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INTRODUCTION

Pelagic seabirds are large, long-lived and relatively
easy to observe, capture, mark, and manipulate when
they return to their colonies to breed. For these rea-
sons, they have long been used as model organisms to
address ecological questions, including those relating
to the regulation of population size (Lack 1954,
Wynne-Edwards 1962, Ashmole 1963), the influence of
the central place constraint on foraging behavior (Ori-
ans & Pearson 1979, Costa 1991), the response of pop-
ulations to inter- and intraspecific competition (Croxall
& Prince 1980, Furness & Birkhead 1984, Lewis et al.
2001), and environmental influences on life history
traits (Lack 1968, Costa 1991, Weimerskirch 1992).

Although providing partial answers to these questions,
early studies were necessarily colony-based and there-
fore hampered by a lack of knowledge of the move-
ments and behavior of pelagic seabirds at sea (Ash-
mole 1971). Systematic observations from ships, which
started in earnest in the 1970s (reviewed by Hunt et al.
1999, Ballance 2008), went some way to address this
shortcoming. However, the spatiotemporal extent of
such surveys was limited and it was not until the early
1990s, when it became possible to record the move-
ments of individual seabirds using satellite-tracking
devices (Jouventin & Weimerskirch 1990, Prince et al.
1992), that this aspect of the lifestyles of seabirds could
be investigated in detail. At the same time, in the field
of oceanography, data provided by remote sensing
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technology has greatly improved our understanding of
the effects of physical forcing on the marine environ-
ment (Longhurst 1998, Martin 2004). Furthermore, the
development of auxiliary loggers for attachment to
free-ranging birds has enabled the observation of an
ever-increasing range of behaviors (Ropert-Coudert
& Wilson 2005).

Intuitively, it might be supposed that by combining
the ever-increasing volumes of data provided by these
technologies, the study of pelagic seabirds would
result in further, significant advances in ecological the-
ory. However, although many seabird tracking studies
have had widespread impact (Weimerskirch et al.
1993, Weimerskirch et al. 1997a, Fauchald & Tveraa
2003 are highly cited examples and many more are
referred to in this review), we argue that a lack of
access to appropriate statistical techniques has ham-
pered further progress. Fortunately, in recent years,
significant innovations have been made in the analysis
of individual movements and spatial modeling (e.g.
Aebischer et al. 1993, Jonsen et al. 2003, Aarts et al.
2008), which is a process to which seabird ecologists
have themselves contributed (e.g. Fauchald & Tveraa
2003, Pinaud & Weimerskirch 2005). It is timely, there-
fore, to review the ‘state of the art’ and to make sug-
gestions as to how these new and developing tech-
niques might be more widely applied. In particular, we
focus on quantifying and modeling habitat use and
preferences of pelagic seabirds, using approaches
analogous to those frequently used in the discipline of
landscape ecology (Wiens et al. 1993, Lima & Zollner
1996, Scott et al. 2002).

In this review, we use the term ‘habitat’ to refer to a
set of environmental conditions rather than to geo-
graphical locations (Hall et al. 1997), and ‘habitat use’
to the proportion of time that an animal spends in a
given habitat. Different habitats are rarely equally
available, and ‘habitat preference’ is defined as the
disproportionality between usage and availability,
commonly their ratio (Manly et al. 2002). We define
pelagic seabirds as those that derive their nourishment
from the sea but do not forage in the intertidal, benthic
or demersal zones. Hence, this group, which includes
albatrosses, petrels, frigatebirds, tropicbirds, boobies,
and some terns, (cf. Ashmole 1971) tends to comprise a
single guild, i.e. wide-ranging, surface-feeding and
relatively shallow-diving predators. It excludes deep-
diving birds, such as penguins, cormorants and alcids
(which have greater functional affinities with pinni-
peds), gulls and most terns (which tend to feed
inshore). The studies reviewed are inevitably domi-
nated by those on larger birds such as albatrosses and
some petrels, which were the first to be fitted with
tracking devices. However, continued miniaturization
is allowing the tracking of ever smaller species; hence,

analytical techniques discussed will be applicable to
all pelagic seabirds. Before describing these ap-
proaches in detail, we discuss the context of their ap-
plication by considering issues of scale, measurement,
behavior, habitat availability, accessibility and compe-
tition.

SCALES OF PELAGIC SEABIRD–ENVIRONMENT
INTERACTIONS

It has long been acknowledged that physical and
biological processes result in patchy distributions of
habitats and organisms (Dubois 1975, Wiens 1976,
Haury et al. 1977). Time lags tend to increase with spa-
tial scale, thus these patches can usefully be regarded
as forming a spatiotemporal hierarchy (Kotliar & Wiens
1990). This approach is often seen in biological oce-
anography (Haury et al. 1977, Levin 1993), and has
been applied more recently in studies of pelagic sea-
birds (Fauchald 1999, Fauchald et al. 2000, Pinaud &
Weimerskirch 2005). The hierarchical patch distribu-
tion of the lower and mid-trophic level organisms that
constitute the prey of pelagic seabirds occurs as a con-
sequence of both behavior (e.g. shoaling/swarming,
and vertical and horizontal migration; Levin 1993, Folt
& Burns 1999) and physical forcing (e.g. Friedlaender
et al. 2006, McGillicuddy et al. 2007, Sokolov 2008).
Physical phenomena, such as wind and tide-induced
overturning, currents, eddies, fronts and meanders
(Fig. 1, Table 1) act, firstly, by transporting nutrients
into the photic zone, stimulating new primary and sec-
ondary production (reviewed by Mann & Lazier 2006),
and secondly, by advecting and aggregating biomass
(Perry et al. 1993, Abraham 1998, Bertrand et al. 2008).
These processes may be in a steady state (e.g. geostro-
phic currents) or have a characteristic periodicity (e.g.
tidal, diel, seasonal), whereas more episodic processes
such as transient oceanic phytoplankton blooms, tend
to be predictably related to other events such as wind-
driven mixing (Abbott & Barksdale 1991).

