
Quantifying Infinite-Dimensional Data: Functional Data
Analysis in Action

Kehui Chen1,2, Xiaoke Zhang3, Alexander Petersen4 and Hans-Georg Müller4,5

1Dept. of Statistics, University of Pittsburgh
2Dept. of Psychiatry, University of Pittsburgh

3Dept. of Applied Economics and Statistics, University of Delaware
4Department of Statistics, University of California, Davis

Sep 04, 2015

Dedicated to the Memory of Bitao Liu6

ABSTRACT

Functional data analysis is concerned with inherently infinite-dimensional data objects and therefore
can be viewed as part of the methodology for Big Data. The size of functional data may vary from
terabytes as encountered in fMRI (functional magnetic resonance imaging ) and other applications
in brain imaging to just a few kilobytes in longitudinal data with small or modest sample sizes. In
this contribution, we highlight some applications of functional data analysis methodology through
various data illustrations. We briefly review some basic computational tools that can be used to
accelerate implementations of functional data analysis methodology. The analyses presented in this
paper illustrate the PACE (principal analysis by conditional expectation) package for functional
data analysis, where our applications include both relatively simple and more complex functional
data from the biomedical sciences. The data we discuss range from functional data that result
from daily movement profile tracking and that are modeled as repeatedly observed functions per
subject, to medfly longitudinal behavior profiles, where the goal is to predict remaining lifetime
of individual flies. We also discuss the quantification of connectivity of fMRI signals that is of
interest in brain imaging and the prediction of continuous traits from high-dimensional SNPs in
genomics. The methods of functional data analysis that we demonstrate for these analyses include
functional principal component analysis, functional regression and correlation, the modeling of
dependent functional data and the stringing of high-dimensional data into functional data and can
be implemented with the PACE package.
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1 Introduction

Functional data analysis (FDA) is an area of statistics where one studies models and analysis meth-

ods for data recorded over a continuum for each subject from a sample of subjects. Equivalently,

it can be described as the study of a sample of trajectories or time courses. Features that dis-

tinguish FDA from time series methodology is in FDA one considers repeated observations of the

time courses and does not rely on any stationarity assumptions, whereas in time series analysis one

typically has only one realization that is assumed to be stationary, although the boundaries between

these fields are increasingly blurry. FDA is particularly suited for the analysis of time-dynamic and

longitudinal data as are abundantly found in biomedical applications. There are a number of books

and reviews available on FDA (Ramsay and Silverman, 2005; Müller, 2005; Ferraty and Vieu, 2006;

Müller, 2008, 2011; Horvath and Kokoszka, 2012; Hsing and Eubank, 2015).

In general, any time-dependent data that are repeatedly observed for many independent indi-

viduals or units can be analyzed by FDA methods. A basic paradigm of FDA is that the observed

data correspond to or are derived from an independent identically distributed random sample of a

stochastic process that generates the observed data, however dependencies between the realizations

of the stochastic process can also be incorporated. The underlying stochastic process is usually

assumed to be smooth over a continuum, is usually assumed to lie in the space L2 or sometimes in

a reproducing kernel Hilbert space or constrained subspace, and is the target of interest in FDA.

A basic problem is that the smooth underlying process rarely is fully observed and the available

discrete observations that are thought to be generated by the process are often noisy. In some cases

the data are also sparsely observed, a frequently encountered scenario for longitudinal data. Over

the last decade, various FDA methods, blending stochastic process theory, smoothing methods and

multivariate techniques, have been developed for increasingly complex types of functional data. This

includes flexible methods to address sparse data, scenarios where one observes multiple or repeated

functions per unit or subject, or scenarios where functions are part of a time series (Bosq, 2000).

These methods have been utilized successfully for numerous applied problems, where inferring the

structure of repeatedly observed trajectories and their relationship with covariates often leads to

insights into the underlying dynamics of time-dependent processes.
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Functional data are thought to be derived from the smooth realizations of an underlying stochas-

tic process, which is an inherently infinite dimensional data object and in this sense functional data

are part of Big Data. A core principle when dealing with high-dimensional or infinite-dimensional

data is dimension reduction. In some instances, functional data are not only complex but also

large. An example are data originating from brain imaging such as PET and EEG/MEG signals.

