocity space into force (Conditt and
Mussa-Ivaldi, 1999). Therefore, the patterns of generalization are
a reflection of how this map is encoded neurally. For example,
learning forces in one workspace generalize to an arm configura-

tion 80 cm away (Shadmehr and Moussavi, 2000), suggesting that
the neural elements of the internal model encode arm position
very broadly. Cells in the motor cortex, somatosensory cortex,
and spinocerebellar tract are typically modulated globally and
often linearly as a function of position of the limb (Bosco et al.,
1996; Tillery et al., 1996).

Generalization is a key psychophysical tool to infer the com-
putations underlying adaptation. Indeed, a number of studies
have quantified generalization to infer the shape of the receptive
fields underlying a transformation learned by the brain (Shad-
mehr and Mussa-Ivaldi, 1994; Ahissar and Hochstein, 1997; Con-
ditt et al., 1997; Goodbody and Wolpert, 1998; Imamizu et al.,
1998; Lee et al., 1999; Sainburg et al., 1999). Typically, subjects
train with one set of inputs and are then tested in another set;
however, if we assume that in every trial, including the test trials,
errors update the representation, then we can only probe a few
test points before the test points themselves become a significant
fraction of the training trials. In human psychophysics, we can get
around this by recruiting a large number of subjects and after
training provide different test points to each volunteer. This be-
comes impractical in animal studies. The problems associated
with separating training from test trials is perhaps the main rea-
son why in motor control, generalization functions are qualita-
tively inferred from psychophysical data, but their exact shape is
often unknown.

Recently, we used a different approach in which there were no
test trials. Instead, generalization was estimated from perfor-
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mance changes during training (Thoroughman and Shadmehr,
2000). The approach focused on trial-by-trial changes in perfor-
mance. The idea was to quantify how error in one movement
affected performance on the subsequent movement. In the cur-
rent report, we advance the mathematical foundations of the
theory and then test them in a number of experiments. We as-
sume that learning of internal models can be thought of as adap-
tation with basis functions. Although the bases are unknown, we
derive a set of equations that relate trial-by-trial changes in per-
formance with a generalization function that is dependent on
these bases. We apply the equations to the movements of people
and quantify a generalization function. We assert that if this gen-
eralization function is truly a reflection of the basis functions,
then it should remain invariant as task parameters change. We
test the theory with subjects who learned different kinds of force
fields, including a field that was unpredictable.

Theory
This paper takes as its starting point the ideas in Thorough-
man and Shadmehr (2000). That paper described adaptation
of reaching movements to curl fields (fields in which forces are
perpendicular to hand velocity). Its conclusion was that “er-
rors in learning dynamics of arm movements suggest that the
brain composes motor commands with computational ele-
ments that are broadly tuned to arm velocity.” This result rests
on two theoretical ideas. First, adaptation of reaching move-
ments to a force field imposed on the hand was viewed as
forming a sensorimotor map with a set of bases that encoded
limb velocity. The map changed in response to errors experi-
enced in a movement. Thoroughman and Shadmehr (2000)
showed that error on one movement was linearly related to
performance change on a subsequent movement. Second, that
work introduced the idea that a dynamic system could be used
to model the sequence of errors that subjects make during the
task. In their dynamic system, a combination of actual ( f ) and
expected forces (f̂ ) generated the measured error ( y) on each
movement (n). The expected force for the next movement was
then a linear combination of the old expectation and the force
experienced on this movement. Rewriting their Equation 4, in
slightly different notation, we have:

� f̂ �n�1� � af̂ �n� � bf �n�

y�n� � f̂ �n� � df �n�
. (1)

Although additional subtleties were involved, it is broadly correct
to say that the three parameters a, b, and d, were used to fit this
system of equations to the actual sequence of errors generated by
the subject. The dynamic system fit the sequence of errors quite
well, and an analysis of the parameters of fit led to the conclusion
about broad tuning quoted above. Thoroughman and Shadmehr
(2000) chose to use a dynamic system with a canonical form that
has been thoroughly analyzed in the literature of system identifi-
cation in part because the canonical form was numerically
tractable.

We began our research by noting that despite the success of
this approach, Equation 1 does not have any privileged relation-
ship to the idea of an adapting internal model. Therefore, we
attempted to derive a rigorous connection between the theories
of adapting internal models and dynamic systems. Starting from
simple assumptions about the internal model, this mathematical
approach led us to a very different dynamic system than the one
used by Thoroughman and Shadmehr (2000). We outline this

result below, but provide the actual derivation in the supplemen-
tal material, section S.1 and S.2 (available at www.jneurosci.org).

As a starting point, we used a simulation that included dynamics
of a human-like arm holding a robotic arm (Shadmehr and
Brashers-Krug, 1997). The task was to make 10 cm reaching move-
ments toward targets positioned at various directions. The robotic
arm produced forces that depended on hand velocity, and the objec-
tive was to adapt to these forces so that reaching movements were
once again smooth and straight. The simulation adapted to the field
by building an internal model that was implemented as a sensorimo-
tor map. This map was represented as a combination of basis ele-
ments. Basis elements are a common way to implement a mapping
function (Poggio et al., 1992; Sanner and Kosha, 1999), in particular
if we assume that the internal model is represented as a population
code (Pouget and Sejnowski, 1997). The internal model in our case
used basis elements ( gi) to encode limb velocity (ẋ). Each basis was
associated with a preferred force vector, labeled as Wi. Using a pop-
ulation code, the bases were combined to predict the force acting on
the hand (F̂):

F̂�ẋ� � Wg�ẋ�
g � �g1�ẋ�, . . . , gm�ẋ��T

W � � wx1 . . . wxm

wy1 . . . wym
� . (2)

The internal model adapted by changing the preferred force vec-
tor associated with each basis. The process was as follows. A
movement resulted in a trajectory of errors, each experienced at
some velocity during that movement. We discretized this trajec-
tory to 1 msec intervals and for each interval updated the force
vectors Wi associated with each basis using gradient descent:

wij
�n�1� � wij

�n� � �
��F � F̂�

�wij
.

The weights were updated after each movement by the force er-
rors experienced in that movement. As expected, the adaptive
system exhibited changes in performance from trial-to-trial. In
section S.2 of the supplemental material we show that in theory,
despite the nonlinear dynamics of the arm, trial-to-trial perfor-
mance of reaching movements during adaptation generally fol-
lows the constraints of a specific linear dynamic system and that
this dynamic system has parameters that depend on the shape of
the bases.

Here we present the linear dynamic system in some detail,
because we will be using it to analyze behavioral data from hu-
mans and draw conclusions about the underlying representation.
Let us say that on movement n, the subject moved in direction
k (n ) and made an error y (n ). This error is the displacement of the
hand from some nominal “desired trajectory,” evaluated at peak
velocity. Through a compliance matrix, D, this displacement is
related to the difference between the force applied by the robot,
F (n ), also measured at peak velocity, and the force expected by the
internal model, F̂k�n�

�n� . That is:

y�n� � D�F�n� � F̂k�n�
�n� �.

