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Abstract

In this paper, we investigate the problem of over-

fitting in deep reinforcement learning. Among

the most common benchmarks in RL, it is cus-

tomary to use the same environments for both

training and testing. This practice offers rela-

tively little insight into an agent’s ability to gen-

eralize. We address this issue by using proce-

durally generated environments to construct dis-

tinct training and test sets. Most notably, we in-

troduce a new environment called CoinRun, de-

signed as a benchmark for generalization in RL.

Using CoinRun, we find that agents overfit to sur-

prisingly large training sets. We then show that

deeper convolutional architectures improve gen-

eralization, as do methods traditionally found in

supervised learning, including L2 regularization,

dropout, data augmentation and batch normaliza-

tion.

1. Introduction

Generalizing between tasks remains difficult for state of the

art deep reinforcement learning (RL) algorithms. Although

trained agents can solve complex tasks, they struggle to

transfer their experience to new environments. Agents that

have mastered ten levels in a video game often fail catas-

trophically when first encountering the eleventh. Humans

can seamlessly generalize across such similar tasks, but this

ability is largely absent in RL agents. In short, agents be-

come overly specialized to the environments encountered

during training.

That RL agents are prone to overfitting is widely appreci-

ated, yet the most common RL benchmarks still encourage

training and evaluating on the same set of environments.

We believe there is a need for more metrics that evalu-

ate generalization by explicitly separating training and test

environments. In the same spirit as the Sonic Benchmark
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(Nichol et al., 2018), we seek to better quantify an agent’s

ability to generalize.

To begin, we train agents on CoinRun, a procedurally gen-

erated environment of our own design, and we report the

surprising extent to which overfitting occurs. Using this

environment, we investigate how several key algorithmic

and architectural decisions impact the generalization per-

formance of trained agents.

The main contributions of this work are as follows:

1. We show that the number of training environments re-

quired for good generalization is much larger than the

number used by prior work on transfer in RL.

2. We propose a generalization metric using the CoinRun

environment, and we show how this metric provides a

useful signal upon which to iterate.

3. We evaluate the impact of different convolutional ar-

chitectures and forms of regularization, finding that

these choices can significantly improve generalization

performance.

2. Related Work

Our work is most directly inspired by the Sonic Benchmark

(Nichol et al., 2018), which proposes to measure general-

ization performance by training and testing RL agents on

distinct sets of levels in the Sonic the HedgehogTM video

game franchise. Agents may train arbitrarily long on the

training set, but are permitted only 1 million timesteps at

test time to perform fine-tuning. This benchmark was de-

signed to address the problems inherent to “training on the

test set.”

(Farebrother et al., 2018) also address this problem, ac-

curately recognizing that conflating train and test environ-

ments has contributed to the lack of regularization in deep

RL. They propose using different game modes of Atari

2600 games to measure generalization. They turn to su-

pervised learning for inspiration, finding that both L2 reg-

ularization and dropout can help agents learn more gener-

alizable features.

(Packer et al., 2018) propose a different benchmark to mea-

sure generalization using six classic environments, each of
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Figure 1. Two levels in CoinRun. The level on the left is much easier than the level on the right.

which has been modified to expose several internal param-

eters. By training and testing on environments with differ-

ent parameter ranges, their benchmark quantifies agents’

ability to interpolate and extrapolate. (Zhang et al., 2018a)

measure overfitting in continuous domains, finding that

generalization improves as the number of training seeds in-

creases. They also use randomized rewards to determine

the extent of undesirable memorization.

Other works create distinct train and test environments us-

ing procedural generation. (Justesen et al., 2018) use the

General Video Game AI (GVG-AI) framework to gener-

ate levels from several unique games. By varying diffi-

culty settings between train and test levels, they find that

RL agents regularly overfit to a particular training distri-

bution. They further show that the ability to generalize to

human-designed levels strongly depends on the level gen-

erators used during training.

(Zhang et al., 2018b) conduct experiments on procedurally

generated gridworld mazes, reporting many insightful con-

clusions on the nature of overfitting in RL agents. They find

that agents have a high capacity to memorize specific levels

in a given training set, and that techniques intended to miti-

gate overfitting in RL, including sticky actions (Machado

et al., 2018) and random starts (Hausknecht and Stone,

2015), often fail to do so.