For example, in fMRI the BOLD (blood oxygenation level dependent) signals may be recorded over

240 times points at 100,000 voxels per subject for say n = 1000 individuals. With pre-processed

versions, such data can quickly reach into the terabyte range. Another area where truly large

functional data arise are data recordings from sensors that monitor certain variables of interest

and produce continuous time recordings, such as recordings from weather stations and sensors that

monitor the functioning of technical equipment, or data generated by mobile tracking devices that

are integrated into wearable or portable electronic devices and can be used to monitor exercise lev-

els, health and behavior. The analysis of such data is just at the beginning and FDA methodology

is expected to have a major impact.

In this article we illustrate some applications of the PACE package, which has been designed to

implement various FDA methods, including FDA for both sparsely and densely sampled random

trajectories and repeatedly observed functional data. PACE is based on the Principal Analysis by

Conditional Expectation (PACE) algorithm (Yao et al., 2005) and is geared towards the analysis

of data that have been generated by a sample of underlying (but often not fully observed) random

trajectories. It does not rely on pre-smoothing of trajectories, which is problematic if functional

data are sparsely sampled. For functional data that are densely sampled on a regular grid, simple

cross-sectional averaging to obtain mean and auto-covariance functions of the underlying stochastic

process is often a good choice and is an option included in PACE.

In addition to functional principal component analysis, PACE provides options to implement

various models for functional regression and correlation, for functional conditional distribution

and quantile analysis, for functional manifold analysis, for the analysis of linear and nonlinear

empirical dynamics, and for other techniques such as time-synchronization, curve warping and

curve clustering. The development of PACE has been supported by various NSF grants and it
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is written in Matlab, while a R version is currently under development. The current version is

available at http://anson.ucdavis.edu/~mueller/data/pace.html.

In the following, we illustrate some basic and popular FDA methods as implemented in PACE

through data applications and discuss methodological and computational challenges for large func-

tional data. Among these illustrations, we also include the stringing of high-dimensional data into

functional data, which is also part of the functional methodology implemented in PACE.

2 Functional Principal Component Analysis

Due to the infinite dimensionality of the underlying random trajectories that are the objects of

interest in FDA, practically feasible approaches must include some form of dimensionality reduction.

This is usually achieved by expanding the underlying random process X into a basis of the function

space, often considered to be L2(T ), where T is the domain of the random functions, usually a

finite interval. The random functions are then typically reduced to the Fourier coefficients of this

basis, of which one takes a finitely truncated sequence to represent the functions. A common

choice for the basis are pre-specified orthonormal trigonometric or polynomial basis functions. An

alternative is the choice of a data based orthonormal system that has some optimality properties. A

common data-adaptive orthonormal basis selection is obtained via functional principal component

analysis (FPCA), which aims at the basis that consists of the orthonormal eigenfunctions of the

auto-covariance operator of the underlying stochastic process (Silverman, 1996; Hall and Hosseini-

Nasab, 2006; Hall et al., 2006).

The projections of the centered processes on the first K eigenfunctions then explain most of the

variance of the underlying process among all projections on K components. This optimal dimension

reduction feature provides motivation for using FPCA, which provides a foundation for many other

methods of functional data analysis. In practical applications, FPCA has turned out to be very

successful to the extent that it has become the most popular technique in FDA.

