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Abstract—Poor clinical trial outcomes for glioblastoma 

(GBM) can be attributed to multiple possible causes. GBM is 

heterogeneous, such that there is a chance of treatment–resistant 

cells coming to predominate the tumor, and due to the blood 

brain barrier (BBB) it is also possible that therapy was 

inadequately delivered to the tumor. Mathematically modeling 

the dynamics of therapeutic response in patient–derived 

xenografts (PDX) and fitting the mathematical model to 

bioluminescence imaging flux data, we may be able to assess the 

degree to which both drug resistance and drug penetrance are 

driving varied responses to these therapies. 

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Glioblastoma (GBM) is an aggressive primary brain 

cancer noted for its diffuse infiltration into surrounding 

normal–appearing brain. This invasiveness makes GBM 

notoriously difficult to treat, as diffusely invading cells cannot 

be resected surgically, are difficult to target with radiation 

therapy, and thus must be targeted with chemotherapy. 

However, this too presents a challenge, as these invading 

GBM cells reside beyond the dense tumor regions where 

angiogenesis causes disruption of the blood brain barrier 

(BBB) and allows drugs to more readily enter the central 
portion of the tumor. Thus, failed trials involving molecularly 

targeted therapies face a daunting task of understanding 

whether the root cause was inadequate targeting, resistance, 

or insufficient delivery across the BBB to the tumor. In order 

to improve treatment outcomes, it is critical to determine 

predictors of drug distribution in individual patients’ tumors 

and surrounding brain tissue to ensure invading GBM cells 

are adequately exposed to the therapy.  

Using GBM patient-derived xenograft (PDX) lines to 

recapitulate the both the inter- and intratumoral heterogeneity 

seen within and across patients [1,2], several treatments were 
administered across subjects implanted with different PDX 

cell lines (derived from different GBM patients) implanted 

either in flank or orthotopically. The size of PDXs were 

determined non-invasively using bioluminescence imaging 

(BLI) flux, which is directly proportional to cell number. The 

most promising treatment results for the  flank tumors was 

ABT414 (Depatuxizumab Mafodotin), an investigational 

EGFR-targeted monoclonal antibody drug conjugate [3]. 

However, the murine flank and orthotopic EGFRmut PDXs 

treated with ABT414 showed response differences between 

the two tumor locations for different PDX lines, suggesting a 

BBB role.  Following these experiments, we compiled the time 
series BLI data from PDXs to develop and parameterize a 
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mathematical model of the observed treatment response 

dynamics. Fitting our model to this data via nonlinear 

regression allows us to obtain parameter estimates that can 
help assess the degree to which these results might be 

attributed to either the evolution of therapeutic resistance or 

differences in blood brain barrier breakdown between the 

tumors.  

II. ILLUSTRATIVE APPLICATION OF METHODS 

A. Ordinary Differential Equation Model Development 

BLI data from untreated groups indicated that tumors 

grew exponentially in terms of total tumor cell number. In the 

treated groups, however, there was a decline in BLI flux until 

there appeared to be a subsequent phase of exponential re-

growth, albeit with a slower growth rate. As this appeared to 

indicate a resistant subpopulation of tumor cells, the minimal 

differential model of tumor growth includes two tumor cell 

populations corresponding to those that are sensitive (s) and 

resistant (r) to the antibody (A), as well as the dynamics of the 

antibody itself:  

 

This model is schematized in Fig. 1. Model parameters and 

their definitions 

are outlined in 

Table I.  

Further, this 

model can be 

solved 

analytically, 

combining s 
and r cells to 

obtain the total 

population of 

tumor cells, C, 

letting q=r0/C0 

to represent the 

proportion of 

implanted cells 

that are 

resistant, and 
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Figure 1. Schematic of patient–derived xenograft 

response to therapy with ABT414 antibody drug 

conjugate, including key variables and parameters of 

the mathematical model. 
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z=µr/µs to represent the degree to which the resistant cells are 

less sensitive to antibody than the so-called sensitive cells:  

 
where,  

Many parameters were unknown, but could be determined 
through several steps of fitting the equations to the time series 

BLI data (as described in II. B.). The only known parameters 

were the doses of ABT414 delivered, including the timing of 

dose pulses, as well as the half-life of the drug. 

TABLE I.  PARAMETER SYMBOLS AND DEFINITIONS 

Sym 
Parameter Details 

Parameter Definition Value  Units 

ρ cellular proliferation rate  0.1 to 0.3 day-1 

µs drug-mediated sensitive cell kill rate  2 to 10 mg-1 day-1 

q resistant implanted cell proportion* 0 to 1 — 

z reduced sensitivity factor in r cells* 0 to 1 — 

λ  ABT414 decay rate a ln(2)/7 day-1 

Adose ABT414 dose in a single pulse a 0.1 mg 

γ Fraction exposed to ABT414 *b 0 to 1 — 

a. These parameters were known, all others were found by fitting to data.  b. Flank tumor has no 

blood brain barrier, so =1 in that setting. (*Indicates values were constrained to this range for fitting.) 

B.  Parameter Estimation by Fitting Model to Data 

Starting with the untreated (sham control) case, the 

treatment components of the model go away, leaving a simple 

exponential equation C=C0eρt, which can be fitted to the 

untreated BLI data to obtain an estimate of viable implanted 

cells (initial condition C0) and the net growth rate of cells, ρ 

for each PDX line (Fig. 2). 

 
Figure 2. Plot showing untreated tumor growth assessed by bioluminescence 

imaging flux as well as the untreated model fit found by nonlinear regression. 

Next, a similar fitting process was done with treated flank 

tumors, using these parameter estimates from the untreated 

case and setting parameter γ (representing BBB permeability) 
to one, since there is no BBB effect to reduce the amount of 

drug and resultant effect in the tumor. Linear regression 

performed well (Fig. 3) and found estimates of q, z and µs.  

 

Figure 3. Treated flank tumor growth assessed by bioluminescence imaging 

flux as well as the individual model fits. Shaded region indicates time before 

treatment initiated. 

Finally, keeping µs from the flank data (i.e., assuming that a 

subpopulation remained just as sensitive intracranially as in 

flank), least squares regression was used to estimate q, z, and 

γ (Fig. 4). 

 
Figure 4. Treated intracranial tumor growth assessed by bioluminescence 

imaging flux as well as the individual model fits. Shaded region indicates 

time before treatment initiated. 

In spite of the noise in the BLI data, the fits in both the 

intracranial and flank subjects performed reasonably well. 

This suggests that we can use this method across all of the 

PDX lines to quantify differences in sensitivity (including the 

cell kill rates and proportion of sensitive vs resistant cells 

initially implanted) and the global fraction of tumor exposed 

to drug. Ultimately, we anticipate that this modeling 

framework could be used for assessing the contributions of 

drug resistance and penetrance in PDXs for other therapeutic 

agents.  
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