In Section 5.4, we similarly investigate how injecting

stochasticity impacts generalization. Our work mirrors

(Zhang et al., 2018b) in quantifying the relationship be-

tween overfitting and the number of training environments,

though we additionally show how several methods, includ-

ing some more prevalent in supervised learning, can reduce

overfitting in our benchmark.

These works, as well as our own, highlight the growing

need for experimental protocols that directly address gen-

eralization in RL.

3. Quantifying Generalization

3.1. The CoinRun Environment

We propose the CoinRun environment to evaluate the gen-

eralization performance of trained agents. The goal of each

CoinRun level is simple: collect the single coin that lies

at the end of the level. The agent controls a character that

spawns on the far left, and the coin spawns on the far right.

Several obstacles, both stationary and non-stationary, lie

between the agent and the coin. A collision with an ob-

stacle results in the agent’s immediate death. The only re-

ward in the environment is obtained by collecting the coin,

and this reward is a fixed positive constant. The level ter-

minates when the agent dies, the coin is collected, or after

1000 time steps.

We designed the game CoinRun to be tractable for existing

algorithms. That is, given a sufficient number of training

levels and sufficient training time, our algorithms learn a

near optimal policy for all CoinRun levels. Each level is

generated deterministically from a given seed, providing

agents access to an arbitrarily large and easily quantifiable

supply of training data. CoinRun mimics the style of plat-

former games like Sonic, but it is much simpler. For the

purpose of evaluating generalization, this simplicity can be

highly advantageous.

Levels vary widely in difficulty, so the distribution of levels

naturally forms a curriculum for the agent. Two different

levels are shown in Figure 1. See Appendix A for more de-

tails about the environment and Appendix B for additional

screenshots. Videos of a trained agent playing can be found

here, and environment code can be found here.

3.2. CoinRun Generalization Curves

Using the CoinRun environment, we can measure how suc-

cessfully agents generalize from a given set of training lev-

https://blog.openai.com/quantifying-generalization-in-reinforcement-learning
https://github.com/openai/coinrun
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(a) Final train and test performance of Nature-CNN agents after
256M timesteps, as a function of the number of training levels.

(b) Final train and test performance of IMPALA-CNN agents af-
ter 256M timesteps, as a function of number of training levels.

Figure 2. Dotted lines denote final mean test performance of the agents trained with an unbounded set of levels. The solid line and

shaded regions represent the mean and standard deviation respectively across 5 seeds. Training sets are generated separately for each

seed.

els to an unseen set of test levels. Train and test levels are

drawn from the same distribution, so the gap between train

and test performance determines the extent of overfitting.

As the number of available training levels grows, we ex-

pect the performance on the test set to improve, even when

agents are trained for a fixed number of timesteps. At test

time, we measure the zero-shot performance of each agent

on the test set, applying no fine-tuning to the agent’s pa-

rameters.

We train 9 agents to play CoinRun, each on a training set

with a different number of levels. During training, each

new episode uniformly samples a level from the appropri-

ate set. The first 8 agents are trained on sets ranging from

of 100 to 16,000 levels. We train the final agent on an un-

bounded set of levels, where each level is seeded randomly.

With 232 level seeds, collisions are unlikely. Although this

agent encounters approximately 2M unique levels during

training, it still does not encounter any test levels until test

time. We repeat this whole experiment 5 times, regenerat-

ing the training sets each time.

We first train agents with policies using the same 3-layer

convolutional architecture proposed by (Mnih et al., 2015),

which we henceforth call Nature-CNN. Agents are trained

with Proximal Policy Optimization (Schulman et al., 2017;

Dhariwal et al., 2017) for a total of 256M timesteps across 8

workers. We train agents for the same number of timesteps

independent of the number of levels in the training set. We

average gradients across all 8 workers on each mini-batch.

We use � = .999, as an optimal agent takes between 50 and

500 timesteps to solve a level, depending on level difficulty.

See Appendix D for a full list of hyperparameters.

Results are shown in Figure 2a. We collect each data point

by averaging the final agent’s performance across 10,000

episodes, where each episode samples a level from the ap-

propriate set. We can see that substantial overfitting occurs

when there are less than 4,000 training levels. Even with

16,000 training levels, overfitting is still noticeable. Agents

perform best when trained on an unbounded set of levels,

when a new level is encountered in every episode. See Ap-

pendix E for performance details.