Patches of habitat and prey occurring at different
locations in this spatiotemporal hierarchy may be more
or less profitable, or predictable, in their occurrence.
For example, it is increasingly recognized that, at the
mesoscale, the occurrence of the prey of temperate
and polar pelagic seabirds is to some extent pre-
dictable, while that of tropical seabirds is less so (Hunt
et al. 1999, Weimerskirch 2007, Weimerskirch et al.
2008) (to avoid ambiguity, we use the terms for spatial
scale proposed by Haury et al. 1977; Fig. 2). Although
the behavior of pelagic seabirds varies over timescales
of seconds (Weimerskirch et al. 2005) to years (Phillips
et al. 2005), and over distances of meters (Pennycuick
1982) to 10 000s of km (Shaffer et al. 2006), clear asso-
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ciations are often seen at scales corresponding to the
various biophysical phenomena that lead to patchi-
ness. For example, shearwaters Puffinus spp. forage at
shelf sea tidal fronts that are 10s of km long (Begg &
Reid 1997, Jahncke et al. 2005), and both large and
medium-sized Procellariiformes congregate at coarse
to mesoscale shelf break fronts (Hoefer 2000, Pinaud &

Weimerskirch 2002). A diverse range of pelagic
seabirds associate with the edges of mesoscale eddies
(Nel et al. 2001, Weimerskirch et al. 2004), and many
pelagic seabirds show affinities for eutrophic, meso-
trophic or oligotrophic waters at coarse, meso- and
macroscales (Hyrenbach et al. 2002, Awkerman et al.
2005, Pinaud & Weimerskirch 2005). In the equatorial
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Fig. 1. Spatiotemporal scales of climatic and oceanographic processes compared to the resolution and coverage of human obser-
vation in pelagic seabird habitat studies. Tracking systems shown are PTTs (platform terminal transmitters), GPS tags and GLS
(global location sensing, geolocator) tags. Remotely sensed variables include SST, chlorophyll a (chl a), Sea Level Anomaly (SLA),
Sea Surface Roughness (SSR) and wind speed and direction. The spatiotemporal coverage achievable by ship-based surveys is
limited by maximum vessel speed (assumed here to be 15 knots). Adapted from Kaiser et al. (2005) and Haury et al. (1977)
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Process Scale Effects Areas/examples
phenomenon Horizontal (km) Temporal PP SP AG

Turbulence
Small scale turbulence caused by wind, 0.00001 – 0.001 s – min g g All
currents, tides, etc.

Large scale turbulence caused by wind, 0.001 – 0.01 1 – 10 h g g All
currents, tides, etc.

Sub-mesoscale eddies/spiral eddies 0.01 – 20 d – wk ? ? ✓ All

Meanders, barotropic mesoscale eddies 20 – 100 wk – mo a a ✓ Margins of ocean currents

Meanders, warm and cold core baroclinic rings 100 – 300 1 mo – 1 yr a a ✓ Margins of major ocean currents,
Gulf Stream rings, ACC rings

Langmuir convection cells 0.005 – 0.5 min – h ? ? ✓ All

Changes in mixed layer depth caused by wind, 10 – 1000 h – wk g g ✓ All. Spring and autumn 
insolation, fresh water, currents, tides, upwelling, blooms in temperate latitudes 
internal waves, fronts, etc. (only really marked in N Atlantic)

Fronts
Freshwater plumes and plume fronts 0.005 – 100 h – mo a a ✓ Coastal waters

Compensating fronts 0.01 – 5 h – d a ? ? All areas with deep mixed layer and
significant thermohaline variability

Surface rips/slicks caused by internal waves/bores 0.1 – 1 min – h a ? ✓ Neritic waters

Fronts associated with geomorphic features 0.1 – 100 h – wk a a ✓ All areas except central ocean basins

Shelf sea fronts caused by tidally induced mixing 2 – 10 – 100 d – mo a a ✓ Neritic waters, Patagonian shelf

Coastal upwelling due to Ekman transport 10 – 100 – 1000 5 d – yr a a ✓ Eastern margins of ocean basins at 
and upwelling fronts sub-tropical latitudes, Humboldt and

Benguela upwellings

Shelf-break fronts 10 – 500 wk – mo a a ✓ All shelf breaks but more intense on
western sides of ocean basins, Patago-
nian shelf

Fronts in baroclinic currents, shear fronts 50 – 21 000 wk – yr a a Open ocean, Antarctic polar front

Circulation
Water masses 100 – 15 000 mo – dec – – Antarctic surface water, Subantarctic

surface water, subtropical surface water

Sea ice
MIZ and polynyas 0.01 – 200 d – mo a a ✓ Polar waters

Biogeochemical processes
Trace nutrient limitation 1000 – 10 000 wk–yr _ _ Eastern equatorial Pacific, Southern

Ocean, possibly south Pacific

Climatic fluctuations
El Niño – Southern Oscillation 15 000 – 40 000 4 – 7 yr g g Eastern Pacific and worldwide

Other climatic oscillations and regime shifts 15 000 – 40 000 10 – 100 yr g g Antarctic oscillation; Pacific decadal
oscillation

Medium/long-term climate fluctuations 40 000 >100 yr g g All

Table 1. Selected physical processes and marine phenomena, including: characteristic spatial and temporal scales; effects on primary
production (PP), secondary production (SP) and biomass aggregation (AG); and areas in which they occur. Horizontal scale refers to dia-
meter range of turbulent eddies; width range of Langmuir circulation and typical change in the mixed layer depth; typical width and
length of fronts; width of polynyas and marginal ice zone (MIZ) and horizontal extent of other processes. Process tends to increase (a), de-
crease (_) or have both effects (g) on production; (?) effect on production unknown; (✓) under the column AG indicates that the process
tends to cause physical aggregation of biomass. Data based on Lutjeharms et al. (1985), Moore et al. (1999), Eldevik & Dysthe (2002), 

Rudnick & Martin (2002), Kaiser et al. (2005), Mann & Lazier (2006). ACC: Antarctic Circumpolar Current, dec: decades
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Fig. 2. Definition of terms used to describe spatial scale in habitat studies of pelagic seabirds (after Haury et al. 1977)
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Pacific, piscivorous seabirds prefer well-stratified waters
that are characterized by a deep and marked thermo-
cline, whereas planktivores prefer areas with shallower,
weaker thermoclines (Ribic et al. 1997, Spear et al.
2001, Vilchis et al. 2006). At the megascale, the global
migratory movements of sooty shearwaters Puffinus
griseus ensure that they are able to forage in highly
productive upwelling areas year-round (Shaffer et
al. 2006). Over decadal timescales, the association be-
tween sooty and pink-footed shearwaters P. creatopus
with the California current system varies in parallel
with the El Niño–Southern Oscillation (ENSO) (Oede-
koven et al. 2001, Hyrenbach & Veit 2003), and changes
in the size and distribution of seabird colonies occur in
response to regime shifts and climate fluctuations over
still longer timescales (Olson & Hearty 2003, Jenou-
vrier et al. 2005, Lewis et al. 2009).