Note that the expected force depends on the direction of move-
ment. The experienced error changes the force expectation for
that direction and for all other possible directions of movement.
It will be more convenient for us to represent the internal model
in units of position rather than force, so we make a change of
variable that allows us to accomplish this:

zl
�n� � DF̂l

�n�.
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Because we have eight directions of movement, we have eight z (n )

variables, each of which is a vector. The amount that each of these
variables is updated after each movement will depend on the
error, y (n ), and on a generalization function that relates its direc-
tion to the direction of movement. We will call the generalization
function Bl,k. The value of Bl,k gives the effect of error experienced
in direction k on the expectation in direction l. Putting all of this
together, we get the following dynamic system:

� y�n� � DF�n� � zk�n�
�n�

zl
�n�1� � zl

�n� � Bl,k�n�y�n� l � 1, · · · , 8.
(3)

These equations have two multivalued parameters. The first, D, is
a 2 � 2 compliance matrix with units of meters per Newton. Such
a compliance matrix can be shown to accurately describe the
errors generated by our simulation (Donchin and Shadmehr,
2002). The second parameter, Bl,k, an 8 � 8 matrix, is the gener-
alization function and is dimensionless.

Because this dynamic model was derived from our theoretical
adaptive controller, it can be used to uncover the generalization
function of the adaptive controller. Indeed, we can use the deri-
vation to write an equation for the generalization function in
terms of the basis elements: writing ẋk for maximum velocity
during movements in direction k and uk for unit vectors in direc-
tion k, we can show:

Bl,k � ��
x��0

x���ẋk�

�g�x�uk�
Tg�ẋl��x�dx�, (4)

where � is a constant defined by Equation S5 of the supplemental
material and g represents the vector of basis functions (Eq. 2).
This means that the generalization function approximates an av-
erage of correlations of basis elements evaluated at different ve-
locities. It further suggests that, given a generalization function,
we may be able to work back to make a guess at the basis elements
that would generate it.

Fitting Equation 3 to a sequence of movements is a nonlinear
optimization problem. To prevent over-fitting, we opted to re-
duce the 64 parameters that represent the generalization function
Bl,k to only 8. This was accomplished by assuming that the gen-
eralization function depended only on the angular difference be-
tween two directions of movement. That is:

B0	,0	 � B45	,45	 � . . . � B315	,315	

B0	,45	 � B45	,90	 � . . . � B315	,0	
,

and, more generally, Bl,k � Bl��,k��. This simplifying assumption
certainly holds for adaptive systems in which basis functions are
distributed symmetrically in velocity space. It may not necessarily
hold for subjects, but we will be able to judge the model and the
validity of this assumption by the quality of fit.

Comparison of theory with Thoroughman and
Shadmehr (2000)
Unlike our previous work, here we began with a simulated adap-
tive controller that learned dynamics of a robotic arm with basis
functions and found that in theory, its trial-to-trial performance
was governed by a specific linear dynamic system. The parame-
ters of this linear system explicitly depended on the shape of the
basis functions used by the adaptive controller. As a result, there
are a number of differences between the new model (Eq. 3) and
the old one (Eq. 1). A full discussion is presented in section S.4 of
the supplemental material; however, three of the differences are

fundamental. First, in the current model, error and force are
measured as vectors. This allows us to apply the model to fields
other than the curl field and to account for parallel as well as
perpendicular error. We will show that with the new model we
can account for human behaviors in a wide range of force fields.
Second, the scalar representation that was used previously as-
sumed a rotation of the error vector because it was generalized to
other directions. Here, our model makes no such assumption. In
the results, we show that generalization without a rotation is a
better match for the data. Finally, in the current model it is the
error of the previous movement that causes learning, whereas in
the old model learning was driven by an arbitrary combination of
force and the old state.

A fixed desired trajectory
One of the assumptions in our adaptive controller, and hence in
the dynamic model of Equation 3, is that the desired trajectory is
revealed by movements in the null field (i.e., a baseline condition
before application of forces) and does not change as a result of the
introduction of the force field. There have been a number of
proposals regarding the desired trajectory. Some, like the mini-
mum jerk trajectory that we used in our adaptive controller
(Flash and Hogan, 1985), do indeed have these properties. Oth-
ers, such as the minimum torque change model (Nakano et al.,
1999), do not. A recent comparison of a number of competing
theories suggested that behavior in force fields was best explained by
an invariant desired trajectory (Thoroughman, 2002), somewhat
justifying our choice to use this assumption in our theoretical devel-
opment. If this assumption is wrong, however, then the conse-
quences are quite serious, and we explore this possibility as well.

Materials and Methods
Experimental task. Subjects sat facing a vertical screen, holding the handle
of a two-joint, planar robotic arm that was used to apply forces (Shad-
mehr and Mussa-Ivaldi, 1994). Targets were presented on the screen, and
the subject acquired these targets by using the robot to control the posi-
tion of a cursor (Fig. 1 A). Each subject made at least 380 movements
during which no forces were applied by the robot (null field training).
This was followed by one to three sets of 192 movements during which
the robot applied forces during most movements (field trials), but occa-
sional trials were without applied forces (catch trials). Forces were always
linearly dependent on hand velocity: F � Vẋ. For most of our subjects,
the robot applied a curl field. In the curl field forces are perpendicular to
the instantaneous velocity of the hand. We used both clockwise curl fields
(V � {0 13; 
13 0}) (Fig. 1 B) and counterclockwise curl fields (V �
{0 
13; 13 0}) (Fig. 1C).

We also used two additional fields in which forces were applied both
parallel and perpendicular to the instantaneous velocity. One was the
curl-assist field: V � {11 
11; 11 11} (Fig. 1D). This field combined a
clockwise curl field with an assistive field that acted to increase the sub-
ject’s velocity in whatever direction the subject was moving. An addi-
tional field was a saddle field: V � {11 11; 11 
11} (Fig. 1 E).

Experiments with the adaptive controller. We initially tested our theory
on the data generated by various simulated adaptive controllers (see
Theory and supplemental materials section S.1). We used an adaptive
controller in which the basic elements (Eq. 2) were Gaussians
(exp [
�ẋ 
 ẋj�

2/2� 2]). The “centers” (ẋj) of the Gaussians were distrib-
uted in a square lattice with a separation of 0.05 m/sec. We found that
with reasonably dense tilling, the separation affected only the learning
rate and not the generalization function. Width of the Gaussians, �, was
varied in the range 0.1– 0.4 m/sec. This affected the patterns of generali-
zation and the trial-to-trial performance of the controller. The objective
was to fit this trial-to-trial performance to our linear dynamic system,
quantify the generalization function, and then ask whether this function
matched the bases used in the controller.

The adaptation in the controller was as follows. After each simulated
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movement, the associated force vectors (wxy,i) for each basis were up-
dated using gradient descent as explained above. Experience with the
simulation proved that the learning rate, �, varied with �. We used trial
and error to find � so that learning was at the same rate (and consistent
with subject learning rates) for all �. This gave us the values shown in
Table 1.