Formally, for a square integrable random process X(t), t ∈ T ⊂ R, with mean µ(t) and covari-
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ance function G(s, t), the autocovariance operator is

(Af)(t) =

∫
s∈T

f(s)G(s, t) ds,

with orthonormal eigenfunctions φk and ordered eigenvalues λ1 ≥ λ2 ≥ . . .. The well known

Karhunen-Loève expansion then gives the representation

X(t) = µ(t) +

∞∑
k=1

ξkφk(t), (1)

where {ξk, k ≥ 1}, is a sequence of uncorrelated random variables, with E(ξk) = 0 and var(ξk) = λk,

and functional principal components (FPCs)

ξk =

∫
t∈T

(X(t)− µ(t))φk(t)dt. (2)

Stochastically, X can be represented by the sequence of scores {ξ1, ξ2, . . .}. For any fixed K, the

first K terms in (1) yield the best K-dimensional linear approximation for X(t) in L2(T ), i.e., it is

the unique linear representation which explains the highest fraction of variance in the data with a

given number of components, where
∑K

k=1 λk is the amount of total variation or process variance

that is explained by the first K functional principal components (FPCs).

In practical applications, one almost never has fully observed functions without noise, rather

needs to assume one observes Yij from a data model

Yij = Xi(tij) + εij , 1 ≤ i ≤ n, 1 ≤ j ≤ Ni, (3)

where one often assumes that the εij are zero mean i.i.d. measurement errors, with var(εij) = σ2,

independent of all other random components. Here the tij are either recorded on a dense grid,

ti1, . . . , tiNi , with Ni → ∞, or they are random times and their number Ni per subject is random

and finite. The first case is referred to as Dense Design and it applies to many functional data with

dense recordings such as monitoring or sensor data, while the second case is usually referred to as

Sparse Design and it is also commonly encountered, for example in the case of irregularly spaced

longitudinal data as they abound in biomedical applications.

If the recording points t are densely and regularly spaced, i.e., tij = tj , the standard approach is

to use an empirical estimator by averaging the data Yij over the subject index i for the n subjects
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and interpolating between design points. This scheme is also applicable to dense irregular designs

by adding a pre-smoothing step and then sampling the smoothed functions at a dense regular grid

to obtain regular spaced observations of the underlying functions. If the measurement times tij ,

where observations are made, are sparsely and randomly spaced, cross-sectional empirical estimators

are not an option, and neither is pre-smoothing of individual trajectory data. In this situation, a

preferred approach is to estimate the mean function µ by smoothing the pooled data (Yao et al.,

2005), with a local linear smoother. Employing kernel functions κ and smoothing bandwidths h

resp. b, defining κh(x) = 1
hκ(x

h ), this leads to µ̂(s, t) = â0, where

(â0, â1) = arg min

n∑
i=1

Ni∑
j=1

{[Yij − a0 − a1(tij − t)]2 × κh(tij − t)}.

In order to obtain a consistent estimate ofG(s, t), may can pool products for pairs of observations

from the same subject, then implement a two-dimensional local linear smoothing step to obtain

Ĝ(t1, t2) = â0, where

(â0, â1, â2) = arg min

n∑
i=1

∑
j 6=l

{[(Yij − µ̂(tij))(Yil − µ̂(til))− a0 − a1(tij − t1)

−a2(til − t2)]2 × κb(tij − t1)κb(til − t2)}.

Denoising is achieved by separating out the diagonal (Staniswalis and Lee, 1998).

An additional step is to project the initial smoothed covariance estimates on the space of non-

negative definite covariance surfaces (Hall et al., 2008) to ensure that the resulting covariance

surfaces are non-negative definite. Under appropriate regularity conditions and considering uniform

convergence, these smoothing estimators achieve a convergence rate of (log n/n)1/2 rate for dense

data. If in the sparse design case the number of points sampled for each subject Ni is bounded, the

rate for the mean function turns out to be O(h2 + [log n/(nh)]1/2), and for the covariance function,

it is O(b2 +[log n/(nb2)]1/2) (Yao et al., 2005; Hall et al., 2006; Li and Hsing, 2010; Müller and Yao,

2010).

These steps have been implemented in the matlab software PACE, http://www.stat.ucdavis.

edu/PACE/. Given µ̂(t) and Ĝ(s, t), the eigenfunctions φ̂k(t) and eigenvalues λ̂k are obtained

through the discretized version of the eigen-equations. PACE then implements two methods to
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estimate functional principal components. One option is to estimate the functional principal

component (FPC) scores or simply FPCs ξk through a numerical approximation of the integral∫
t∈T (X(t)− µ̂(t))φ̂k(t)dt, which obviously only works for dense designs. The other option is to use

the conditional expectation derived under a Gaussian assumption on both random processes and

errors, which then gives the best unbiased predictor; if Gaussianity does not hold, this approach

targets the best linear unbiased predictor (BLUP). This approach works for both dense designs and

sparse designs and is as follows.

