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ABSTRACT 

Recently, numerous practical and theoretical studies in evolutionary biology aim at calcu

lating the extent to which reticulation-for example horizontal gene transfer, hybridiza

tion, or recombination-has influenced the evolution for a set of present-day species. It 

has been shown that inferring the minimum number of hybridization events that is needed 

to simultaneously explain the evolutionary history for a set of trees is an NP-hard and 

also fixed-parameter tractable problem. In this paper, we give a new fixed-parameter 

algorithm for computing the minimum number of hybridization events for when two 

rooted binary phylogenetic trees are given. This newly developed algorithm is based on 

interleaving-a technique using repeated kernelization steps that are applied throughout 

the exhaustive search part of a fixed-parameter algorithm. To show that our algorithm 

runs efficiently to be applicable to a wide range of practical problem instances, we apply 

it to a grass data set and highlight the significant improvements in terms of running 

times in comparison to an algorithm which has previously been implemented. 

Key words: reticulate evolution, hybridization, agreement forests, interleaving, fixed

parameter tractability. 

Molecular evolution (phylogenetics) is a lively field of research that is affected by a va

riety of scientific disciplines. Viewing it from the perspective of computer science, the 

NP-hardness of many fundamental problems in phylogenetics makes it a challenging sub

ject to study. Prominent examples of such problems are the theoretically well-analyzed 

and widely-applied tree reconstruction methods of maximum parsimony and maximum 

likelihood (Foulds and Graham, 1982; Chor and Tuller, 2005; Roch, 2006). In this pa

per, we present a new algorithm for the following NP-hard optimization problem which 
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arises from various phylogenetic studies. Evolutionary biologists often observe incon

sistencies amongst phylogenetic trees that represent the evolution of different parts of 

present-day species genomes. Such inconsistencies can essentially be ca.used either by 

i reticulation events like horizontal gene transfer> hybridization> and recombination> or by 

non-biological processes like sequencing errors or signals in the data that may yield trees 

whose branching patterns do not always represent the correct evolutionary history. Here> 

we assume that hybridization (as a representative of reticulation) has led to the observed 

inconsistencies. In this case> it may be more appropriate to represent the evolutionary 

history of a set of species by a phylogenetic network rather than a phylogenetic tree since 

the parents of a hybrid taxa. belong to two different species. It is consequently desirable 

to calculate a hybridization network that simultaneously explains the evolutionary his

tories for a given set of trees and minimizes the number of hybridization events. The 

reason for the latter is that it quantifies the significance of hybridization for the evolu

tion of the species under consideration. However> computing this minimum number is 

NP-hard even for two trees (Bordewich and Semple, 2007a). This two-tree problem is 

known as MINIMUM HYBRIDIZATION. 

To overcome the computational burden of NP-hard problems> one frequently resorts 

to approximation algorithms> heuristics> or solving polynomial-time restrictions of the 

problem. However> the solutions obtained from these approaches are not always accept

able; for example> this may be due to complex and expensive processes that were needed 

to generate certain data sets. In such cases, fixed-parameter algorithms have proven to 

be a valuable tool to calculate the exact solution of a computationally-hard problem. 

Mathematically speaking> a problem of size n> parameterized by k> is fixed-parameter 

tractable if it can be computed in O(j(k) + nc)> where f is an arbitrary function which 

only depends on k> and c is a constant which is independent of both n and k. The success 

of such algorithms in solving many practical problem instances can be seen in the sepa

ration of the variables k and n. Loosely speaking> the running time only depends on k 

and not n. Thus> if k is small> the problem may be tractable in reasonable time despite 
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the size of the problem instance. For a more detailed description of fixed-parameter 

tractability (FPT), we refer the interested reader to Downey and Fellows (1998) and 

Flum and Grohe (2006). 

MINIMUM HYBRIDIZATION and various other problems in computational biology are 

known to be fixed-parameter tractable (for example, Avila et al., 2006; Bordewich and 

Semple, 2007b; Gramm et al., 2008). However, practical fixed-parameter algorithms 

that have been applied to biological data sets rarely exist. Recently, Bordewich et al. 

(2007) implemented a fixed-parameter algorithm for MINIMUM HYBRIDIZATION. By 

applying this algorithm to a grass data set, the authors subsequently showed that many 

problem instances were computable within a couple of minutes. However, there were 

several instances to which the algorithm did not return the exact answer in reasonable 

time. In particular, for three tree pairs, the running time to calculate the exact solution 

was at least two days. Other studies in computational biology that have introduced 

fixed-parameter algorithms and applied them to biological or synthetic data sets are for 

example described in Dehne et al. (2006), and Gramm and Niedermeier (2002, 2003). 

To keep up with the constant progress in molecular biology, which primarily origi

nates from the development of efficient DNA sequencing technologies, it is of importance 

to develop new and to further improve existing fixed-parameter algorithms such that 

they can cope with an increasing data set size. Beside data reduction by the so-called 

kernelization and bounded search tree techniques, interleaving has been introduced as a 

new method in the design of fixed-parameter algorithms (Nieder.meier and Rossmanith, 

2000). Interleaving refers to repeated kernelization steps while one systematically pro

cesses the bounded search tree. Apart from Abu-Khzam et al. (2006) and Dehne et al. 