From each movement performed by the simulation, we extracted a
measure of error (y (n )) by comparing the position of that movement at
peak speed with the position of the desired trajectory at peak velocity.
The force produced by the robot at that velocity was F � Vẋ. Therefore,
from each simulated movement, we extracted two vectors: a movement
error y (n ) and the force acting on the hand F (n ). We fit Equation 3 to the

sequence of errors, forces, and movement directions ({y, F, k} (n )) and
found the parameters B, D, and initial conditions z l

(l) that produced the
best fit.

Human experiments. Over the past few years, our laboratory has col-
lected a large body of data from naive subjects who were all exposed to the
same pattern of forces in their first two or three target sets and were then
tested in various other paradigms. The data for these subjects (n � 75)
has been published previously (Shadmehr and Brashers-Krug, 1997;
Thoroughman and Shadmehr, 1999; Thoroughman and Shadmehr,
2000) and is reanalyzed here with our new approach. To this data set, we
added new subjects (n � 43) who were recruited specifically for the
current report. Subjects were healthy and their age range was between 18
and 55. Position, velocity, and force data were collected from the robot’s
sensors at 100 Hz. The subject’s arm was supported by a sling in an effort
to restrict the problem to two dimensions. All subjects gave written con-
sent using a form approved by the Johns Hopkins University Institu-
tional Review Board.

We estimated the desired trajectory separately for each subject in each
direction by averaging movements made during the last 200 movements
of null field training. We than calculated y (s,n ) for each movement, n, and
for each subject, s, by subtracting the position at peak velocity during that
movement from the position at peak velocity of the desired trajectory in
the appropriate direction. These errors were then averaged across sub-
jects to generate the average error on each movement, y (n ). We then fit
Equation 3 to the sequence of errors, y (n ), and extracted the parameters
D, B, and z l

(1).
Our development and our data analysis assume that the desired tra-

jectory is fixed and does not change with training in a field. This is why
the trajectories during the null field can be used as an estimate of the
desired trajectory; however, we also explored the consequences to our
model of a violation of this assumption. In this case, we used the move-
ments at the end of training in the field, when performance had stabi-
lized, to estimate the desired trajectory. The details of this calculation are
presented in section S.7 of the supplemental material.

Measuring statistical significance of the model. Once we determined
parameters B, D, and z l

(1), we assessed goodness of fit. We used standard
bootstrap techniques (Efron and Tibshirani, 1993) to determine confi-
dence limits for our parameters (details in section S.8 of the supplemental
material). We used 200 bootstrap resamplings of our subjects to generate
these confidence limits and used the same resamplings for the confidence
limits of both B and D.

Additionally, using B, D, z (n ), and F (n ), we could regenerate trial-by-
trial performance of the system, ŷ (n ). We compared this with the actual
measured sequence y (n ) to determine the quality of fit of the model. Our
goodness of fit measure is on the basis of the statistic r 2, the percentage of
the variance explained. Usually, measuring quality of a linear fit to data in
a vector space, r 2 is defined as:

r2 �
�ŷ � y��2

�y � y��2 .

To generalize this definition to our data, we require an appropriate re-
placement for y�. Because y� plays the role of a “baseline model” and
determines the amount of variance that needs explaining, we replaced it
with a baseline model, y0, that included only the z k

(1) term, whereas B and
D are fixed at 0:

� y0
�n� � 
zk�n�

�n�

zl
�n�1� � zl

�n� l � 1, · · · , 8 .

We fit this model to the data to find y 0
(n). We could then calculate:

r2 �

�
n�1

N �ŷ�n� � y0
�n��2

�
n�1

N �y�n� � y0
�n��2

.

This works well as an estimate if we are guaranteed that the model, ŷ (n ),
is optimal in the least-squares sense. If it is not, r 2 can easily be �1, and it
is more convenient to define r 2 as:

Figure 1. A, Experimental setup and the coordinate system for simulations of human arm
and robot arm dynamics. B–F, Force fields that we examined in this report. In each case, F � Vẋ.
Units of V are in kilograms per second. B, Standard curl field, V � {
13

0
0

13}; C, opposite curl field,
V � {13

0
0


13}; D, curl-assist field, V � {
11
11

11
11}; D, saddle field, V � {11

11

11

11}.

Table 1. This table gives the learning rate (�) used for different widths of the basis
elements (�) in the simulation to get a peak in the generalization function (B) of
Equation 3 equal to 0.18

� (m/sec) �

0.1 9.918 � 10
5

0.15 3.787 � 10
5

0.2 2.010 � 10
5

0.3 9.279 � 10
6

Donchin et al. • Quantifying Generalization during Motor Learning J. Neurosci., October 8, 2003 • 23(27):9032–9045 • 9035



r2 � 1 �

�
n�1

N �ŷ�n� � y�n��2

�
n�1

N �y�n� � y0
�n��2

.

We used this equation to define our goodness of fit. Note that this equa-
tion is equivalent to the previous definition for an optimal fit.

We were also interested in the relative importance of B and D in the fit.
This question can be addressed by calculating the partial r 2. One does this
by including more parameters in the baseline model but still leaving out
the parameter of interest. For example, a baseline model that does not
include the B matrix would be (we label output predicted by a model that
does not include a B matrix as y B

(n):

� yB
�n� � DF�n� � zk�n�

�n�

zl
�n�1� � zl

�n� l � 1, · · · , 8 .

The difference between y B
(n) and y (n ) represents the total additional vari-

ance that could be explained by the introduction of the parameter B. We
can calculate the percentage of this residual variance that B actually does
explain by using the equation:

rB
2 � 1 �

�
n�1

N �ŷ�n� � yB
�n��2

�
n�1

N �y�n� � yB
�n��2

.

A similar method was used to generate y (n )
D and r 2

D. We used a test
similar to the bootstrap called the randomization test (Manly, 1997) to
test the significance of our r 2 parameters (details in section S.9 of the
supplemental material).

Generalization and rotation. Our adaptive controller assumes that
force errors generalize from one direction to another in Cartesian coor-
dinates without rotation. This assumption is implicitly carried into our
dynamic model, because y (n ) is only multiplied by a scalar Bl,k in updat-
ing the internal model state, z k

(n). Thus, our dynamic model imposes on
the data an assumption that generalization never involves rotation. In
contrast, Thoroughman and Shadmehr (2000) assumed that the error
vector would be rotated during generalization in proportion to the extent
of generalization. We tested these two assumptions against the data using
a model that allowed rotation. This model is identical to the one in
Equation 3 except that Bl,k is a 2 � 2 matrix for each l and k. To limit the
number of parameters we used a 2 � 2 matrix of the form:

Bl,k � � � l,k 
	l,k

	l,k �l,k
�.