Setting Xi = (Xi(ti1), . . . , Xi(tiNi))
T , Y i = (Yi1, . . . , YiNi)

T , µi = (µ(ti1), . . . , µ(tiNi))
T , and

φik = (φk(ti1), . . . , φk(tiNi))
T , one obtains by the joint Gaussianity of ξ and Y ,

E[ξik|Y i] = λkφ
T
ikΣ−1Y i

(Y i − µi),

where

ΣY i = cov(Y i,Y i) = cov(X i,X i) + σ2Imi .

The PACE method has proven to be quite robust and generally works well also for the case of

non-Gaussian data, in which case one deals with best linear predictors for the FPCs. It follows

from results in Müller (2005) that this conditional method to obtain the FPCs is asymptotically

the same as the numerical approximation of integration (Eq. 2) as sparse designs converge to dense

designs.

3 Computational Aspects for Large Functional Data

Assume that for each functional datum Xi, i = 1, . . . , n, measurements are available on an equis-

paced grid t1 < · · · < tp, T = [t1, tp], where such measurements are possibly contaminated by noise,

as in (3), and p is relatively large. In this dense design situation with an equidistant measurement

grid, we may obtain cross-sectional means at each time point, X̄j = n−1
∑n

i=1Xi(tj), j = 1, . . . , p,

and the centered n× p data matrix W with elements Wij = Xi(tj)− X̄j . The covariance function

G can be estimated at all pairs of the gridpoints (tj , tk), j, k = 1, . . . , p, by computing the p × p

matrix H = 1
nW

TW with elements Hjk, i.e., Ĝ(tj , tk) = Hjk. The eigenvalues and eigenvectors of
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H can then be appropriately scaled to yield estimates of the eigenvalues and eigenfunctions of A,

evaluated at the grid (tj , j = 1, . . . , p) (Dauxois et al., 1982; Cardot, 2000; Chen and Müller, 2012).

In the case of densely observed functional data, the dimension p is generally quite large and this

computating step can become costly. As densely observed functional data are commonly assumed

to arise from smooth processes, one technique for reducing computational complexity is to reduce

the number of gridpoints to q < p by binning the data values. Let t̃1 < · · · < t̃q be a coarser

equispaced grid for T . A simple binning scheme is to identify, for each gridpoint in the finer grid,

the closest gridpoint in the coarser grid via

cj = argmin
1≤k≤q

|t̃k − tj |, 1 ≤ j ≤ p,

and grouping the finer gridpoints together in the sets Ik = {j; cj = k, 1 ≤ j ≤ p}.

For each subject, data values corresponding to gridpoints with indices in the same set Ik are

then averaged to form the new n× q data matrix W̃ with elements

W̃ik =
1

|Ik|
∑
j∈Ik

Wij .

Discarding information by binning will affect the accuracy of the estimation, however. Specifi-

cally, binning will introduce a bias especially when some of the random trajectories may vary rapidly

over short intervals and q � p. Another simple scheme to accelerate computations is to work with

random subsamples of size n′ < n. While this subsampling method also accelerates computations,

the price to pay is not an increase in bias but rather an increase in variance and loss of efficiency.

In the commonly encountered case of very densely sampled data, where p � n, there is yet

another well-known simple relation (Good, 1969; Kneip and Utikal, 2001) that can be exploited to

gain computational advantage. This is to compute the eigendecomposition for the n × n matrix

WWT instead of the eigendecomposition for the p × p matrix WTW , as described above. This

will save substantial computing time when n� p, i.e., the number of measurements per subject is

much larger than the number of subjects or units.