(2006), where the authors showed that interleaving has a positive impact on the overall 

running time of a fixed-para.meter algorithm, this technique has so far attracted more 

attention in theoretical analyses concerned with FPT than in practical studies. 

Making use of interleaving, we present a greatly improved fixed-parameter algorithm 
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for solving MINIMUM HYBRIDIZATION. This improvement is highlighted by the fact that 

all instances of the grass data set described above can be solved in better than reasonable 

time. For example, an instance for which the previously implemented algorithm did not 

return the solution within two days, ca.n now be calculated in less than a minute. 

The new algorithm-called HYBRIDlNTERLEAVE-has been implemented in Java and 

is available for application at http://www.math.canterbury.ac.nz/rvc.semple/software.shtml 

or http://wwwcsif.cs.ucdavis.edu/rvlinzs/. To start a calculation with HYBRIDlNTER

LEAVE, the program requires the two input trees to be given in Newick format and that 

taxa names have been replaced with integer values. As output, the program provides 

the user with the minimum number of hybridization events that explain the two input 

trees. 

This paper is organized as follows. The next section contains some preliminaries and 

formally states the decision problem MINIMUM HYBRIDIZATION for which a previously 

established fixed-parameter algorithm is summarized in the following section. Then the 

new algorithm HYBRIDlNTERLEAVE and its proof of correctness are given. The subse

quent section analyzes the running times of HYBRIDlNTERLEAVE when applied to a grass 

data set and compares it with the running times of the recently implemented algorithm 

HYBRIDNUMBER (Bordewich et al., 2007). We end this paper with some concluding re

marks. Unless otherwise stated, the notation a.nd terminology follows Semple and Steel 

(2003). 

PRELIMINARIES 

This section provides preliminary definitions which are used throughout the rest of this 

paper and formally states the decision problem MINIMUM HYBRIDIZATION. 
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Phylogenetic Trees 

A rooted binary phylogenetic X -tree T is a rooted tree whose root has degree two while 

all other interior vertices have degree three. The leaf set X is the label set of T and 

frequently denoted by !:,(T). Furthermore, a subset A of X is a cluster of T if there 

is a vertex v whose set of descendants is precisely A. We view v as an ancestor and 

descendant of itself. 

In the course of this paper, two types of subtrees play an important role. Let X' be 

a subset of X, and let T be a rooted phylogenetic X-tree. The minimal rooted subtree of 

T that connects all leaves in X' is denoted by T(X'). Furthermore, the subtree obtained 

from T(X') by contracting all non-root degree-2 vertices is the restriction of T to X' 

and is denoted by TIX'. Lastly, a subtree is pendant if it can be detached from T by 

deleting a single edge. 

Hybridization Networks 

A hybridization network 1{ on a set X is a rooted acyclic digraph with root p such that 

the following properties are satisfied: 

(i) X is the set of vertices of out-degree 0, 

(ii) the out-degree of p is at least 2, and 

(iii) for all vertices v with d+(v) = 1, we have d-(v) ?::'.: 2, 

where d+(v) and d-(v) denote the out-degree and in-degree of v, respectively. To quantify 

the number of hybridization events, the hybridization number of 1{ with root p is defined 

as 

h(1i) = L(d-(v) - 1), 
v'f.p 
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where vis a vertex of 11.. Since every non-root vertex has at least one parent, d-( v)- l is 

the number of additional parents of v. Observe that if 1{, is a rooted binary phylogenetic 

tree, then h(H.) = 0. 

Now let 1{, be a hybridization network on X, and let T be a rooted binary phylogenetic 

X'-tree with X' s;;; X. We say that Tis displayed by 1{, if T can be obtained from 1{, by 

deleting a subset of its edges and any resulting degree-0 vertices, and then contracting 

edges. Intuitively, if 1{, displays T, then all of the ancestral relationships visualized by 

in T are visualized by 11.. Extending the definition of the hybridization number to two 

rooted binary phylogenetic X-trees S and T, we set 

h( S, T) = min { h(H.) : 1{, is a hybridization network that displays S and T}. 

With the above definition, we now formally state MINIMUM HYBRIDIZATION. 

Problem: MINIMUM HYBRIDIZATION(S, T, k) 

Instance: Two rooted binary phylogenetic X-trees Sand T, and an integer k. 

Question: Is h( S, T) < k? 

Agreement Forests 

Originating from an idea in Hein et al. (1996), Bordewich and ~emple (2007a) showed 

that MINIMUM HYBRIDIZATION is NP-complete by using a characterization of the prob

lem in terms of agreement forests. Such forests play a fundamental role in this paper. 

For the purpose of the upcoming definitions, we regard the root of a rooted binary phy

logenetic X-tree T as a vertex pat the end of a pendant edge adjoined to the original 

root. For an example of two such trees, see Figure 1. Furthermore, we view p as an 

element of the label set of T; thus £(7) =XU {p}. Now, let Sand T be two rooted 

binary phylogenetic X-trees. An agreement forest :F = {£p, £ 1, £ 2 , ••. , £k} for Sand T 

is a partition of£( S) such that p E £p and the following conditions are fulfilled: 
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(1) For all i E {p, 1, 2, ... , k}, we have SI.Ci~ Tl.Ci, 

(2) The trees in { S(.Ci) : i E {p, 1, 2, ... , k}} and {T(.Ci) i E {p, 1, 2, ... , k}} are 

vertex-disjoint subtrees of S and T, respectively. 