Using the transformations Magl,k � ��l,k
2 � 	l,k

2 and �l,k � tan 
 1(	l,k/
�l,k), we can extract a magnitude (equivalent to the scalar B from Eq. 3)
and a rotation angle from this 2 � 2 matrix. This allowed us to ask
whether errors generalize with or without rotation.

Task variations. We designed a number of variants of the experiment
so we could answer two questions. (1) How well does the theory agree
with trial-to-trial variations in performance under different conditions?
(2) If the theory is robust, do the parameters of the system that it identi-
fies remain invariant across repeated measures and across different con-
ditions? In the first condition, 75 subjects trained in the clockwise curl
field. Data for 40 of these subjects was presented previously in Thorough-
man and Shadmehr (2000) and is reanalyzed here using our new meth-
ods. In all of these 75 subjects, the target set was out and back; that is, a
target at 45° was always followed by a target at 225°. The odd-numbered
targets were at 0, 45, 90, or 135°, whereas the even-numbered targets were
at 180, 225, 270, and 315°. In addition, the same sequence of 192 targets
was used in three successive sets performed by the subjects.

To test whether serial correlations in the original out-and-back ar-
rangement influenced our results, subjects (n � 9) trained in a target set
in which movement directions were selected pseudorandomly from the
eight possible directions. Before each movement, the robot’s motors
were used to move the subject’s arm passively to the appropriate starting
point for that movement. We also tested the applicability of our model

when movement errors were not only perpendicular to the direction of
target but also parallel to it. We had subjects train in a curl-assist field
(n � 8) or in a saddle field (n � 9). Target directions did not include serial
correlations, and the motors were used to move the hand to the appro-
priate starting point before each movement.

Finally, note that in our theory there is no requirement that errors
converge. In fact, our approach to system identification is at its best when
the system of interest is producing large errors. This suggested that if the
bases with which the brain adapts are consistent across tasks, the bases
should be invariant even in a task where forces randomly change from
trial to trial. Subjects (n � 12) reached in a field in which forces were
selected pseudorandomly to be either the clockwise curl field (42% of
trials), the counterclockwise curl field (42% of trials), or a null field (16%
of trials). The target directions were arranged in an out-and-back struc-
ture as in the original paradigm.

In addition to estimating generalization in each task variation, we also
asked how well our estimates of B from the first experiment (variation 1,
curl field correlated set) could explain the data from all other experi-
ments (variations 2–5). For this validation, we fit the data for variations
2–5 by restricting the eight parameters of B in Equation 3 to be a scaled
version of the parameters that we found in variation 1. Thus, we required
the shape of B to remain invariant across conditions but allowed it to be
scaled. Therefore, rather than eight parameters, a single parameter, the
scaling factor, was used. The 12 unknown parameters (4 for D, 8 for B) of
the fit are reduced to 5 in this case.

Results
Estimating generalization of an artificial adaptive controller
We began with an artificial adaptive controller that learned to
move a model of a human arm attached to a robotic arm that
produced a force field. The adaptive controller improved its per-
formance by building an internal model. The internal model was
a collection of Gaussian basis functions, where each basis en-
coded arm velocity and was associated with a preferred force
vector. Adaptation resulted in a change in the preferred force
vector. The coding of the velocity space was with Gaussians of
various width � (Eq. 2). Thus, we expected the generalization
function to be progressively wider as the width of the basis func-
tions increased.

To test this idea, we fit the dynamic system of Equation 3 to the
trial-by-trial performance of the adaptive controller. We tried
controllers that had basis elements with widths varying between
0.1 and 0.4 m/sec and examined the quality of the fit and the
parameters of the fit. Figures showing the trial-by-trial perfor-
mance of the controller and the fit to the model are shown in
Figures S1 and S2 of the supplemental material. The r 2 values for
these fits were always �0.9. This suggests that despite the nonlin-
ear dynamics of the simulated arm and its adaptive controller, an
appropriate linear dynamic system could effectively describe the
trial-by-trial data during adaptation.

The estimated compliance matrix D generated from these fits
is shown graphically in Figure 2A for simulations with different
values of �. As would be expected, when basis elements change,
no change is observed in D. We estimate that D captures 0.974 of
the otherwise unexplained variance in fitting the model to a sim-
ulation with � � 0.1, and 0.954 of the otherwise unexplained
variance in fitting a simulation with � � 0.3 m/sec.

Figure 2B shows the generalization function, B, estimated
from simulations with different �. This function describes what
percentage of error in one movement direction is generalized to
another direction at some angular distance. Its width is a reflec-
tion of the width of the basis functions in the simulation. When
bases are narrow, there is little generalization to neighboring di-
rections. A wider � in the simulation produces a wider generali-
zation function. The generalization function, B, captures 0.94 of
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otherwise unexplained variance for � � 0.1 and 0.912 for � � 0.3
m/sec.

Our theory predicts the values of B shown in Figure 2B: Equa-
tion 4 gives the value of the generalization function in terms of the
parameters of the adaptive controller. We test this prediction by
calculating these predicted values for the generalization function
for different �. Our numerically computed values were larger by
a factor of 1.3 relative to the values found by extracting the
parameters from the sequence of errors. Figure 2C, however,
shows that after adjusting for this scaling factor, there is good
agreement between the two methods. The scaling factor probably
results from the approximations made in the derivation. The
reader is referred to the supplemental material for a full deriva-
tion as well as a summary of these approximations. We suspect
that the scaling factor results from a simplification of the move-
ment trajectory that we used to aid in estimating the value of an
integral. What is clear, however, is that despite the approxima-
tion, we are able to use Equation 3 to find the shape of the gen-
eralization function.

The generalization function in human data
We next applied our theoretical framework to reaching move-
ments of humans. Our first group of subjects performed either
two or three target sets, each consisting of 192 movements. Every
movement began from the center of the workspace outward fol-
lowed by a movement back to the center. All subjects experienced
the clockwise curl field (Fig. 1B).

In Figure 3 we show movement errors for the first target set,
averaged across subjects. The figure shows the X and Y compo-
nents of the movement error for each direction separately; it
shows the actual sequence of errors, combining all directions, for
the first 75 movements in the middle plot (Fig. 3I). The percent-
age variance explained by the model (r 2) is 0.77, which is signif-
icant at p � 0.01. Movement errors for all three target sets can be
seen in Figure 4A,C,E. Here, we display the parallel and perpen-
dicular components of the error, rather than the X and Y compo-
nents. Movements to 180° are shown separately (Fig. 4B,D,F).
The r 2 values for the model fit are 0.77, 0.80, and 0.77, respec-
tively, for sets 1–3 (all of which are significant at p � 0.01).