That pelagic seabirds may express changes in habi-
tat use and preference over such a wide range of scales
raises a number of important analytical issues. Firstly,
the observable window in the spatiotemporal spectrum
is limited by the performance of both tracking and re-
mote sensing systems (Fig. 1, discussed in detail be-
low). This, in turn, limits the hypotheses that can cur-
rently be addressed using individual movement data.
Similarly, the way that hypotheses are framed and
tested may vary with scale (Levin 1992). If there is no a
priori knowledge of the scale at which the phenome-
non of interest occurs, then this can be determined
either during exploratory data analysis using indirect
techniques such as first-passage time analysis (see
‘Behavior’), or by adopting a multi-scale approach
(e.g. Garcia & Ortiz-Pulido 2004, Suryan et al. 2006).

MEASURING THE MARINE ENVIRONMENT

The spatiotemporal coverage and resolution of envi-
ronmental data available to seabird ecologists is lim-
ited. Ship-based studies can record seabirds, prey and
their environment simultaneously at high resolution
(Fig. 1) (e.g. Pakhomov & McQuaid 1996). Similarly,
environmental data can be collected e.g. by some ani-
mal tracking devices (e.g. Shaffer et al. 2006), auxiliary
loggers (reviewed by Wilson et al. 2002), autonomous
buoys, and moorings. However, these approaches do
not provide a synoptic view of all potentially available
foraging areas (which could extend over millions of
km2) that is necessary for habitat preference analyses.
Hence, satellite remote sensing is generally the best
source of environmental data.

Continuing innovation in satellite remote sensing is
making more and higher resolution environmental
variables available (Martin 2004). However, there are
spatial and temporal limitations. Firstly, there is a trade-
off that tends to prioritize global or near-global data col-
lection at the expense of resolution, such that sub-km
phenomena remain poorly resolved (Table 2). Never-
theless, innovative instruments such as synthetic aper-
ture radars (SAR) can now detect e.g. submesoscale ed-
dies, freshwater plumes, sea ice, with a 10 m resolution
(reviewed by Gens 2008). Secondly, only surface prop-
erties are measured by satellites. Although pelagic
seabirds feed at or near the surface, their prey often in-
clude mesopelagic and deeper dwelling species (e.g.
Croxall & Prince 1980, Cherel & Klages 1998). Infer-
ences can be made about the 3-dimensional structure
of water masses using remotely sensed sea level and

sea surface temperature (SST), espe-
cially by using these data to drive nu-
merical oceanographic models (Thorpe
et al. 2005); these models can pro-
vide estimates of e.g. current veloc-
ity, temperature, salinity, at horizontal
resolutions as low as 1/8° (~13 km)
throughout the water column (Aksenov
& Coward 2001). In addition, tags fitted
to the animals themselves may be used
to sample the water column (Wilson et
al. 2002). Conductivity–temperature–
depth tags, which are large, have only
been deployed on large animals such as
pinnipeds (Biuw et al. 2007, Boehme et
al. 2008), but smaller temperature–
depth recorders are deployed routinely
on penguins. With continued miniatur-
ization, these and similar instruments
are likely to become more useful in the
study of flying pelagic seabirds (Daunt
et al. 2003, Garthe et al. 2007b). Thirdly,
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Variable Resolution Revisit Processes/phenomena detected in pelagic 
(km) time (d) seabird tracking studies (other examples)

Sea surface 1–4 0.25–3 Water mass, baroclinic currents & fronts 
temperature (mesoscale eddies & meanders, shelf sea

fronts, shelfbreak fronts, coastal upwelling)

Sea surface 4 1 Primary production (suspended sediment 
color and ‘gelbstoffe’ concentration, coastal

processes)

Sea level 4 1 Mesoscale eddies (meanders, shelf sea
fronts, shelfbreak fronts, baroclinic currents
and fronts, coastal upwelling, El Niño)

Passive 25 1 Sea ice (water masses, baroclinic currents & 
microwave fronts)

Backscatter 25–50 1 Wind field (sea ice)

Sea surface 0.01–1 3–35 (Sub-mesoscale eddies, internal waves, 
roughness freshwater plumes and small-scale fronts,

sea ice concentration, polynyas)

Table 2. Measurements made using satellite-borne instruments and the oceano-
graphic processes and phenomena that they can identify (see ‘Measuring the 

marine environment’ for references)
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cloud cover renders many passive SST and chl a sen-
sors ineffective (Woodward & Gregg 1998). To achieve
full spatial coverage, composite images (weekly or
monthly) can be produced but this may result in poor
resolution of dynamic mesoscale features (Uz & Yoder
2004). In the case of SST, this problem is increasingly
circumvented by the use of interpolated datasets. These
combine multi-satellite and in situ data (e.g. from ships,
ARGO floats) to provide daily cloud-free images at
1/20° (~6 km) resolution, and are thus able to resolve all
but very fine-scale features (Stark et al. 2007). Lastly,
there may be spatiotemporal lags between the mea-
surement of biophysical processes (the recession of sea
ice, the shedding of mesoscale eddies) and their effects
at higher trophic levels (see Mann & Lazier 2006 for ex-
amples). The magnitude of such lags depends on many
factors, including the rate at which primary production
passes to higher trophic levels, which varies between
ecosystems (Verity & Smetacek 1996, Clarke 2003); the
trophic level of the study species (Cherel et al. 2006);
the rate of advection within the study area; and the
movement capabilities of prey species themselves (e.g.
Murphy et al. 2004). Although there may be enough in-
formation in some studies to determine likely lag times
and/or distances a priori, potentially based on the rela-
tive timing of life history events and seasonal peaks in
primary production (e.g. Laidre et al. 2008), it may be
more pragmatic to investigate such effects on a study-
by-study basis, by comparing the strength of relation-
ships between spatial usage and biophysical covariates
lagged at a range of plausible distances (e.g. Littaye et
al. 2004, Croll et al. 2005).