As an example, two agreement forests for the two rooted binary phylogenetic trees Sand 

T depicted in Figure 1 are F = { {p, 7}, {1, 2, 3}, { 4, 5, 6}} and F' = { {p, 1, 2, 3, 7}, { 4}, {5} 

A characterization of the minimum number h(S, T) of hybridization events in terms 

of agreement forests requires an additional condition. Without going into details, this 

condition avoids the possibility of species inheriting genetic material from their own 

descendants. Let F = {.Cp, £ 1, £ 2 , .•. , .Ck} be an agreement forest for Sand T. Let GF 

be the directed graph that has vertex set F and an arc from .Ci to Lj precisely if i -=/= j, 

and either 

(1) the root of S(.Ci) is an ancestor of the root of S(.Cj) in Sor 

(2) the root of T(.Ci) is an ancestor of the root of T(.Cj) in T. 

We call Fan acyclic-agreement forest for Sand T if GF has no directed cycle. Moreover, 

if F contains the smallest number of parts over all acyclic-agreement forests for S and 

T, we say that Fis a maximum-acyclic-agreement forest for Sand T, in which case, we 

denote this number minus one by ma(S, T). Figure 2 shows the two digraphs GF and 

Gp that are associated with the agreement forests F and F', respectively, for the two 

rooted binary phylogenetic X-trees S and T depicted in Figure 1. Note that, as Gp is 

acyclic, F' is an acyclic-agreement forest for S and T while Fis no such forest. Indeed, 

F' is a maximum-acyclic-agreement forest for S and T. Baroni et al. (2005) established 

the following characterization. 

Theorem 1. Let S and T be two rooted binary phylogenetic X -trees. Then 

h(S, T) = ma(S, T). 
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It is this characterization that was used to show that MINIMUM HYBRIDIZATION is 

NP-complete. 

OVERVIEW OF A KNOWN FIXED-PARAMETER ALGORITHM 

FOR MINIMUM HYBRIDIZATION 

In this section, we summarize the basic ideas of the first fixed-parameter algorithm for 

MINIMUM HYBRIDIZATION. This algorithm is based on an earlier result that showed, 

for a pair of rooted binary phylogenetic X-trees S and T, MINIMUM HYBRIDIZATION 

is fixed-parameter tractable with h(S, T) being the parameter (Bordewich and Semple, 

2007b). In establishing this result, the authors used two reductions-called the subtree 

and chain reduction-that kernelize S and T to two smaller trees whose number of leaves 

is linear in h( S, T). 

Before detailing these reductions, we need some additional definitions. Let T be a 

rooted binary phylogenetic X-trees. Ann-chain of Tis an ordered tuple (a1, a2 , •.. , an) 

of elements in X such that the parent of a1 is either the same as the parent of a2 or a 

child of the parent of a2 and, for all i E {2, 3, ... , n - 1}, the pa.rent of ai is a child of 

the parent of ai+l· Now, let S and T be two rooted binary phylogenetic X-trees, and 

let P be a disjoint collection of 2-element subsets of X such that each pair { a, b} E P is 

a common 2-chain of S and T. Furthermore, let the weight function w : P ---+ z+ assign 

each element of P a positive integer weight. We refer to S and T with an associated 

weight function w as a pair of weighted phylogenetic trees on X. 

Let Sand T be two weighted rooted binary phylogenetic X-trees with an associated 

set P. 

Subtree reduction. Replace a maximal pendant subtree that is common to S and T 

by a single leaf with a new label. Furthermore, delete all members in P whose elements 
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label leaves of the pendant subtree under consideration. 

Chain reduction. Replace a maximal n-chain (a1 , a2, ... , an) with n > 2 that occurs 

identically in S and T by a 2-chain with new labels a and b. Furthermore, add the 

2-element set { a, b} to P with an associated weight of 

w({a,b})=n-2+ 

{ ai, a j} E P and 

Of, aj E {01 1 ... , an} 

and delete all members in P whose elements are in { a1 , a2 , ... , an}· An explicit example 

of the chain reduction is shown in Figure 3, where the two rooted binary phylogenetic 

trees S' and T' have been obtained from S and T, which are shown in Figure 1, by 

replacing the 3-chain (1, 2, 3) with the 2-chain (a, b), and similarly, the 3-chain (4, 5, 6) 

with (c,d). Note that w({a,b}) = w({c,d}) = 1. 

The correspondence between the trees resulting from repeated applications of the 

subtree and chain reductions, and the initial two trees is given in the next lemma. This 

correspondence is done via a notion of agreement forests that extends acyclic-agreement 

forests. An agreement forest :F for two rooted binary phylogenetic X-trees S and T is 

called legitimate if it is acyclic and the following property holds: 

(P) For each {a,b} E P, either {a} and {b} are elements in :F, or there exists an 

element of :F, say £, such that { a, b} ~ £. 