We can think of the three sets in this experiment as a kind of

repeated measure: the same subject is being retested with the
same target set. This tests whether the underlying adaptive system
continues to use the same basis set, although performance varies
from set to set. For example, note that in set 1, performance
improves over the course of the set, whereas in sets 2 and 3 the
performance has reached a plateau. Therefore, although the the-
ory can fit the data quite well in each case, it is more interesting to
ask whether the generalization function remains constant. Figure
5 allows comparison of B and D for the models generating the fits
shown in Figure 4. The limb’s compliance, as estimated by D, did
not change appreciably. Interestingly, the shape of the generali-
zation function B also remained similar in the three data sets.
Error bars in Figure 5B represent the bootstrapped SEM of each
parameter of B. We found that the peak value of B (at 0°) in the
first set was just outside of the 95% confidence interval for the B
in the third set. This suggests that from the first to third set there
may have been a reduction in the degree to which errors general-
ized to the same direction (i.e., 0°).

What is the relative importance of B and D in producing the fit
shown in Figure 4? The partial r 2 shows that D explains 0.74, 0.80,
and 0.76 of the otherwise unexplained variance in the three sets,
respectively. B explains 0.28, 0.23, and 0.22 of the otherwise un-
explained variance. For both B and D, bootstrap statistics show
that the partial r 2 values are significant at p � 0.01. Thus, the
performance of subjects is well explained by a fixed compliance
matrix and a fixed generalization function. Another way of dem-
onstrating the contribution of B to the quality of the fit is to plot
the model against the data (as in Fig. 4) but to subtract out those
components of the fit that come from the other parameters. This
is what we show in Figure 6, where we plot:

yB � y�n� � DF�n� � zk�n�
�0�

ŷB � ŷ�n� � DF�n� � zk�n�
�0� ,

for sets 1–3. These plots eliminate the effects caused by differ-
ences between field trials and catch trials and any effects caused
by differences between different directions. They demonstrate
that many features of the data are quite well captured by the
model.

Figure 2. A, B, Parameters of the fit using Equation 3 on data from simulations with different �. A, A graphical representation of the matrix D. D is a compliance matrix that transforms force on
the hand into displacement. To represent this, we multiply D by a force vector of length 1 N as the vector rotates about a circle. The result is hand displacement. The coordinates of the force vector
are Cartesian, centered at the position of the hand (data not shown). The intersecting lines show the effect of D on the coordinate axes of force. B, The generalization function, B, characterizes the
effects of error in one direction on all other directions of movement. The x-axis shows the difference (in degrees) between the direction in which the error was experienced and the other directions
of movement. The y-axis is unitless gain. It describes what portion of the error vector (in terms of a ratio) was distributed to the state in which the movement occurred (0°) and neighboring states.
Note how wider Gaussian basis elements (larger �) produce a wider generalization function. C, A comparison of the generalization function found by two different methods for basis elements of
different widths. Solid lines come from fitting the dynamic model (Eq. 3); dashed lines were calculated using the numerical derivation (Eq. 4). The results from the numerical derivation have been
scaled down by a factor of 1.3. The factor was apparently introduced by the approximations made in the derivation.
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Remarkably, the generalization function is significantly bi-
modal: it drops off toward 45° but rises back by 180°; however,
although the bimodality is significant, the shape of the generali-
zation function also seems compatible (judging from the error
bars on the values of B) with a constant, i.e., a straight line at a
value of 0.12. We tested whether a model like this could explain
the data. We changed our model so that the B matrix had only a
single parameter. This meant that the effect of errors in any
movement on movements in all other directions was identical.
We fit this model to our data in the first set. The fit produced r 2 of
0.71 and a partial r 2 for the B parameter of 0.10. Therefore, al-
though the partial r 2 for D changed by �5%, the partial r 2 for B
dropped by 64%. Bootstrap shows that the partial r 2 is signifi-

cantly less with this approach than in our original model; how-
ever, it appears to us that perhaps the best evidence for bimodality
is the consist shape of the B function across repeated measures in
these three sets. As we will see, this bimodality is maintained in
other variations of the task.

If we compare the compliance of our simulated adaptive con-
troller (Fig. 2A) with the compliance that we measured from our
subjects (Fig. 5A), we see that there is similarity in shape, al-
though the human arm is not as stiff as the model. This suggests
that the stiffness and inertial parameters that were used in the
simulation are realistic but too large in magnitude to accurately
represent the real human arm.

It is striking, however, that the shape of the generalization

Figure 3. Averaged performance of subjects (n � 75) in a clockwise curl field with occasional catch trials. X and Y components of the data are shown in gray; fit for the model (Eq. 3) is in black.
Circles indicate catch trials. A–H, Movements in each of the eight directions during a 192-movement set. I, All directions of the first 75 movements of the set. Standard errors (data not shown) for
the measured data are on the order of 1 mm. The r 2 for the fit of the model over the entire 192-movement set is 0.77.
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function B in human data is distinctly different from the one
generated by an adaptive controller using our Gaussian bases.
Symmetrical Gaussian bases generalize unimodally instead of bi-
modally (Fig. 2B). Therefore, the Gaussians that we used for
coding of velocity space are incompatible with the pattern of
generalization demonstrated by subjects (Fig. 5B). Because our
paradigms are designed to test only generalization across direc-
tions and not across speeds, we cannot know exactly what the
shape of the basis elements should be; however, we can try to find
a basis set that would be compatible with our results. In an effort
to find such a basis set, we modified the simulated controller to
use bases that encoded limb velocity with a bimodal function:

gj�ẋ� � exp �
�ẋ � ẋj�2

2�2 �
1

K
exp �

�ẋ � �
ẋj��2

2�2 .

This function has a preferred velocity at ẋj where activation is
maximum, and a second but smaller peak at 
ẋj. The unitless

constant K controls the relative size of the
secondary peak. Figure 7A–D compares
the generalization functions generated us-
ing the modified simulation with those
generated using subject data. The best fit to
the subject data seems to be where K � 2
and � � 0.15 (Fig. 7B, dark line). Using
nonlinear fitting in Equation 4, we worked
backward to estimate the � and K that
most closely matched the subject data and
found � � 0.20 and K � 1.7. This is quite
close to the parameters that we found by
searching the parameter space. The pre-
dicted shape of the basis is shown in Figure
7E. The basis has a peak of activation for
one direction (its preferred direction) and
a second peak with approximately half the
magnitude in the opposite direction.

Therefore, from the pattern of generalization that we estimated
from human data we infer that the bases of the internal model
have this bimodal shape; however, we note again that this is only
one possible shape that could produce the same generalization
function, and the current results are not sufficient to determine
the exact shape of the basis elements.

Are error vectors rotated as they are generalized?
One of the fundamental differences between our approach and
that of Thoroughman and Shadmehr (2000) is that we used a
vector rather than a scalar measure to describe error in each
movement. In the earlier work, the error measure was perpendic-
ular displacement of hand trajectory with respect to the target
direction. The error was positive if it was clockwise with respect to
movement direction and negative otherwise. It was assumed that
this error is generalized to all other directions also as a perpen-
dicular displacement, which seemed reasonable because the field

Figure 4. Averaged performance of subjects in a clockwise curl field. Errors parallel (Par) to the movement direction and perpendicular (Perp) direction are shown. Gray is subject data, and black
is model fit. Circles indicate catch trials. A, B, Errors in the first fielded set (n � 75 subjects). C, D, Errors in the second fielded set (n � 75 subjects). E, F, Errors in the third fielded set (n � 44 subjects).
The sequence of targets and the catch trials are the same in each set. r 2 values for all movements within a set are 0.77, 0.80, and 0.77, respectively, for sets 1–3. Note that a “learning curve” can be
seen clearly only in the first half of the first set.