That these two matrices have the same nonzero eigenvalues can be seen by the following well-

known argument. Let λ be an eigenvalue ofWWT with eigenvector u. ThenWT (WWTu) = λWTu,

so that WTu is an eigenvector of WTW with eigenvalue λ. Since the argument is symmetric, these
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matrices have the same nonzero eigenvalues. Furthermore, if ‖u‖ = 1, a unit eigenvector of WTW

corresponding to the eigenvalue λ is v = cWTu. To determine c, note that

1 = c2‖WTu‖2 = c2λ‖u‖2 = c2λ,

so that c = λ−1/2 and v = λ−1/2WTu.

Hence, the eigenvalues and eigenvectors of H = 1
nW

TW can be calculated from those of WWT ,

which are easier to compute when p � n. This device is useful to accelerate the computational

implementation of FPCA for the case of dense regular designs whenever there is a substantial

imbalance between n and p.

4 Models for Functional Predictors and a Scalar Response

In this section we illustrate functional regression models. These models are generally characterized

by the inclusion of a functional component in either predictors or responses, along with scalar or vec-

tor components. Most research has been devoted to the functional linear regression model where a

functional predictor is coupled with a scalar response. Extensions of models with functional predic-

tors and scalar responses are the quadratic regression model (Yao and Müller, 2010; Horváth et al.,

2013), functional additive model (Müller and Yao, 2008; Febrero-Bande and González-Manteiga,

2013; Zhu et al., 2014), and continuously additive model (Müller et al., 2013; McLean et al., 2014).

Extensions also include quantile regression models with functional predictors (Cardot et al., 2005;

Chen and Müller, 2012). Going beyond functional models with single functional predictors and

scalar responses, models of interest extend to cases with several functional predictors and func-

tional responses, which are topics of recent interest.

We illustrate functional regression models with the simplest such model, the functional linear

model that associates a scalar response with a functional predictor. The data are daily observations

of sexual signalling of male Mediterranean fruit flies (medflies, Ceratitis capitata) (Zhang et al.,

2006; Papadopoulos et al., 2004). For each fly, sexual signalling was recorded every 10 minutes

for a two hour period each day, resulting in 12 daily measurements. The functional predictor X(t)

corresponds to the number of times (X(t) ∈ {0, . . . , 12}) the fly exhibited sexual signalling behavior
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on day t. Given the behavioral calling trajectories observed for each fly for ages t ≤ t0 = 40 days as

functional data, we are interested to predict the logarithm of the remaining lifetime Y = log(T−t0),

where T is the total lifetime of the fly. The logarithmic transformation is applied due to the right

skewness of remaining lifetimes in our sample. There were n = 180 flies in the sample which

survived at least 40 days.
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Figure 1: FPCA estimates for medfly data. Top Row and Bottom Left, Middle: Estimated eigen-

functions φk for k = 1, 2, 3, 4, 5. Bottom Right: Smoothed predictor functions X(t) for a subsample

of 15 flies.

With Xc(t) = X(t)−µ(t), the functional linear regression model (Ramsay and Silverman, 2005)

is

E(Y |X) = α+

∫
Xc(t)β(t)dt.
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The regression parameter function β(t) is usually represented in a suitable basis, and if predictor

functions X are represented in the same basis, and both expansions are truncated at a finite number

of components, the above model converts into a finite-dimensional multiple linear regression model.

If for example both X and the regression parameter function β are expanded in the eigenbasis,

as in the PACE package, then this linear regression model has uncorrelated predictors, which means

that it can be decomposed into a series of simple linear regressions (Müller et al., 2008). For the

medfly data, the predictor curves X(t) are represented by truncating the eigen-expansion in (1) at

the first K = 5 terms. The corresponding first five eigenfunctions are plotted in Figure 1, along

with a subsample of the predictor functions that are represented in these eigenfunctions as basis.

The linear model fitted to the fly data yields a functional R2 value of 0.356. Measures of variance

explained such as R2 are not straightforward and not unique in the case of functional predictors

and we use here the measure proposed in Yao et al. (2005). The fitted coefficient function β(t) and

the diagnostic residual plot (Chiou and Müller, 2007) for the linear model are shown in Figure 2.