Now, let :F be a legitimate-agreement forest for two weighted rooted binary phylogenetic 

X-trees Sand T with an associated set P of 2-element subsets of X. With 

Wc(:F, P) = w({a,b}), 

{a,b) E P; a and b 

aro singletons in :F 

we define the weight of :F as 

w(:F) = l:FI - 1 + Wc(:F, P) 
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and set J ( S, T) to be the minimum weight of a legitimate-agreement forest for S and 

T. Note that we always have .f (S, T) 2: h(S, T), and .f (S, T) = h(S, T) whenever P is 

empty. The next two lemmas a.re central to showing that MINIMUM HYBRIDIZATION is 

fixed-parameter tractable (Bordewich and Semple, 2007b). 

Lemma 2. Let S and T be two weighted rooted binary phylogenetic X-trees, and let 

S' and T' be two weighted rooted binary phylogenetic X' -trees that have been obtained 

from S and T, respectively, by applying the subtree or chain reduction. Then f(S, T) = 

f(S', T'). 

Lemma 3. Let S and T be two weighted rooted binary phylogenetic X -trees, and let 

the associated set P of 2-element subsets of X be empty. Furthermore, let S' and T' 

be two weighted rooted binary phylogenetic X' -trees that have been obtained from S and 

T, respectively, by repeatedly applying the subtree and chain reduction until no further 

reduction is possible. Then IX'I ::; l4h(S, T). 

Cluster reduction. Besides repeatedly applying the subtree and chain reductions to 

kernelize a problem instance of MINIMUM HYBRIDIZATION before exhaustively calculat

ing a legitimate-agreement forest of minimum weight, we can use a third reduction that 

breaks a problem instance of MINIMUM HYBRIDIZATION into two smaller subproblems. 

This reduction is depicted in Figure 4 and can be repeatedly intertwined with the other 

two reductions before the inevitable exhaustive search part of the algorithm. How the 

two smaller problem instances relate to the original instance is described in the next 

corollary. Due to Linz (2008), this corollary generalizes the unweighted version given by 

Baroni et al. (2006). 

Corollary 4. Let S and T be two weighted rooted binary phylogenetic X-trees with an 

associated set P, and let A be a common minimal cluster of both S and T with IAI 2: 2. 

Then, 

f(S, T) = f(SIA, TIA)+ f(Sa, Ta), 

where Sa and Ta are the trees obtained from S and T, respectively, by replacing the 

pendant subtree whose label set is precisely A with a new leaf labeled a. 
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In the last corollary, the sets, PA and Pa say, associated with SIA and TIA, and Sa and 

Ta, respectively, are 

PA = { { €, £'} : { €, £'} ~ P and £, £' E A} 

and 

Pa= {{€,e'}: {€,£'} ~ P and £,£' rt A}. 

Remarks. 

(i) Note that the cluster reduction can repeatedly be applied to break Sand Tinto as 

many smaller tree pairs as possible by setting A to be a minimal common cluster 

of S and T with IAI ~ 2, and resetting S and T to be Sa and Ta, respectively, 

before applying this reduction again until S ~ T. 

(ii) We impose maximality on a common pendant subtree and a common n-chain and 

minimality on a common cluster to guarantee that the corresponding label set of 

any such common feature intersects each member of P in either both elements or 

neither. 

A NEW ALGORITHM FOR MINIMUM HYBRIDIZATION 

In this section, we present our fixed-parameter algorithm HYBRIDINTERLEAVE for MIN

IMUM HYBRIDIZATION. It makes use of the subtree, chain, and cluster reductions, but 

importantly, in terms of obtaining significantly decreased running times (see the results 

section), it additionally uses interleaving. 

Before outlining HYBRIDINTERLEAVE and giving its pseudocode, we state two lem

mas that are central to its correctness and description and whose proofs are given in the 

appendix. Let T be a rooted binary phylogenetic X-tree, and let £ and £' be elements 

of X. To ease reading in this section, we use T[-£] to denote Tl(..C(T) - {€}), and use 
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T[-.t',e'] to denote TJ(.C(T) - {.t',.t''}). Furthermore, let P be a collection of 2-element 

subsets associated with two weighted rooted binary phylogenetic X-trees S and T. If .e 

is contained in a member of P, we say that .e crosses P. 

' Lemma 5. Let S and T be two weighted rooted binary phylogenetic X-trees with no 

common pendant subtree whose leaf set size is at least 2, and let P be the disjoint col

lection of 2-element subsets of X associated with S and T. Then, for each .e E X, we 

have 

f ( S, T) :::; f ( S[-e, .e'], T[-.e, .t'']) + 2 + w( { .e, .t''}) 

if .e crosses P with { .e, .t''} E P, and 

f(S, T) :::; .f(S[-.t'], T[-.t']) + 1 

otherwise. 

Lemma 6. Let S and T be two weighted rooted binary phylogenetic X-trees with no 

common pendant subtree whose leaf set size is at least 2, and let P be the disjoint collec

tion of 2-element subsets of X associated with S and T. Then there exists an element 

.e E X such that either .e crosses P with { .e, .t''} E P and 

f(S, T) = f(S[-.e, .e'], T[-.e, .t'']) + 2 + w( { £, .t''} ), 

or e does not cross P and 

f(S, T) = f(S[-.t'], T[-.t']) + 1. 