Figure 5. Parameters of the models that produced the fit to subject data shown in Figure 4. A, The D matrixes are illustrated
following the format of Figure 2 A as the effect of the matrixes on the unit circle. B, The generalization functions for the three
successive sets performed by the subject. Error bars are bootstrapped standard errors.
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was always perpendicular to the direction of movement. There-
fore, that measure of generalization implicitly assumed a rotation
of the error vector to other directions. The result was a generali-
zation function that was broad but became negative at 180°. This
is consistent with behavior of wide Gaussian-like bases when
movement errors are represented as scalars.

In contrast, when we represented movement errors as vectors,
theory predicted that generalization should involve a scaling of
this vector with no rotation. This is a testable prediction of the
theory and allows us to directly compare our approach with the
earlier approach.

We changed our dynamic model so that its measure of gener-
alization would allow for both scaling and rotation of the error
vector. Because of the additional parameters, the model fit the
data slightly but not significantly better than the original model,
with r 2 � 0.79, 0.80, and 0.78 for the three curl field sets, respec-
tively. For all three sets, a consistently small rotation was found to
fit the data best, with an average rotation of 10° (�2°SEM), 6°
(�3°), and 9° (�4°). The maximum rotation across all three sets
was 22°. The results demonstrate that when movement error is
represented as a vector, it is generalized to other directions with
little or no rotation. Lack of rotation contradicts an assumption
of the Thoroughman and Shadmehr (2000) model.

We found an additional way to test this question and also to
validate our findings in a manner that is model independent. We
searched in our data for examples in which two movements in the

same direction were separated (among other movements) by a
movement in some specific direction. The intervening move-
ment was a catch trial, and the two movements in the same direc-
tion were field trials. We then calculated the difference in position
at maximum velocity of these two movements as a function of the
direction of movement of the intervening catch trial. The result of
this analysis is shown in Figure 8. This figure shows that when the
intervening catch trial was in the same direction of movement as
the two field trials (vectors at the top of this figure), the effect of
the error in the catch trial was an increase in error in the field trial
(depicted by the black vector). Because the field is a clockwise
curl, the effect of the intervening catch trial on the subsequent
field trial is an error to the right. Now, if the intervening catch

Figure 6. The quality of the fit caused by the generalization function ( B) is demonstrated by
plotting y 
 DF 
 z (0) (gray) and ŷ 
 DF 
 z (0) (black), thereby eliminating from the fit the
contribution of both the compliance matrix D and any average difference between the direc-
tions. As can be seen, many of the details of the remaining variation are still being captured.
Format is the same as Figure 4. Par, Parallel; Perp, perpendicular.

Figure 7. A–D, Generalization functions were estimated from data that were generated
using simulations of an adaptive controller that uses bimodal primitives in its internal model.
Generalization functions are shown for different values of the two parameters: K, the ratio of the
peak heights, and �, the width in meters per second. Superimposed on them (dashed black
line) is the generalization function found in the subject data, averaged over the three general-
ization functions in Figure 5B. E, The shape of the primitives implied by the generalization
functions found in the subject data (Fig. 5). This is the activation function of a single primitive
the center of which is at [0.21, 0.21] (approximately peak velocity for a 10 cm movement to 45°).
For this primitive, ��0.15 and K�2. The actual prediction of force is computed by an average
of the force associated with each primitive, weighted by the activation. The axes of this graph
are X velocity and Y velocity, and the limits are from 
0.5 to 0.5 m/sec for both X and Y.
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trial is not in the same direction of the two field trials, for example
at 45° with respect to the field trials, its effect remains roughly
perpendicular to the direction of movement in the intervening
catch trial. This means that the error experienced in the catch trial
is a vector that undergoes a scaling but little or no rotation as it is
generalized to other directions of movement. Notice, however,
that this scaling is neither constant nor unimodal: if the catch trial
is at a direction 180° to the field trials, its effect appears larger than
when the directional difference is 90°. This result demonstrates
that bimodality can be found directly in the underlying data.

To summarize, (1) during learning of a curl force field, the
compliance matrix D remains invariant across different move-
ment sets, (2) the generalization function B is consistently bi-
modal as a function of movement direction, (3) error experi-
enced in a given direction generalizes to other directions without
a significant rotation, and (4) the shape of B is inconsistent with
bases that encode velocity space unimodally as a Gaussian.
Rather, the generalization function suggests basis elements that
are bimodal with a secondary peak at a direction opposite to the
preferred direction and a magnitude of approximately half the
magnitude of the main peak.

Generalization function in different force fields and different
target sets
We tested the model’s robustness by collecting data in a number
of variations of the original task. In the first variation, we exam-
ined whether the bimodal shape of B was an artifact of the struc-
ture of our target sets. It was conceivable that the out-and-back
structure of the original paradigm contributed to the secondary
peak at 180°. To address this, we tested nine subjects on the same
curl field using a target set without the serial structure. In the new
paradigm, targets appeared in a pseudorandom sequence of di-
rections (0°, 45°, . . . , 315°). After each movement, the robot
passively moved the subject’s arm to a new start position. The
first row of Figure 9 (plots A and B) shows data from these sub-
jects and the fit of the model (Eq. 3) to that data. The fit has an r 2

of 0.72.
The parameters that go with this fit are shown in the first row

of Figure 10. The smaller number of subjects leads to a noisier

generalization function. Nevertheless, the bimodality persists de-
spite the lack of serial structure in the target set. Similarly, the
shape of the compliance matrix, as measured by the D parameter,
is similar to the values in the standard paradigm.

An additional reservation that could be entertained is that it is
possible that the curl field is a very special case. Other velocity-
dependent force fields that generate more parallel error may not
produce such a clean fit to the model. To address this possibility,
we trained subjects on a curl-assist field and a saddle field. These
fields produce parallel as well as perpendicular errors in the
hand’s trajectory. Performance in the curl-assist and saddle fields
are shown in Figure 9C–E. The r 2 was 0.74 for the curl-assist field
and 0.68 for the saddle field.

The compliance and generalization parameters estimated in
each of these fits are shown in Figure 10, C and D, for the curl-
assist field and Figure 10, E and F, for the saddle field. For the
saddle field, D is significantly more elongated than in the curl
field. This may be attributed in part to anisotropic characteristics
of the field, which is assistive along the long axis of the compli-
ance matrix and resistive along the short axis. If the viscous re-
sponse to assistive and resistive fields is not symmetric, this could

Figure 8. A model-free assessment of the generalization function in a clockwise curl field.
We found all occurrences where in the intervening trials between two field trials in the same
direction there was a catch trial (field-catch-field) in some other direction. This plot shows the
vectorial difference between the position at maximum velocity of the first and last field trials.
The top vector shows cases in which the middle trial is in the same direction as these trials. The
next vector clockwise shows cases in which the middle trial was 45° clockwise from the direction
of these trials.