Despite their limitations, remotely sensed environ-
mental data can describe habitats in a biologically mean-
ingful way (Table 2), especially when multiple variables
are used synergistically to derive other descriptors of
habitat, such as the rate of primary production (Behren-
feld & Falkowski 1997), mixed layer depth (Zawada et al.
2005), and measures of mesoscale activity (e.g. eddy ki-
netic energy; Ducet et al. 2000), or to track the movement
of fronts (Miller 2004). Finally, it can also be useful to
consider indices of anthropogenic activity, especially
fishing effort, in spatial usage/habitat studies. This is be-
cause some pelagic seabird species scavenge waste
from, and/or target the same resources as fisheries (Pe-
tersen et al. 2008, Bugoni et al. 2009).

TRACKING TECHNIQUES AND 
DATA PREPARATION

The measurement of individual movement using
tracking devices has been reviewed by Tremblay et al.
(2009, this Theme Section), Burger & Shaffer (2008) and
Phillips et al. (2008). Briefly, platform terminal transmit-

ters (PTTs) were first deployed on large species: giant
petrels Macronectes spp. (Parmelee et al. 1985) and
wandering albatrosses Diomedea exulans (Jouventin &
Weimerskirch 1990, Prince et al. 1992). Since then, al-
most all albatross species have been tracked (BirdLife
International 2004), as have a growing number of other
pelagic seabird taxa, increasingly using GPS tags. The
species tracked vary from medium to large petrels,
including Procellaria spp. (e.g. Freeman et al. 1997,
Weimerskirch et al. 1999); Fulmarus spp. (e.g. Falk &
Moller 1995), Calonectris spp. (e.g. Gonzalez-Solis et al.
2007, Magalhães et al. 2008), and Puffinus spp. (e.g.
Shaffer et al. 2006, Guilford et al. 2009), to sulids (e.g.
Hamer et al. 2000, Weimerskirch et al. 2005) and
frigatebirds Fregata spp. (Weimerskirch et al. 2004).
The relatively large size and mass of tracking devices
initially prevented their deployment on smaller species.
It is generally accepted that payloads >~3% of body
mass can result in behavioral changes (Kenward 2001,
Phillips et al. 2003). Recently, however, species as small
as the Cook’s petrel Pterodroma cookii (~200 g) have
been tracked using archival geolocators (Rayner et al.
2008), which can weigh as little as 1 g (Mk. 10, British
Antarctic Survey, Cambridge, UK).

PTTs, geolocators and GPS tags have very different
performance characteristics (Fig. 1), there being a gen-
eral trade-off between temporal resolution, deploy-
ment duration and device mass. PTTs use the ARGOS
(CLS: Collecte Localisation Satellites) system to trans-
mit location data via satellite to ground receiving sta-
tions, allowing animals to be tracked in near real time
and without the need to recover the tag. PTTs can pro-
vide up to 40 locations d–1. However, the accuracy and
precision of these locations are degraded by poor satel-
lite visibility, changes in temperature, erratic tag
movements and high speeds (Brothers et al. 1998, Brit-
ten et al. 1999, Vincent et al. 2002, Nicholls et al. 2007,
Soutullo et al. 2007), all of which are characteristic of
deployments on pelagic seabirds. Hence, locations
received from these species tend to be of low quality,
predominantly with ARGOS location classes of 0, A,
and B (Nicholls et al. 2007, Soutullo et al. 2007). Trials
on free-ranging birds indicate that these location
classes have a median (and 90th percentile) accuracy
of 7 (29), 13 (87), and 35 (209) km respectively, with
accuracy being log-normally distributed (Soutullo et
al. 2007). Transitions between behaviors such as rest-
ing, commuting, searching, and diving, may result in
systematic changes in accuracy and precision, but
these and many other aspects of errors associated with
ARGOS locations for free-ranging seabirds have not
been quantified (Nicholls et al. 2007). This shortcom-
ing could be addressed by comparing PTT and GPS
locations received from seabirds (Soutullo et al. 2007).
Despite these issues, PTTs remain useful, especially for
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tracking small to medium-sized (~300–1000 g) species
(Soutullo et al. 2007).

Given their considerably better accuracy (~95% of
locations are within 10 m of the true location; Steiner et
al. 2000, Fukuda et al. 2004), GPS tags are increasingly
used in preference to PTTs (Weimerskirch et al. 2002,
Grémillet et al. 2004, Awkerman et al. 2005). They also
have the advantage of obtaining locations at high tem-
poral resolutions (up to 1 Hz, for periods of hours),
allowing fine-scale behavioral information to be in-
ferred from movement (Weimerskirch et al. 2007, Guil-
ford et al. 2008). Initially, GPS units were archival and
thus had to be retrieved to obtain data. However, inte-
gration with the ARGOS system now allows data to be
received via satellite (Yasuda & Arai 2005), and solar
powered combined GPS-PTT devices have been
deployed for >2 yr (e.g. Urios et al. 2007).

Geolocators record ambient light levels, which, fol-
lowing tag retrieval, are used to derive 2 positions d–1,
with comparatively low mean accuracy of ~190 km
(±110 km SD) (Phillips et al. 2004a). Although light-
based geolocation cannot provide useable latitude
estimates around the equinoxes, some loggers also re-
cord temperature, which in combination with remotely
sensed SST data can improve accuracy (Teo et al. 2004,
Shaffer et al. 2005). Compared to PTTs and GPS log-
gers, geolocators are smaller, cheaper and can be at-
tached to the bird’s tarsus, allowing multiyear deploy-
ments and larger sample sizes (e.g. Phillips et al. 2005).

Given the inaccuracies inherent, to a certain degree,
in data provided by all tracking devices, improbable
positions are often removed by filtering prior to detailed
analysis (e.g. McConnell et al. 2002), and missing loca-
tions estimated by linear or curvilinear interpolation
(e.g. Tremblay et al. 2006). Alternatively, by assuming
that animals move in random walks, probabilistic esti-
mates of locations can be made (Horne et al. 2007, Bost
et al. 2009). However, the assumptions implicit in such
preliminary procedures may bias further analysis. For
example, albatross tracking data have been filtered
such that locations resulting in speeds >80 km h–1 are
flagged as erroneous. In reality, birds flying in strong
tail winds have been shown to fly well in excess of this
speed (Catry et al. 2004a). Ideally, therefore, observa-
tion error and movement biology should be dealt with
simultaneously, as in the state–space modeling ap-
proach (SSM) (Patterson et al. 2008).