We give a brief outline of the algorithm HYBRIDINTERLEAVE before detailing its 

pseudocode. The algorithm takes as input two rooted binary phylogenetic X-trees S 

and T, and an integer k, and outputs h(S, T) precisely if h(S, T) < k. It starts with 

initializing the variable P which represents the collection of 2-chains that have previously 

been obtained by applying a chain reduction to S and T. Recall that w is the weight 

function associated with P. HYBRIDINTERLEAVE then directly calls the subroutine 

INTERLEAVE which contains the key features of this algorithm. 
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If k > 0, INTERLEAVE initially finds all maximal pendant subtrees that are common 

to Sand T. If the resulting two trees have a label set size of at most 3, then, asp E .C(S), 

they are identical. Consequently, INTERLEAVE directly returns Oas the minimum weight 

for a legitimate-agreement forest of S and T. Otherwise, the algorithm proceeds with 

replacing each maximal common n-chain, where n ~ 3, with a 2-chain. Resetting Sand 

T to be the reduced weighted trees, they always have a cluster A with 2:::; JAJ < J.C(S)J 

in common which allows for an application of the cluster reduction. This reduction 

returns two new tree pairs. The second pair S" and T" has been obtained from S 

and T by replacing S(A) and T(A), respectively, by a new leaf while the first pair is 

S' = SIA and T' = TJA (viewing the root of S' and T', respectively, as a vertex p' 

adjoined to the original root by a pendant edge). With P' = {{t',f'} E P: {t',t"} ~ A} 

whose associated weight function is w', the algorithm next checks whether there exists a 

legitimate-agreement forest for S' and T' with f(S', T') < k, where w' is obtained from 

w by restricting its domain to members that are subsets of A. To this end, the subroutine 

branches into JAi computational paths, where each path corresponds to an element of A 

and a call to INTERLEAVE. This guarantees that an element is found for which Lemma 6 

holds. Furthermore, for each t' E A, the algorithm successively resets the variable h, 

which was originally initialized with k, to the minimum of the current value of hand the 

return value of the associated recursive call to INTERLEAVE increased by 2 + w'( { t', t"}) 

if t' crosses P' with { t', t"}, or increased by 1 otherwise. Thus, at each step, h equals k 

or it contains the minimum weight over all legitimate-agreement forests for S' and T' 

that have previously been considered. After at most k iterations, INTERLEAVE(S, T, k) 

declares h+INTERLEAVE(S", T", w", k - h), where w" is obtained from w by restricting 

its domain to members that are not subsets of A. Eventually, HYBRIDINTERLEAVE 

either returns h(S, T) if h(S', T') = h < k and h(S", T") < k - h, or it returns k. 

The pseudocode for HYBRIDINTERLEAVE is given below. The pseudocodes for the 

subtree, chain, and cluster reductions are given in Bordewich et al. (2007). Because of 

this and the description given earlier, we have omitted their respective pseudocodes. 
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Algorithm: HYBRIDlNTERLEAVE(S, T, k) 

procedure lNTERLEAVE(S, T, w, k) 

if k :s; 0 

then return (k) 

(S, T, w) <- SUBTREEREDUCTION(S, T, w) 

if I.C(S)I :s; 3 

then return (0) 

(S, T, w) <- CHAINREDUCTION(S, T, w) 

(S', T', w', S", T", w") <- CLUSTERREDUCTION(S, T, w) 

h-k 

for each f E .C( S') - {p'} 

do 

if :3€' E .C(S') - {p',f} such that {f,f'} E domainw' 

S' <- S' [-f, f'] 

then 
T' - T'[-f, f'] 

h - min{h, lNTERLEAVE(S', T', w', h-

w'({f,f'}) - 2) +2+w'({f,f'})} 

S' <- S'[-f] 

else T' +--- T'[-f] 

h +--- min{h, lNTERLEAVE(S', T', w', h - 1) + 1} 

return (h + lNTERLEAVE(S", T", w", k - h)) 

1nain 

P+-0 

w: P - z+ 
k +--- lNTERLEAVE(S, T, w, k) 

return (k) 
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Remarks. 

(i) Let X' be the label set of the two rooted binary phylogenetic trees that result 

from repeated applications of the subtree and chain reduction in the first call to 

INTERLEAVE. By Lemma 3, we freely assume for the the rest of the paper that 

the algorithm directly returns k if IX'I > 14k. 

(ii) The actual implementation of HYBRIDINTERLEAVE contains several improvements 

compared to the above given pseudocode. They do not affect the theoretical worst

case running time, but have a significant impact on the algorithm's speed in prac

tice. For example, if the subtree and chain reduction cannot be applied in some 

call to INTERLEAVE, the algorithm makes use of the numerical ordering on the 

leaf labels, which is required for any input to HYBRIDINTERLEAVE, by exclusively 

branching into a computational path if it considers a leaf whose label is greater 

than the label that has been considered in the previous call to INTERLEAVE. With

out going into details, the reason for this is that, if some computational path that 

is not considered by the algorithm yields a solution, then, due to symmetry in the 

search tree, this solution is also found along some path considered by HYBRIDIN

TERLEAVE (Collins, 2009). 

We next establish the correctness of HYBRIDINTERLEAVE. 

Theorem 7. Let S and T be a pair of rooted binary phylogenetic X-trees. Then the 

output of HYBRIDINTERLEAVE(S, T, k) is h(S, T) if and only if h(S, T) < k; otherwise 

it is k. 