Figure 9. Errors and the fit of the model (Eq. 3) to a set of 192 movements in variations of the
clockwise curl field task. Each row of plots represents a different variation. A, B, Movements in a
clockwise curl field using target sets in which the out-and-back structure has been removed;
r 2 � 0.72 (n � 9). C, D, Movements in a curl-assist field; r 2 � 0.74 (n � 8). E, F, Movements
in a saddle field; r 2 � 0.68 (n � 9). G, H, Movements in a random field; r 2 � 0.82 (n � 12).
Format for plots is as in Figure 4. Par, Parallel; Perp, perpendicular.
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produce the elongated compliance matrix. A difference that is
evident in the curl-assist field is a marked decrease in the magni-
tude of the generalization function; however, the bimodal shape
of the function is still apparent in both fields.

Validating the generalization function
The generalization that we found for all of the task variations
seemed bimodal. We validated this impression by fitting the data
again but forced the generalization function to be identical in
shape to the one that we found in the clockwise curl field task
(that is, as described in Materials and Methods, we fit a scaled
version of the function). The r 2 of the fit to the target set with
serial correlations removed was 0.68, and to achieve this fit the
generalization function was scaled by a factor of 0.65. The fit for
the curl-assist field gave an r 2 of 0.68, whereas the r 2 for the saddle
field fit was 0.66. The scaling factor applied to the generalization
function to achieve these fits was 0.15 and 0.91, respectively. This
repeats the finding above that the magnitude of the B in the
curl-assist field was smaller than in the other fields, as suggested
by Figure 10.

Adapting in an unpredictable force field
When the task is unpredictable, do subjects continue to adapt
their internal model from movement to movement as before?
Our theory provides a method to answer this question. We tested
subjects in a target set in which the field varied randomly from

movement to movement. Because the field was unpredictable,
the task was effectively not learnable in the sense that no long-
term improvements in performance were possible, except
through increased stiffness of the arm. The important questions
are whether the behavior of subjects will continue to agree with
the behavior of the model, and if so, whether the system param-
eters (B and D) will be similar to those generated in the more
traditional learning paradigm.

During the unpredictable set, errors remained large through
the end of the set except on catch trials, in which errors were small
(Fig. 9G). There was no evidence for improvement in perfor-
mance. Remarkably, the model continued to fit the trial-by-trial
performance quite reliably (r 2 � 0.82). The partial r 2 of the B
function indicated that this parameter was still significant in ex-
plaining the pattern of errors. For these data, B explains 0.11 of
the otherwise unexplained variance. Also, the shape of the gener-
alization function was similar to the shape found earlier (Fig.
10H). We validated this by fitting a scaled version of the general-
ization function from the standard curl field learning paradigm.
In this case, the r 2 was 0.82 and the scaling factor was 0.47.

Despite the fact that the data in this random field task would
suggest no adaptation, in light of the results provided by the
theory it appears that the brain is adapting in similar terms as
before. The internal model is responding to errors by changing its
state, but because the errors are random, the changes do not
accumulate.

Allowing change in the desired trajectory
In our theoretical development, we make the crucial assumption
that the desired trajectory in the field is the same as the desired
trajectory during the baseline, null field training movements.
Within the context of current motor control research, this is a
reasonable assumption, but we have no way of determining
whether it is true. If we relax this assumption, we need some way
of determining the effective desired trajectory after the field has
been turned on. One option is to estimate the desired trajectories
from the movements at the end of each training set. This is like
assuming that, at the end of each set, subjects are moving as
closely as possible to their desired trajectory. We detail the calcu-
lations used to generate this approximation in the supplemental
material.

The new desired trajectory changes the reference point for
measurement of error, thus changing the values of y in Equation
3. This, in turn, changes the values of the parameters B and D that
best fit the data. The maximum change for the reference point for
the three sets of curl field data were 3.8, 3.2, and 3.6 mm, respec-
tively. For the other fields, the changes were slightly larger but of
similar magnitude (4.7–15.3 mm; the largest difference being for
the saddle field). The desired trajectories originally estimated
from the null movements and the desired trajectory estimated
from the end of training are shown in Figure 11. It is clear from
the figure that these differences are quite small. Nevertheless, the
generalization function was affected by the change (Fig. 12). Al-
though the overall shape of the generalization function is similar,
the bimodality has been reduced or eliminated. Importantly, al-
lowing the desired trajectory to change improved the fit of the
model. For the overall r 2, this change was quite small. The overall
r 2 values achieved when combining the original curl field data
were 0.83, 0.84, and 0.80 for the three sets, compared with 0.77,
0.80, and 0.77 with a fixed desired trajectory. For the other vari-
ants on the paradigm, the overall r 2 was between 0.71 and 0.84;
however, a significant improvement occurred in the ability of the
generalization function to explain the error-dependent changes

Figure 10. The compliance and generalization parameters for the fits of Equation 3 to data
collected in the variations on the original task. A, B, Clockwise curl field with uncorrelated target
set structure. C, D, Curl-assist field. E, F, Saddle field. G, H, Random field. Left column represents
the compliance matrix D; right column is the generalization function B. Format is as in Figure 2.
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in trial-to-trial performance. For the first set of the standard curl
field task, r 2

B went from 0.25 to 0.48, and for the random set the
r 2

B went from 0.10 to 0.18. Similar results were found when
analyzing the other data sets (r 2

B of 0.35). On average, when we
allowed the “desired trajectory” to vary with dynamics of the task,
the generalization function accounted for approximately twice as
much of the variance as when the desired trajectory was estimated
from the null trials.

Discussion
This paper outlines a new approach to understanding human
motor learning. We studied the underlying representation used

by subjects to learn a novel motor task, and we used an approach
derived from the theoretical study of an adaptive controller that
mimicked human behavior. Our theory allowed us to circumvent
the traditional need to first train the system in one state and then
test generalization to another state. Instead, we demonstrate that
it is possible to measure generalization by visiting all states in a
random order. Our central finding was that during reaching
movements in velocity-dependent fields and under the assump-
tion of a fixed desired trajectory, error in a given movement
direction was generalized in a bimodal pattern to neighboring
directions. This suggests the possibility that the internal model is
represented with computational elements that encode limb ve-
locity with a bimodal receptive field; however, an important ca-
veat is that this bimodality depends critically on the assumption
that the desired trajectory does not change because of the force
field.