BEHAVIOR

Birds may engage in many different behaviors, in-
cluding foraging, commuting, migrating, preening, and
resting. These may be initiated by exogenous (e.g. a
change in wind direction or movement into a prey

patch) or endogenous (e.g. physiological state) cues.
Hence, habitat use and preference is dependent on
time–activity budgets, which in turn change with life
history stage, environmental conditions, and other fac-
tors (Phalan et al. 2007, Guilford et al. 2009). As such,
behavioral state is informative of habitat use and pref-
erence, and vice versa. During breeding, pelagic sea-
birds tend to commute to and from areas with more or
less predictable resources (Weimerskirch 2007), so a
key aim is often to distinguish between putative com-
muting (or taxis) and searching (or foraging) behavior
(Lima & Zollner 1996). Hence, many individual-based
studies aim to infer behavioral state from measures of
path geometry, such as speed and direction (Johnson et
al. 2002, Jonsen et al. 2007). At all but the microscale,
tracks tend to deviate from straight lines; hence, the di-
vergence of the measured from the actual route in-
creases with the time interval between locations (Aler-
stam et al. 1993). Very low speeds occur when birds are
not in flight, and are thus variously interpreted as forag-
ing (Weimerskirch et al. 1997b, Weimerskirch & Guion-
net 2002), resting (Nel et al. 2001), waiting for favorable
winds (Murray et al. 2002), or rafting prior to entering a
colony (Awkerman et al. 2005, Guilford et al. 2008).
However, these behaviors have not yet been distin-
guished using path geometry alone.

It is assumed that birds that are traveling follow
direct paths and move at high speeds at all scales of
measurement, whereas, based on theoretical predic-
tions and observations of birds at sea, regular changes
in flight direction and low speeds are considered
indicative of foraging — a behavior termed as area-
restricted search (ARS) (reviewed by Kareiva & Odell
1987). Hence, speed (Fernandez & Anderson 2000, Nel
et al. 2001, Hyrenbach et al. 2002), turning angle (Fer-
nandez et al. 2001, Huin 2002), coefficient of concen-
tration (Hyrenbach et al. 2002, Hyrenbach & Dotson
2003), residence time (Prince et al. 1998), fractal
dimension (Nams 2005, Tremblay et al. 2007) and first-
passage time (FPT; Fauchald & Tveraa 2003, Pinaud &
Weimerskirch 2005) have all been used as indirect
indices of ARS. Peaks in the variance of FPT, which is
the time required for an animal to cross a circle of a
given radius, indicate the spatial scales at which birds
carry out ARS (Fauchald & Tveraa 2003, Pinaud &
Weimerskirch 2005), making it a particularly useful
tool for exploratory data analysis. However, the spatial
resolution achievable with FPT and fractal dimension
analyses is limited by that of the tracking data, such
that results obtained from analyses of ARGOS loca-
tions may be unreliable at coarse to fine scales (Brad-
shaw et al. 2007, Pinaud 2008). Furthermore, although
it may be intuitive to suppose that more tortuous tracks
indicate foraging, this assumption, and perhaps more
importantly its corollary that birds engaged in direct
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movement are not foraging, has rarely been tested.
Indeed, there is evidence to the contrary: grey-headed
albatrosses Thalassarche chrysostoma are capable of
foraging successfully even in very rapid (>110 km h–1),
directed flight (Catry et al. 2004a); wandering alba-
trosses fitted with stomach temperature loggers do not
capture prey at high rates during bouts of ARS (Wei-
merskirch et al. 2007); and tracks with ARS-like prop-
erties can arise due to location errors (Robinson et al.
2007, Pinaud 2008).

Auxiliary loggers are increasingly used to collect
behavioral data (reviewed by Ropert-Coudert & Wil-
son 2005). Frequent landings and takeoffs recorded by
activity loggers are regarded as indicative of foraging
(Weimerskirch et al. 1997b), and time–depth recorders
(Shaffer et al. 2006, Weimerskirch et al. 2008) and,
particularly, stomach temperature loggers (Weimers-
kirch et al. 1994, Catry et al. 2004b), provide more di-
rect measures. Accelerometers have been used to
identify diving, feeding and flight behavior (Ropert-
Coudert & Wilson 2005, Weimerskirch et al. 2005).
However, regardless of whether behavioral state is
measured directly or inferred from path geometry, it
should be cautioned that although some behavioral
states are inherently categorical (e.g. in flight vs. not in
flight), others may fall on a continuous spectrum (e.g.
commuting vs. ARS) and should be treated as such
during analyses.

HABITAT AVAILABILITY AND ACCESSIBILITY

The processes leading to patchiness in the distribu-
tion of pelagic resources also result in differences in
the relative availability of habitats. Although incorpo-
rated in some recent studies of pelagic habitat prefer-
ence (e.g. Pinaud et al. 2005, Louzao et al. 2006, Red-
fern et al. 2006), the geographical area under scrutiny
is often defined arbitrarily by a boundary that broadly
encompasses the known foraging range. A more bio-
logically meaningful approach would be to consider
the area bounded by a species’ maximum foraging
range from a particular colony (Awkerman et al. 2005).
Furthermore, within this area, the energetic and tem-
poral costs of moving to different habitats may differ.
Hence, during breeding, when birds act as central
place foragers, habitat accessibility varies inversely
with distance from the colony (Orians & Pearson 1979,
Matthiopoulos 2003). Furthermore, as with other
marine central place foragers, such as pinnipeds and
penguins (Thompson et al. 2003, Boersma & Rebstock
2009), the severity of the central place constraint, and
therefore the potential foraging range, varies with
breeding stage (Weimerskirch et al. 1993, Shaffer et al.
2003). Although the majority of tracking studies have

been carried out on breeding birds, analyses of habitat
use have generally not accounted for these constraints.
Yet, colony distance can be included as a candidate
explanatory covariate in spatial usage models (Louzao
et al. 2006), and an even more systematic approach
would be to compare observed spatial usage to a null
model in which available habitats are sampled quasi-
randomly, at a rate proportional to accessibility (Mat-
thiopoulos 2003, Aarts et al. 2008). In the latter case,
the apparent availability of habitats then becomes
dependent not only on their spatial extents, but also on
distance from the colony.