Proof. The proof is by induction on k. If k = 0, then INTERLEAVE immediately returns 

0, and so the theorem holds. Now suppose that k ~ 1 and that theorem holds whenever 

the input parameter is at most k - 1. Because of the structure of HYBRIDINTERLEAVE 

and Corollary 4, to establish this part of the induction, it suffices to show that the 
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first call to the for each loop correctly returns h+ INTERLEAVE( S", T", w", k - h) with 

h = f(S', T') if and only if f(S', T') < k, otherwise with h = k. 

By Lemma 6, there is an e E £,(S') - {p'} such that one of the following holds: 

(a) If/!, does not cross P, then 

f(S'[-R], T'[-P]) = f(S', T') - 1. 

(b) If e crosses P with {€, £'} E P, then 

f(S'[-R, e'], T'[-f, e'J) = f(S', T') - 2 - w( {f, e'} ). 

Moreover, by Lemma 5, for all other f E C(S') - {p'}, we have that 

f(S'[-f], T'[-P]) 2: f(S', T') - 1 

if f does not cross P and 

f(S'[-f, e']), T'[-f, /!,']) 2: f(S', T') - 2 - w( { e, e'}) 

if /!, crosses P with { £, f'} E P. It now follows by the induction assumption and 

Lemma 5 that if f(S', T') 2: k, then the first ca.11 to the for each loop correctly re

turns k+INTERLEAVE(S", T", w", 0). Furthermore, by the induction assumption and 

Lemma 6, if f(S', T') < k, then the first call to the for each loop correctly returns 

h+INTERLEAVE(S", T", w", k-h), where h = f(S', T'). This completes the proof of the 

theorem. D 

We end this section by analyzing the running time of HYBRIDINTERLEAVE and com

paring it with the time complexity of a previous implemented algorithm to solve MINI

MUM HYBRIDIZATION. 

Proposition 8. Let S and T be two rooted binary phylogenetic X-trees, and let P be 

an empty collection of 2-element su.bsets of X. Furthermore, let k be an integer. Then 

the running time of HYBRIDlNTERLEAVE(S, T, k) is O((l4k)kn3), where n = IXI. 

17 



Proof. By repeatedly applying the subtree and chain reductions to S and T until no 

further reductions are possible, it follows from Lemma 3 that the leaf set size of S' and 

T' is at most 14h(S, T). Furthermore, while the subtree and chain reduction can be 

computed in O(n3) (Bordewich and Semple, 2007b), a single application of the cluster 

reduction results in an 0(2n) algorithm. Thus, calling all three reductions takes time 

O(n3 ). 

Since HYBRIDlNTERLEAVE directly returns k if IX'! > 14k, we may assume that 

IX'! ::::; 14k. The remaining part of this proof is by induction on k. If k = 0, then the 

algorithm returns k in constant time. Now suppose that the running time of HYBRID

INTERLEAVE is 0((14k')k'n3
) for all O ::::; k' < k. Let A be a minimal common cluster 

of S' and T'. As 14k :2:: !Al, the algorithm makes at most 14k calls to INTERLEAVE for 

the tree pair S'IA and T'IA with parameter of at most k - 1. Thus the running time is 

O(n3 + 14k(14(k - l))k-1n3) which is 0((14k)kn3) as claimed. 0 

Remark. Comparing the result of Proposition 8 with the running time of HYBRID

NUMBER (Bordewich et al., 2007) which is 0((2 · 14k)k + 1i) (Bordewich and Semple, 

2007b), it is easily seen that the increase in the theoretical worst-case running time of 

HYBRIDINTERLEAVE is due to repeated applications of the subtree, chain, and cluster 

reduction. However, this slight increase is negligible because the number of possibilities 

one needs to consider in the exhaustive search part is significantly decreased by 50 %. 

Indeed, the impact of repeated kernelizations becomes more beneficial with an increased 

k. 

EXPERIMENTAL RESULTS 

To evaluate the performance of HYBRIDINTERLEAVE, we applied it to a grass (Poaceae) 

data set that has previously been used for running-time analyses in the context of calcu

lating the hybridization number (Bordewich et al., 2007) and the rooted subtree prune 
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and regraft distance (for details, see the last section) which is frequently used to cal

culate the dissimilarities between two phylogenies for when reticulation is not assumed 

to be its major cause. The Poaceae data set was originally provided by the Grass Phy

logeny Working Group (2001) and contains DNA sequences for six genetic loci, each with 

up to 65 taxa. Details about this data set and how a gene tree was reconstructed for 

each locus can be found in Bordewich et al. (2007) (and references therein). Species of 

the Poaceae family are subject to numerous natural hybridization events (Ellstrand et 

al., 1996). Therefore, the conflicting signals in this data set are more likely to be due to 

hybridization than to other processes causing inconsistencies. 