Now that we have generalization curves for the baseline

architecture, we can evaluate the impact of various algo-

rithmic and architectural decisions.

4. Evaluating Architectures

We choose to compare the convolutional architecture used

in IMPALA (Espeholt et al., 2018) against our Nature-CNN

baseline. With the IMPALA-CNN, we perform the same

experiments described in Section 3.2, with results shown

in Figure 2b. We can see that across all training sets,

the IMPALA-CNN agents perform better at test time than
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(a) Performance of Nature-CNN and IMPALA-CNN agents dur-
ing training, on an unbounded set of training levels.

(b) Performance of Nature-CNN and IMPALA-CNN agents dur-
ing training, on a set of 500 training levels.

Figure 3. The lines and shaded regions represent the mean and standard deviation respectively across 3 runs.

Nature-CNN agents.

To evaluate generalization performance, one could train

agents on the unbounded level set and directly compare

learning curves. In this setting, it is impossible for an agent

to overfit to any subset of levels. Since every level is new,

the agent is evaluated on its ability to continually general-

ize. For this reason, performance with an unbounded train-

ing set can serve as a reasonable proxy for the more explicit

train-to-test generalization performance. Figure 3a shows

a comparison between training curves for IMPALA-CNN

and Nature-CNN, with an unbounded set of training levels.

As we can see, the IMPALA-CNN architecture is substan-

tially more sample efficient.

However, it is important to note that learning faster with

an unbounded training set will not always correlate posi-

tively with better generalization performance. In particu-

lar, well chosen hyperparameters might lead to improved

training speed, but they are less likely to lead to improved

generalization. We believe that directly evaluating gener-

alization, by training on a fixed set of levels, produces the

most useful metric. Figure 3b shows the performance of

different architectures when training on a fixed set of 500

levels. The same training set is used across seeds.

In both settings, it is clear that the IMPALA-CNN archi-

tecture is better at generalizing across levels of CoinRun.

Given the success of the IMPALA-CNN, we experimented

with several larger architectures, finding a deeper and wider

variant of the IMPALA architecture (IMPALA-Large) that

performs even better. This architecture uses 5 residual

blocks instead of 3, with twice as many channels at each

layer. Results with this architecture are shown in Figure 3.

It is likely that further architectural tuning could yield even

greater generalization performance. As is common in su-

pervised learning, we expect much larger networks to have

a higher capacity for generalization. In our experiments,

however, we noticed diminishing returns increasing the

network size beyond IMPALA-Large, particularly as wall

clock training time can dramatically increase. In any case,

we leave further architectural investigation to future work.

5. Evaluating Regularization

Regularization has long played an significant role in su-

pervised learning, where generalization is a more immedi-

ate concern. Datasets always include separate training and

test sets, and there are several well established regulariza-

tion techniques for reducing the generalization gap. These

regularization techniques are less often employed in deep

RL, presumably because they offer no perceivable benefits

in the absence of a generalization gap – that is, when the

training and test sets are one and the same.

Now that we are directly measuring generalization in RL,

we have reason to believe that regularization will once

again prove effective. Taking inspiration from supervised

learning, we choose to investigate the impact of L2 regular-

ization, dropout, data augmentation, and batch normaliza-

tion in the CoinRun environment.

Throughout this section we train agents on a fixed set of

500 CoinRun levels, following the same experimental pro-

cedure shown in Figure 3b. We have already seen that sub-



Quantifying Generalization in Reinforcement Learning

(a) Final train and test performance after
256M timesteps as a function of the L2
weight penalty. Mean and standard devia-
tion is shown across 5 runs.

(b) Final train and test performance af-
ter 512M timesteps as a function of the
dropout probability. Mean and standard
deviation is shown across 5 runs.

(c) The effect of using data augmentation,
batch normalization and L2 regularization
when training on 500 levels. Mean and
standard deviation is shown across 3 runs.