Recent research has highlighted the effects of wind
on the energetic and temporal costs incurred by
seabirds during flight (Weimerskirch et al. 2000, Sur-
yan et al. 2008, Wakefield et al. in press). Flight perfor-
mance is partly dependent on wing loading, leading to
suggestions that birds with higher wing loadings are
better adapted to windier areas (Shaffer et al. 2001,
Suryan et al. 2008). Migrating and breeding Procel-
lariiformes route their journeys and make behavioral
decisions so as to exploit favorable winds at fine to
mega-scales (Murray et al. 2003, Shaffer et al. 2006,
Felicisimo et al. 2008). For example, using a grid-based
mechanistic model, geolocator and remotely sensed
wind data, Felicisimo et al. (2008) showed that Cory’s
shearwaters follow least cost paths during migration.
Indeed, many pelagic seabirds may be constrained
during nonbreeding periods to use discrete migration
corridors (Gonzalez-Solis et al. 2007, Guilford et al.
2009), and to windier areas in general, limiting habitat
accessibility during such periods. Furthermore, be-
cause adults gain mass when collecting prey for their
chick, it has been hypothesized that prevailing winds
can lead to asymmetry in the accessibility of areas up-
and downwind of colonies (Pennycuick 1989). Hence,
wind may affect accessibility during both breeding and
nonbreeding stages. However, the pelagic wind field is
highly dynamic and modeling its effect on transport
costs and accessibility is challenging.

INTER- AND INTRASPECIFIC INTERACTIONS

The spatial usage of animals may vary in response to
both inter- and intraspecific competition. The latter is
often more intense because of the lack of niche parti-
tioning between conspecifics (Begon et al. 2006). In
central place foragers, such as colonial insects and
land birds, direct intraspecific competition may result
in the spatial partitioning of foraging areas (Dukas &
Edelstein-Keshet 1998, Adler & Gordon 2003). An
analogous situation arises in seabirds foraging from
adjacent colonies (e.g. Huin 2002, Ainley et al. 2003,
Grémillet et al. 2004). As seabirds are not territorial at
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sea, indirect competition is thought to be a mediating
factor (Furness & Birkhead 1984, Lewis et al. 2001). A
hinterland model has been proposed (Cairns 1989), but
this predicts absolute partitioning, whereas tracking
data have shown partial partitioning, if any (Stahl &
Sagar 2000, Huin 2002, Grémillet et al. 2004). This is
probably because intraspecific competition intensity
varies with conspecific density, and thus decreases as a
continuous function of distance from neighboring
colonies (Furness & Birkhead 1984). While direct com-
petition with conspecifics and other species is detri-
mental to foraging success, other interactions between
these groups may be beneficial (e.g. the presence or
behavior of other predators may indicate the location
of prey, leading to local enhancement, Silverman et al.
2004; or network foraging, Au & Pitman 1986). Multi-
species feeding associations, e.g. between dolphins or
tuna and seabirds, may even be cooperative (Witten-
burger & Hunt 1971). Few tracking studies have so far
considered the response of pelagic seabirds to both
competitors and habitat (Grémillet et al. 2004, Ford et
al. 2007). However, this is now a realistic proposition
since conspecifics from neighboring colonies and sym-
patric species from the same foraging guild can be
tracked simultaneously.

ANALYSES AND MODELS

Early pelagic seabird tracking studies tended to de-
scribe habitat use qualitatively, often presenting either
individual tracks (e.g. Weimerskirch et al. 1993, Prince et
al. 1998) or the locations of a number of animals overlaid
on maps of environmental variables (e.g. Cherel &
Weimerskirch 1995, Anderson et al. 1998). This was a
pragmatic way of identifying likely macroscale prefer-
ences, such as those for neritic or oceanic waters (e.g.
Huin 2002, Anderson et al. 2003). More recent analyses
have tended to evolve from these approaches rather than
from a theoretical base, and the emphasis on hypothesis
testing using conventional statistical techniques has
various drawbacks (McCarthy 2007). For example,
ANOVA, Mann-Whitney tests and t-tests have been
used to compare the amount of time spent by birds in re-
gions that differed in bathymetry, SST, productivity and
fishing effort (Waugh et al. 1999, Nel et al. 2000, Nel et
al. 2002, Waugh & Weimerskirch 2003, Petersen et al.
2008). A weakness of this approach is that habitat cate-
gories perceived by humans may have little biological
meaning (Aarts et al. 2008). Consideration should be
given to the mechanisms through which covariates are
hypothesized or are known to affect spatial usage before
deciding whether they should be treated as continuous
or categorical (Hill & Binford 2002). For example, it is
known a priori that neritic and oceanic waters are dom-

inated by different suites of oceanographic phenomena
(e.g. seasonally mixed vs. permanently stratified waters),
so it may be appropriate in some cases to bin depth into
these categories. It is less clear why productivity, SST,
etc., should be classified into different regimes, other
than to facilitate the use of conventional statistical tests.
Differences in habitat use among trip types, breeding
stages, sex, year, populations and species have also been
shown through a hypothesis testing approach, using chi-
square tests, t-tests, ANOVA, generalized linear models
(GLMs) and mixed-effects models (Hyrenbach et al.
2002, Nicholls et al. 2002, Phillips et al. 2004b, Pinaud
et al. 2005, Rayner et al. 2008, Shaffer et al. 2009, this
Theme Section).

Core areas of spatial usage are frequently identified
using kernel density (KD) estimates (e.g. Wood et al.
2000, Hyrenbach et al. 2002). KD itself has been
treated as a response variable (Awkerman et al. 2005),
and spatial correlations between KD and environmen-
tal variables have been used to infer habitat associa-
tions (Rayner et al. 2008). Habitat association has also
been tested by comparing mean productivity (chl a) in
areas used by birds to an empirical distribution of pro-
ductivity randomly resampled across the birds’ range
(Gonzalez-Solis et al. 2007). Differences in behavior,
such as the time spent searching or traveling, track
straightness, FPT and flight speed with habitat have
also been tested to identify which habitats are used
more frequently for foraging (Weimerskirch et al.
1997b, Hyrenbach et al. 2002, Weimerskirch et al.
2002, Suryan et al. 2006, Pinaud & Weimerskirch
2007). Discriminant function analysis has been used to
test which environmental covariates best predict
behavioral state (Awkerman et al. 2005, Pinaud &
Weimerskirch 2007).