For each of the 15 tree pairs, we restricted the two associated phylogenies to taxa 

that are common to both (second column of Table 1) and calculated the hybridization 

number of the resulting trees. The results are summarized in Table 1, where-beside 

the hybridization numbers-the running times for HYBRIDNUMBER and HYBRIDINTER

LEAVE are compared for each tree pair. A detailed description of the former algorithm, 

is given by Bordewich et al. (2007). Note that we reran HYBRIDNUMBER to guarantee 

consistency among the obtained running times for both algorithms. While HYBRIDNUM

BER computes the hybridization number for eight tree pairs within a couple of minutes, 

HYBRIDINTERLEAVE does so for all instances of the Poaceae data set and performs sig

nificantly faster. The latter algorithm successfully completes ea.ch program run in less 

than 8 minutes and calculates hybridization numbers as high as 19 for gene tree pairs 

with up to 46 taxa. This seems remarkably quick since HYBRID;NUMBER cannot calcu

late the exact solution for three tree pairs (ndhF and ITS, rbcL and ITS, and rpoC2 

and ITS) within 48 hours. The running time of HYBRIDINTERLEAVE mostly depends 

on the exhaustive search part of this algorithm since the reductions can be computed 

in polynomial-time. Clearly, the running time primarily decreases with an increase in 

the number of taxa that can be reduced by any of the three reductions. On the other 

hand, if the reductions have little effect because the trees only share a limited amount 

of common features such as subtrees, chains, or clusters, then the running time greatly 
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increases with the hybridization number. 

CONCLUDING REMARKS 

In this paper, we presented the new algorithm HYBRIDINTERLEAVE that exactly calcu

lates the hybridization number for two rooted binary phylogenetic trees. The algorithm 

can be applied to answer questions that consider the extent to which hybridization has 

influenced evolution and, therefore, shaped the current diversity of species. However, 

from a biological point of view, the results should carefully be interpreted since the al

gorithm is based on the assumption that hybridization is the only cause of gene tree 

inconsistencies. Moreover, it is possible that the real number of hybridization events for 

two trees is underestimated because HYBRIDINTERLEAVE minimizes this number and 

the true biological scenario might be less parsimonious. Nevertheless, HYBRIDINTER

LEAVE provides a first step towards analyzing the occurrence of hybridization within a 

data set and, additionally, is remarkably quick. 

We have shown that interleaving is an advantageous technique to speed-up the previ

ously implemented fixed-parameter algorithm HYBRIDNUMBER. Referring back to the 

running time results summarized in Table 1, it is likely that HYBRIDINTERLEAVE can 

also compute the exact hybridization number in a reasonable short a.mount of time for 

problem instances that either contain bigger trees or have a greater hybridization number 

than those of the Poaceae data set. In conclusion, interleaving has proven to be most 

effective for our purpose of providing an exact algorithm to compute the hybridization 

number for two phylogenies of biologically relevant size, and we look forward to seeing 

whether interleaving has the same positive impact when applied to other fixed-parameter 

tractable problems. 

We end this paper with a remark on how interleaving can also be applied to cal

culate the rooted subtree prune and regraft (rSPR) distance. Loosely speaking, the 
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graph-theoretic operation of rSPR cuts (prunes) a subtree and reattaches (regrafts) it to 

, another part of the tree. The rSP R distance between two arbitrary rooted binary phy

logenetic X-trees Sand Tis the smallest number of rSPR operations that transforms S 

into T. We denote this distance by drsPR(S, T) and note that it is well-defined since one 

can always transform S into T via a sequence of single rSPR operations. Like MINIMUM 

HYBRIDIZATION, calculating drsPR(S, T) is NP-hard and fixed-parameter tractable (Bor

dewich and Semple, 2004). Furthermore, the following theorem was central to obtaining 

these results. 

Theorem 9. Let S and T be two rooted binary phylogenetic X-trees, and let m(S, T) 

denote the smallest number of elements among all agreement forests for S and T minus 

one. Then 

drsPR(S, T) = m(S, T). 

Given the strong similarities between the characterizations of h(S, T) and drsPR(S, T) 

(see Theorems 1 and 9), it is not surprising that interleaving can also be applied to cal

culate the latter distance. However, while it is sufficient to exclusively consider 1-element 

subsets in the for each loop of HYBRIDlNTERLEAVE, for calculating the rSPR distance, 

we need to iterate through all proper subsets of the label set under consideration, and 

thus, subsequently apply analogous subtree, cha.in, and cluster reductions to possibly 

more than one tree pair. This is due to the missing acyclic property in the context of 

calculating drsPR(T, T'). A detailed description of how interleaving can be applied in 

order to speed-up the computation of drsPR(T, T') is given by Collins (2009). 
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APPENDIX 

, In this section, we restate Lemmas 5 and 6, and give their proofs of correctness. 

Lemma 5. Let S and T be two weighted rooted binary phylogenetic X -trees with no 

common pendant subtree whose leaf set size is at least 2, and let P be the disjoint col

lection of 2-element subsets of X associated with S and T. Then, for each f. E X, we 

have 

f(S, T)::; f(S[-f.,e'], T[-£,e'J) + 2 + w({f,e'}) 

if e crosses P with { .e, £'} E P, and 

f(S, T) ::; f(S[-f.], T[-f.J) + 1 

otherwise. 

Proof. First assume that .e crosses P in an element { £, £'}. Let :Fe be a legitimate

agreement forest for S[-f., £'] and T[-£, £'] of minimum weight. Then it is easily checked 

that 

:F = :Fe U { { £}, { e'}} 

is a legitimate-agreement forest for S and T. Moreover, we have !Fl = J:Fel + 2 and 

Wc(Fe, P - { .e, £'}) = Wc(:F, P) - w( { .e, €'} ). Hence, 

f ( S[-£,£'], T[-f, e'J) + 2 + w( { e, €'}) 

= l:Fel - 1 + Wc(:Fe, p - { f, f'}) + 2 + w( { f., £'}) 

= IFJ - 1 + Wc(:F, P) 

?: f(S, T). 