Our theory advances the idea that one can profitably study
mechanisms of adaptation without improvements in perfor-
mance. In our analysis, what matters is not whether performance
is converging, but how performance on one trial depends on the
errors experienced on the previous trial. There is a long tradition
of modeling the relationship between past and current behavior
using linear models (Falmagne et al., 1975; Kowler et al., 1984;
Smeets and Brenner, 1995; Thoroughman and Shadmehr, 2000;
Scheidt et al., 2001; Witney et al., 2001). In most studies of this
sort, it has been found that the current movement is affected by
only a small number of previous movements, often only one.
Relying on these studies, our theory describes adaptation as a
multidimensional hidden state changing because of error experi-
enced in the previous movement. In effect, the system has a mem-
ory of one trial. This is consistent with the results of Scheidt et al.

Figure 11. A comparison of the desired trajectory as estimated by the movements at the end
of null field training (Null; gray) and by the movements at the end of training in a field (Training;
black). The first column shows the movement trajectories (with a dot at the position of maxi-
mum velocity). The second column shows the speed profiles.

Figure 12. Allowing change in the desired trajectory improved the ability of the dynamic
model to fit the data. Each plot shows the generalization function using a changed desired
trajectory for each of the variations of the paradigm. The rB

2 for each of the fits is 0.48, 0.38, and
0.35 ( A) for the three sets 0.35 ( B), 0.34 ( C), 0.35 ( D), and 0.18 ( E).

Donchin et al. • Quantifying Generalization during Motor Learning J. Neurosci., October 8, 2003 • 23(27):9032–9045 • 9043



(2001) who tested explicitly for the length of the system memory
in a task very similar to ours.

Our theory extends these studies. We demonstrate that it is
not only errors that affect trial-to-trial performance changes but
also the basis functions used for representation of the task. Our
equations characterize adaptation using two parameters: a com-
pliance matrix, D, and a generalization vector, B. We fit these
equations to our data to find the shape of the generalization
function. We found that under the assumption of a fixed desired
trajectory, B was consistently bimodal in subjects experiencing
different sequences of fields and different sequences of targets. B
remained bimodal even in a randomly changing field in which
standard measures of performance would detect no learning.

Although we found that generalization was consistently bi-
modal, it was not identical across different data sets. In repeated
measures across the same subjects, the peak value of B appeared
to decline from the first to the third target set. This suggests that
on the third set, errors cause a smaller change in the internal
model than on the first set. This would indicate an increased
resistance of the internal model to change. This change in the
peak value of B disappeared when we allowed adaptation of the
desired trajectory, however, and further experiments are required
to determine how it should best be interpreted. We also found a
significantly smaller B in the curl-assist field than in the curl field.
Although this is difficult to interpret, we note that our ability to
measure error in a subject’s movement is far more robust for
perpendicular displacements than for parallel displacements.
This relative uncertainty in our measures of parallel error might
be responsible for the reduced magnitude of B in the curl-assist
field.

We believe that our model is a reasonable first step in explain-
ing the human data, but it is by no means optimal. Our approach
captured nearly all of the variance in the data generated by the
simulated adaptive controller, but, on human data, our model
did no better than 80%. Moreover, although the partial r 2 value
for B in the human data was always significant, it was never �0.4,
whereas in the simulated data it was 0.9. Improvements in the
model, especially the introduction of nonlinearity, could increase
its ability to explain the data; however, to continue on a solid
theoretical foundation, these improvements should be linked to
an explicit description of the adaptive controller that they would
imply. Otherwise, we create a real danger of increasing fit by
increasing the number of parameters without actually increasing
our understanding of the task. One improvement that is sup-
ported by experimental data would be to allow the compliance
matrix, D, to change because error seems to be related to in-
creased stiffness (Thoroughman and Shadmehr, 1999). Another
improvement that we have explored here is that the desired tra-
jectory may change. Allowing the desired trajectory to change
increased the partial r 2 for B by approximately a factor 2. It also
increased the consistency of the generalization function between
different variants of the paradigm; however, changing the desired
trajectory reduced the bimodality of the generalization function.
Determining whether the desired trajectory does indeed change,
and how it changes, seems to be a key factor in further develop-
ment of this model.

Any relationship between our results and neurophysiological
results is necessarily tentative. Nevertheless, it is intriguing to
note that a primate study found that Purkinje cells in the cerebel-
lum were bimodally tuned with respect to hand velocity during
reaching movements (Coltz et al., 1999). In the same task, the
bimodality was not present in motor cortical cells. The Purkinje
cells, unlike neurons in M1, seemed to respond to a preferred

speed as well as a preferred direction (Johnson et al., 1999). It is
noteworthy that in our task, cerebellar damage profoundly im-
pairs the ability of subjects to adapt (Smith, 2001). This is consis-
tent with the inference that we made regarding encoding of limb
velocity in the internal model. Indeed, these findings motivated
our choice of basis elements. Because our paradigm does not
measure generalization across different speeds, we cannot know
the exact shape of the basis elements. Our data may well have
been consistent with other choices for the basis elements that
would also have produced similar generalization functions. For
instance, we could have used a basis composed of asymmetrical
Gaussian elements that are wide along the line connecting their
center to the coordinate axis (causing generalization across 0) but
narrow in the direction perpendicular to that line. We chose the
specific shape that we used to match the data presented in Coltz et
al. (1999).

The question of whether there exists some simple set of prim-
itives that the CNS might rely on to perform complex actions has
been approached in a number of different ways. Some ap-
proaches have used principal components or other related tech-
niques to decompose the kinematics of movements. They have
asked whether there exist a small number of movement patterns
that can be combined linearly to produce the kinematics of the
original movements. It has been found that much of the variance
in hand writing (Sanger, 2000), grasping of the hand (Santello et
al., 1998), typing movements (Soechting and Flanders, 1997),
and gait (Olney et al., 1998) can be explained with the first few
principal components of the original data set. These results sug-
gest that a low-dimensional description of movement exists, but
the approach has yet to address directly questions of representa-
tion, planning, or control of movements.

A second approach has been inspired by reports from Bizzi
and colleagues (Giszter et al., 1993; Saltiel et al., 2001) on force-
field representation in the spinalized frog. Stimulation of distinct
sites in the spinal cord has been shown to produce one of four or
five distinct types of motor output, quantified as forces as a func-
tion of limb position. Because co-stimulation of any two of these
neural locations would give rise to a nearly linear combination of
the corresponding force fields (Mussa-Ivaldi et al., 1994), it has
been suggested that the CNS may control action via a weighted,
linear combination of these fields (Mussa-Ivaldi and Giszter,
1992). This theory describes not only how actions might be gen-
erated, but also how they may be learned.

Our contribution has been to find a way to test the idea that
learning of limb dynamics may be through a linear combination
of task-invariant basis elements. The shape of these elements ap-
pears to remain fairly invariant across task variations. It is note-
worthy that previous work has found evidence for time-
dependent changes in functional properties of motor memory
(Brashers-Krug et al., 1996; Shadmehr and Brashers-Krug, 1997)
and brain activation patterns (Shadmehr and Holcomb, 1997;
Nezafat et al., 2001) during consolidation. If the internal model
changes in its neural organization as it becomes a part of long-
term memory, do the generalization patterns, reflecting the un-
derlying basis, also change?
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