Most early studies treated individual locations as
independent. This assumption is invalid because
tracking devices collect many locations from one indi-
vidual. As such, tracking data are increasingly ana-
lyzed using mixed-effects models, treating the individ-
ual bird as a random effect (e.g. Hyrenbach et al. 2002,
Garthe et al. 2007a). Tracking data also violate as-
sumptions of independence because they tend to be
serially and sometimes spatially autocorrelated (Aarts
et al. 2008). A rather severe way of dealing with this is
to delete locations sequentially until independence is
achieved (e.g. Swihart & Slade 1985). A more econom-
ical approach would be to use spatiotemporally explicit
techniques to model dependence due to autocorrela-
tion (Dormann et al. 2007).

Methods often used to model the spatial usage of
animals tracked in terrestrial environments, such as
resource selection functions (RSF) (Manly et al. 2002),
have not found wide application in pelagic studies.
Indeed, to date, the habitat preference sensu Manly et
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al. (2002) of only one species of pelagic seabird has
been quantified using individual movement data. Fol-
lowing Aebischer et al. (1993), Pinaud & Weimerskirch
(2005) used compositional analysis to compare habitats
used by breeding Indian yellow-nosed albatrosses
Thalassarche carteri to those available on a 20 km grid,
weighting the availability of each cell as a function of
colony distance to account for accessibility. Although
the modeling of habitat preference using individual
movement data is an active area of research, robust
techniques are becoming widely available to ecolo-
gists, especially through the profusion of packages
contributed to the R statistical computing project (e.g.
Calenge 2006). Hence, there is a shift towards model
selection and model averaging as a way of investigat-
ing habitat preference. Spatial usage models can be
fitted to telemetry data at the level of the individual
(reviewed by Patterson et al. 2008, Schick et al. 2008),
or the population (reviewed by Moorcroft & Barnett
2008). The key problems facing population-level mod-
elers were discussed by Aarts et al. (2008) and Mat-
thiopoulos & Aarts (2009). In addition to issues already
mentioned, they include nonlinearity in animal re-
sponse to the environment, which is increasingly being
addressed using generalized additive models (GAMs)
(Guisan et al. 2002). Aarts et al. (2008) used mixed-
effects GAMs to model the spatial usage of satellite-
tracked grey seals Halichoerus grypus as a function of
habitat accessibility and preference. We have recently
extended this approach to model the spatial usage of
breeding black-browed albatrosses Thalassarche me-
lanophrris as a function of habitat accessibility, prefer-
ence and conspecific competition (Fig. 3; Wakefield et
al. unpubl.). A number of similar techniques may also
be used to model habitat use with individual move-
ment data (reviewed by Matthiopoulos & Aarts 2009).
For example, ecological niche factor analysis has
recently been used to model the spatial distribution of
feeding northern gannets Morus bassanus (Skov et al.
2008). Although this technique is useful for identifying
the environmental covariates to which birds respond, it
provides no information on the shape of that response.

Increasingly, the behavioral responses of animals to
their environment are being modeled at the individual
level using SSMs (Jonsen et al. 2003, Morales et al.
2004, Eckert et al. 2008), and it is hoped that SSMs will
ultimately allow population-level inferences to be
drawn (Patterson & Fraser 2000). SSMs are able to
account for uncertainty in location errors — a feature
which makes them of particular utility in modeling ge-
olocator data (Royer et al. 2005). Recently, Schick et al.
(2008) proposed incorporating RSFs and SSMs in a hi-
erarchical Bayesian framework, effectively modeling a
moving animal’s behavioral response to a habitat map
centered on the present location (see also Christ et al.

2008). Although such techniques are complex and
computationally demanding, they are becoming more
practicable and seem likely to play an important role in
quantifying pelagic seabird habitat preferences.

Many other statistical techniques are also available
for analyzing animal movement and spatial usage (see
Turchin 1998, Kenward 2001, Scott et al. 2002). How-
ever, it should be cautioned that animal movement
models and theory were historically developed for taxa
that are very different from pelagic seabirds. For ex-
ample, much effort has gone into modeling the spatial
usage of endangered ungulates (Mladenoff et al. 1999,
Johnson et al. 2002, Morales et al. 2005). However,
unlike pelagic seabirds, these animals are not con-
strained to return to a central place, are slow moving
and travel over a solid medium. Wide-ranging, higher
marine predators, such as penguins, pinnipeds, fish
and turtles, which have also been the subject of recent
modeling studies (Jonsen et al. 2003, Royer et al. 2005,
Jonsen et al. 2007, Aarts et al. 2008, Eckert et al. 2008,
Gurarie et al. 2009) are more similar to pelagic sea-
birds in that they travel through a fluid medium. This
may have important consequences for the interpreta-
tion of observed movement patterns (Campagna et al.
2006, Gaspar et al. 2006, Cotte et al. 2007). However,
unlike these animals, pelagic seabirds are almost
unique in that they travel in one fluid medium (the
atmosphere) and forage in another (the sea) — a trait
that makes relating their movement to their environ-
ment somewhat more complex. Similarly, although
there are many empirical and theoretical models of
central place foragers, most of these relate to terrestrial
taxa such as colonial insects, rodents and terrestrial
birds (e.g. Giraldeau et al. 1994, Dukas & Edelstein-
Keshet 1998, Brown & Gordon 2000, Olsson et al.
2008). Unlike the majority of pelagic seabirds, these
groups usually suffer significant predation risk and
may be territorial. In short, not all movement models
are appropriate to pelagic seabirds. However, under-
standing the reasons for this is illuminating in itself.