(1) 

Now assume that e does not cross P. Let :Fe be a legitimate-agreement forest for 

S[-f] and T[-£] of minimum weight. Again, it is clear that 

:F = :Fe U {.e} 
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is a legitimate-agreement forest for S and T. Moreover, we have I.Fl = IFel + 1 and 

wc(Fe, P) = wc(F, P). Thus 

f(S[-£], T[-£]) + 1 = IFel - 1 + Wc(Fe, P) + 1 

= IFl-l+wc(F,P) 

2: f(S, T). 

Inequalities (1) and (2) establish the lemma. 

(2) 

D 

Lemma 6. Let S and T be two weighted rooted binary phylogenetic X-trees with no 

common pendant subtree whose leaf set size is at least 2, and let P be the disjoint collec

tion of 2-element subsets of X associated with S and T. Then there exists an element 

£ E X such that either£ crosses P with { £, £'} E P and 

f(S, T) = f(S[-£, £'], T[-f, £']) + 2 + w( { £, £'} ), 

or f does not cross P and 

f(S, T) = f(S[-£], T[-£]) + 1. 

Proof. Let F = {.Cp, L\, £ 2 , ... , .Ck} be a legitimate-agreement forest for S and T of 

minimum weight. First observe that, as G:F is acyclic, it has a vertex .Ci with i E 

{p, 1, 2, ... , k} whose out-degree is zero. Furthermore, since S and T have no common 

pendant subtree whose leaf set size is at least 2, .Ci is a singleton in F. Since pis never 

a singleton in F by Lemma 1 of Baroni et al. (2005), we may assume that .Ci = { £}, 

where .f EX. 

First assume that £ crosses P in an element { £, £'}. Since F is legitimate, { £'} E F 

as{£} E F, and so 

Fe = F - { { £}, { £'}} 
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is a legitimate-agreement forest for S[-f, t"] and T[-f, t"J. Furthermore, we have IFI = 

IFel + 2 and Wc(F, P) = Wc(Fe, P - { e, t"}) + w( { e, t"} ). It now follows that 

f(S, T) = IFI - 1 + Wc(F, P) 

= IFel + 2 - 1 + Wc(Fe, P - { e, t"}) + w( { e, t"}) 

~ J (S[-f, t"J, T[-f, t"]) + 2 + w( { f, t"} ). 

(3) 

Second assume that f does not cross P. Since Fis a legitimate-agreement forest for 

Sand T, 

Fe=F-{t'} 

is such a forest for S[-f] and T[-f]. Furthermore, we have IFI = !Fel + 1 and wc(F, P) = 

wc(Fe, P). It now follows that 

J(S, T) = IFI -1 + Wc(F, P) 

= IFel + 1 - 1 + Wc(Fe, P) 

~ J(S[-f], T[-f]) + 1. 

Combining (3) and ( 4) with Lemma 5 gives the lemma. 
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Table 1: Running time comparison of HYBRIDlNTERLEAVE with HYBRID NUMBER (Bor-

dewich et al., 2007) for the Poaceae data set (Grass Phylogeny Working Group, 2001). 
Pairwise combination #Ta:xa Hybridization number RT" of HYBRIDNUMBER RT

0 

of HYBRIDINTERLEAVE 

ndhF phyB 40 14 5.9 h 23 s 

ndhF rbcL 36 13 5.3 h 3 s 

ndhF rpoG2 34 12 13 h 6 s 

ndhF waxy 19 9 150 s < 1 s 

ndhF ITS 46 19 > 48 h 258 s 

phyB rbcL 21 4 < 1 s < 1 s 

vhyB rpoG2 21 7 90 s < 1 s 

phyB waxy 14 3 < 1 s < 1 s 

phyB ITS 30 8 10 s < 1 s 

rbcL rpoG2 26 13 15.2 h 8 s 

rbcL waa;y 12 7 132 s < 1 s 

rbcL ITS 29 14 > 48 h 612 s 

rpoG2 waxy 10 < 1 s < 1 s 

rpoG2 ITS 31 15 > 48 h 57 s 

waa;y ITS 15 8 330 s < 1 s 

"Running time (RT) on a 2.66 GHz CPU, 2 GB RAM machine measured in seconds (s) and hours (h), respectively. 
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FIGURE CAPTIONS 

Figure 1. Two rooted binary phylogenetic X-trees S and T with their roots labeled p. 

Figure 2. Two agreement forests :F and :F' and their associated digraphs G;: and Gp, 

respectively, for S and T shown in Figure 1. 

Figure 3. Two rooted binary phylogenetic X-trees S' and T' that have been obtained 

from S and T depicted in Figure 1 by repeated applications of the chain reduction. 

Figure 4. A cluster reduction applied to the two rooted binary phylogenetic trees S 

and T, where Sa and Ta have been obtained from S and T, respectively, by replacing 

the pendant subtree whose label set is A with a new leaf labeled a. 
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