Figure 4. The impact of different forms of regularization.

stantial overfitting occurs, so we expect this setting to pro-

vide a useful signal for evaluating generalization. In all

subsequent experiments, figures show the mean and stan-

dard deviation across 3-5 runs. In these experiments, we

use the original IMPALA-CNN architecture with 3 resid-

ual blocks, but we notice qualitatively similar results with

other architectures.

5.1. Dropout and L2 Regularization

We first train agents with either dropout probability p ∈

[0, 0.25] or with L2 penalty w ∈ [0, 2.5× 10−4]. We train

agents with L2 regularization for 256M timesteps, and we

train agents with dropout for 512M timesteps. We do this

since agents trained with dropout take longer to converge.

We report both the final train and test performance. The

results of these experiments are shown in Figure 4. Both

L2 regularization and dropout noticeably reduce the gener-

alization gap, though dropout has a smaller impact. Empir-

ically, the most effective dropout probability is p = 0.1 and

the most effective L2 weight is w = 10−4.

5.2. Data Augmentation

Data augmentation is often effective at reducing overfit-

ting on supervised learning benchmarks. There have been a

wide variety of augmentation transformations proposed for

images, including translations, rotations, and adjustments

to brightness, contrast, or sharpness. (Cubuk et al., 2018)

search over a diverse space of augmentations and train a

policy to output effective data augmentations for a target

dataset, finding that different datasets often benefit from

different sets of augmentations.

We take a simple approach in our experiments, using a

slightly modified form of Cutout (Devries and Taylor,

2017). For each observation, multiple rectangular regions

of varying sizes are masked, and these masked regions are

assigned a random color. See Appendix C for screenshots.

This method closely resembles domain randomization (To-

bin et al., 2017), used in robotics to transfer from simula-

tions to the real world. Figure 4c shows the boost this data

augmentation scheme provides in CoinRun. We expect that

other methods of data augmentation would prove similarly

effective and that the effectiveness of any given augmenta-

tion will vary across environments.

5.3. Batch Normalization

Batch normalization (Ioffe and Szegedy, 2015) is known to

have a substantial regularizing effect in supervised learning

(Luo et al., 2018). We investigate the impact of batch nor-

malization on generalization, by augmenting the IMPALA-

CNN architecture with batch normalization after every con-

volutional layer. Training workers normalize with the

statistics of the current batch, and test workers normalize

with a moving average of these statistics. We show the

comparison to baseline generalization in Figure 4c. As

we can see, batch normalization offers a significant per-

formance boost.

5.4. Stochasticity

We now evaluate the impact of stochasticity on generaliza-

tion in CoinRun. We consider two methods, one varying

the environment’s stochasticity and one varying the pol-

icy’s stochasticity. First, we inject environmental stochas-

ticity by following ✏-greedy action selection: with proba-

bility ✏ at each timestep, we override the agent’s preferred

action with a random action. In previous work, ✏-greedy ac-
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(a) Comparison of ✏-greedy and high en-
tropy bonus agents to baseline during
training.

(b) Final train and test performance
for agents trained with different entropy
bonuses.

(c) Final train and test performance for ✏-
greedy agents trained with different values
of ✏.

Figure 5. The impact of introducing stochasticity into the environment, via epsilon-greedy action selection and an entropy bonus. Train-

ing occurs over 512M timesteps. Mean and standard deviation is shown across 3 runs.

tion selection has been used both as a means to encourage

exploration and as a theoretical safeguard against overfit-

ting (Bellemare et al., 2012; Mnih et al., 2013). Second, we

control policy stochasticity by changing the entropy bonus

in PPO. Note that our baseline agent already uses an en-

tropy bonus of kH = .01.

We increase training time to 512M timesteps as training

now proceeds more slowly. Results are shown in Figure 5.

It is clear that an increase in either the environment’s or the

policy’s stochasticity can improve generalization. Further-

more, each method in isolation offers a similar generaliza-

tion boost. It is notable that training with increased stochas-

ticity improves generalization to a greater extent than any

of the previously mentioned regularization methods. In

general, we expect the impact of these stochastic methods

to vary substantially between environments; we would ex-

pect less of a boost in environments whose dynamics are

already highly stochastic.