FUTURE DIRECTIONS

Over the past 25 yr, tracking technology has greatly
advanced our understanding of the interactions be-
tween pelagic seabirds and their environment (Wilson
et al. 2002, Burger & Shaffer 2008, Phillips et al. 2008).
Although the habitat use of many species has been
described and quantified, only one tracking study has
to date formally compared habitat usage to availability,
and thus quantified habitat preference (Pinaud et al.
2005). This has partly been due to a lack of theoreti-
cally grounded statistical methods for treating individ-
ual movement data that nonspecialists are able to
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implement. We suggest that this is no longer an imped-
iment, and that tracking data for pelagic seabirds can
be used to address a wider range of ecological ques-
tions. For example, by quantifying the effects of habi-
tat preference and accessibility on spatial usage
(Fig. 3), the effects of central place constraint and com-
petition on populations can be better understood. Ulti-
mately, this approach may allow the prediction of car-
rying capacities for pelagic seabird populations (Beck
et al. 2006, Jennings et al. 2008). At present, it is feasi-

ble to implement models at the population level using
empirical, Eulerian approaches such as GLMs and
GAMs (Moorcroft & Barnett 2008). Although it is possi-
ble to account for individual variation and serial auto-
correlation using a mixed-effects framework with an
autoregressive structure (Pinheiro & Bates 2000, Wood
2006), analyses of fewer data from many animals are
more powerful than those of many data from a few ani-
mals, even if this makes data collection logistically
more demanding.
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Fig. 3. Mixed-effects generalized additive models of
black-browed albatross spatial usage. The response
variable was presence–absence, where presence loca-
tions comprised of ARGOS fixes and pseudo-absence
locations were quasi-randomly generated at a rate in-
versely proportional to colony distance. (a) Predicted
probability of presence of 17 birds tracked from South
Georgia during incubation vs. actual usage (d). Spatial
usage was modeled as a function of habitat accessibility
and preference. Explanatory covariates were depth,
depth slope, sea surface temperature (SST), eddy ki-
netic energy (EKE) and colony distance. Birds from this
population preferred to forage in local neritic waters
and distant areas of highly dynamic mesoscale variabil-
ity, characterized by high EKE. (b) and (c) Density of
birds from adjacent colonies in the Kerguelen archipel-
ago, estimated with a spatial usage model fitted to data
for 54 birds tracked from 5 colonies throughout the spe-
cies’ range. This model included distance to other
colonies as an additional explanatory covariate, and
shows how intraspecific competition, habitat preference
and accessibility can give rise to the partial segregation
of foraging zones along colony lines (from Wakefield et 

al. unpubl., see also Aarts et al. 2008)
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Individual-level SSMs are advancing rapidly (Patter-
son & Fraser 2000, Schick et al. 2008). SSMs are partic-
ularly useful for analyzing geolocator data, which are
prone to large errors, and may exploit the behavioral
information inherent in individual movement data
more fully. Inferences of behavioral states, such as
ARS, which are based on theoretical predictions of ani-
mal movement, should also be validated more directly,
e.g. by using auxiliary loggers to indicate when an ani-
mal actually ingests prey (Catry et al. 2004b, Austin et
al. 2006, Weimerskirch et al. 2007). Such studies would
greatly enhance the utility of high temporal resolution
data collected using GPS loggers, which are increas-
ingly replacing PTTs as the tracking instrument of
choice.

To date, the majority of tracking studies of pelagic
seabirds have concentrated on large species during
breeding. The continued miniaturization of tracking
devices, and particularly of geolocators, means that
very small, and hitherto little-known species such as
the storm petrels (Hydrobatidae), may soon be tar-
geted. Annual and multi-year deployments of geo-
locators and even GPS units are already garnering
data on nonbreeding and immature birds, which may
represent up to half of the total number of some species
(Shaffer et al. 2006, Weimerskirch et al. 2006a, Bugoni
et al. 2009). Differences in habitat use have been de-
tected between species (González-Solis et al. 2000a,
Phillips et al. 2004b, Pinaud & Weimerskirch 2007),
breeding stages (Weimerskirch et al. 1993, Phillips
et al. 2004b), sexes (González-Solis et al. 2000b, Phil-
lips et al. 2004b, Weimerskirch et al. 2006b) and age
groups (Weimerskirch et al. 2006a). Hence, it would be
informative to include individual characteristics in
habitat preference models (Aarts et al. 2008). Similarly,
as habitat use may vary inter-annually (Xavier et al.
2003, Pinaud et al. 2005), and between populations
(González-Solis et al. 2000a, Grémillet et al. 2004,
Rayner et al. 2008), potential plasticity in habitat pref-
erences should be considered, and if possible incor-
porated into analyses before drawing far-reaching
conclusions.

Although the response of pelagic seabirds to certain
phenomena (e.g. small-scale turbulence and long-term
climate fluctuations) are not presently detectable,
improvements in tracking and remote sensing tech-
nologies are widening the observable window on pela-
gic habitats (Fig. 1). Responses to shorter-term climate
fluctuations (e.g. ENSO events and even regime shifts)
may soon be measurable by tracking birds from the
same populations repeatedly over consecutive years
and decades. Most studies on pelagic seabirds to date
have combined satellite tracking with medium resolu-
tion environmental data (e.g. SST, chl a, sea surface
height anomalies or SSHa) to examine habitat prefer-

ences at scales of days to weeks and 100s to 10 000s of
km. At macro- to megascales, pelagic areas of higher
than average productivity are recognized as hotspots
for seabird abundance (Worm et al. 2005), and there is
increasing evidence for definable habitat preferences
at the mesoscale (e.g. for eddies, upwelling and shelf-
break fronts). At finer scales, it has been contended
that the distribution of mobile vertebrates is uncoupled
from the underlying physical structure of their envi-
ronment (Pinaud & Weimerskirch 2005). However,
ship-based studies often find that seabirds aggregate
at fine- to coarse-scale features, including fronts (e.g.
Hunt 1991, Skov & Prins 2001). Why such associations
have not been apparent in tracking studies may simply
be because the resolution of tracking and remotely
sensed environmental data was hitherto insufficient to
detect them. However, at coarse scales, SAR imagery
now reveals processes that are not observable using
conventional remote sensing techniques. Furthermore,
the mixed layer depth can now be predicted with
remotely sensed data (Zawada et al. 2005), and further
investigations of its influence on habitat use would be
profitable (Spear et al. 2001, Vilchis et al. 2006).

Our increasing ability to understand, and therefore
predict, individual- and population-level spatial usage
is timely, since a large proportion of pelagic seabirds
(especially albatrosses and large petrels) is threatened
by incidental mortality in longline and trawl fisheries
(Tuck et al. 2003, Butchart et al. 2004, Phillips et al.
2006). Hence, knowledge of their habitat use and pref-
erences will be critical for the monitoring and mitiga-
tion of these and other anthropogenic impacts on the
marine environment, as well as for addressing wider
ecological questions.
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