5.5. Combining Regularization Methods

We briefly investigate the effects of combining several of

the aforementioned techniques. Results are shown in Fig-

ure 4c. We find that combining data augmentation, batch

normalization, and L2 regularization yields slightly better

test time performance than using any one of them individ-

ually. However, the small magnitude of the effect suggests

that these regularization methods are perhaps addressing

similar underlying causes of poor generalization. Further-

more, for unknown reasons, we had little success com-

bining ✏-greedy action selection and high entropy bonuses

with other forms of regularization.

6. Additional Environments

The preceding sections have revealed the high degree over-

fitting present in one particular environment. We corrob-

orate these results by quantifying overfitting on two addi-

tional environments: a CoinRun variant called CoinRun-

Platforms and a simple maze navigation environment called

RandomMazes.

We apply the same experimental procedure described in

Section 3.2 to both CoinRun-Platforms and RandomMazes,

to determine the extent of overfitting. We use the orig-

inal IMPALA-CNN architecture followed by an LSTM

(Hochreiter and Schmidhuber, 1997), as memory is neces-

sary for the agent to explore optimally. These experiments

further reveal how susceptible our algorithms are to over-

fitting.

Figure 6. Levels from CoinRun-Platforms (left) and Random-

Mazes (right). In RandomMazes, the agent’s observation space

is shaded in green.

6.1. CoinRun-Platforms

In CoinRun-Platforms, there are several coins that the agent

attempts to collect within the 1000 step time-limit. Coins
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Figure 7. Final train and test performance in CoinRun-Platforms

after 2B timesteps, as a function of the number of training levels.

Figure 8. Final train and test performance in RandomMazes after

256M timesteps, as a function of the number of training levels.

are randomly scattered across platforms in the level. Lev-

els are a larger than in CoinRun, so the agent must actively

explore, sometimes retracing its steps. Collecting any coin

gives a reward of 1, and collecting all coins in a level gives

an additional reward of 9. Each level contains several mov-

ing monsters that the agent must avoid. The episode ends

only when all coins are collected, when time runs out, or

when the agent dies. See Appendix B for environment

screenshots.

As CoinRun-Platforms is a much harder game, we train

each agent for a total of 2B timesteps. Figure 7 shows

that overfitting occurs up to around 4000 training levels.

Beyond the extent of overfitting, it is also surprising that

agents’ training performance increases as a function of the

number of training levels, past a certain threshold. This

is notably different from supervised learning, where train-

ing performance generally decreases as the training set be-

comes larger. We attribute this trend to the implicit cur-

riculum in the distribution of generated levels. With ad-

ditional training data, agents are more likely to learn skills

that generalize even across training levels, thereby boosting

the overall training performance.

6.2. RandomMazes

In RandomMazes, each level consists of a randomly gener-

ated square maze with dimension uniformly sampled from

3 to 25. Mazes are generated using Kruskal’s algorithm

(Kruskal, 1956). The environment is partially observed,

with the agent observing the 9 × 9 patch of cells directly

surrounding its current location. At every cell is either a

wall, an empty space, the goal, or the agent. The episode

ends when the agent reaches the goal or when time expires

after 500 timesteps. The agent’s only actions are to move

to an empty adjacent square. If the agent reaches the goal,

a constant reward is received. Figure 8 reveals particularly

strong overfitting, with a sizeable generalization gap even

when training on 20,000 levels.

6.3. Discussion

In both CoinRun-Platforms and RandomMazes, agents

must learn to leverage recurrence and memory to optimally

navigate the environment. The need to memorize and re-

call past experience presents challenges to generalization

unlike those seen in CoinRun. It is unclear how well suited

LSTMs are to this task. We empirically observe that given

sufficient data and training time, agents using LSTMs even-

tually converge to a near optimal policy. However, the rel-

atively poor generalization performance raises the question

of whether different recurrent architectures might be better

suited for generalization in these environments. This inves-

tigation is left for future work.

7. Conclusion

Our results provide insight into the challenges underlying

generalization in RL. We have observed the surprising ex-

tent to which agents can overfit to a fixed training set. Us-

ing the procedurally generated CoinRun environment, we

can precisely quantify such overfitting. With this metric,

we can better evaluate key architectural and algorithmic de-

cisions. We believe that the lessons learned from this envi-

ronment will apply in more complex settings, and we hope

to use this benchmark, and others like it, to iterate towards

more generalizable agents.
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