The coefficient function indicates that flies which peak in their signalling behavior after day 30

are associated with longer lifetimes. However, the residual plot provides evidence for a non-linear

pattern and thus lack of fit.
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Figure 2: Components of fitted linear regression model for medfly data. Left: Fitted regression

parameter function β with pointwise 95% confidence band, obtained via bootstrap. Right: Plot of

residuals versus fitted values.
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This problem can be remedied by extending the model to a functional quadratic regression

model (Yao and Müller, 2010),

E(Y |X) = α+

∫
Xc(t)β(t)dt+

∫∫
γ(s, t)Xc(s)Xc(t)dsdt.

The quadratic model fitted to the fly data resulted in an R2 value of 0.528, showing a steep

improvement compared to the linear model. The residual plot, along with the estimated coefficient

function β(t) and surface γ(s, t), are shown in Figure 3. The linear coefficient β(t) shows that high

activity just prior to day 40 and lower activity around day 30 are associated with higher longevity.

The interpretation of the surface γ is more nuanced. For instance, the valleys around (15, 15) and

(30, 30) reinforce the valleys seen in the coefficient β, while the off-diagonal valley and peak near

(15, 35) and (20, 40), respectively, indicate that interactions between early- and late-life signalling

behavior are significant in determining longevity. Importantly, the residual plot does not display a

non-linear pattern, indicating an improved fit.

Another flexible extension of the functional linear model is the functional additive model (Müller

and Yao, 2008). With functional principal components ξk, k ≥ 1, as defined above, the centered

predictor process Xc can be equivalently represented by the sequence of FPCs ξj , j ≥ 1, according

to the Karhunen-Loève representation. The functional additive model for the regression of a scalar

response Y on a functional predictor X can then be represented as

E(Y |X) = µY +

∞∑
k=1

fk(ξk),

where the additive functions fk(·) are smooth functions that satisfy the constraints E(fk(ξk)) = 0.

When predictor processes are Gaussian, the scores ξk are independent and this implies that

fk(ξk) = E(Y −µY | ξk), which means that these functions correspond to nonparametric regressions

with a one-dimensional predictor. Motivated by this finding, Müller and Yao (2008) propose to

estimate the additive functions fk(ξk) by individual nonparametric smoothing of the scatterplot

{(ξik, Yi − µY ), i = 1, . . . , n}, instead of using the common backfitting approach for fitting an

additive linear model.

After suitable truncation at K included terms, we obtain estimates

Ê(Y | X) = µ̂Y +

K∑
k=1

f̂k(ξk),
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Figure 3: Components of fitted quadratic regression model for medfly data. Top Left: Plot of

residuals versus fitted values. Top Right: Fitted regression parameter function β. Bottom: Fitted

regression parameter surface γ.

where µ̂Y is the sample mean of the Yi. Fitting this model to the fly data gave an R2 of 0.305, even

lower than the linear model. The fitted additive functions fk, k = 1, . . . , 5, and the residual plot

for this fit are shown in Figure 4. It is clear that the first two components are the most influential

in determining expected lifetime. We can interpret these effects by examining the corresponding

eigenfunctions in Figure 1. Since the first eigenfunction is strictly positive and increasing, and f1 is
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Figure 4: Components of fitted additive regression model for medfly data. Top Row and Bottom

Left, Middle: Fitted additive function fk(ξk) for k = 1, 2, 3, 4, 5. Bottom Right: Plot of residuals

versus fitted values.

increasing, this indicates that male medflies which exhibit above average sexual signalling behavior

across their lifetime, but particularly later in life, are associated with higher longevity.

The interpretation of the second additive function f2 in conjunction with the second eigen-

function additionally indicates that flies which are highly active around day 10 and then decline

in activity tend to have shorter lifespans. While the residuals from the additive model do not

indicate clear lack of fit, there is no clear improvement when compared to the quadratic model.

Hence, the quadratic model seems to give the best fit for these data. This provides an example how

careful model selection for functional regression aids in the interpretation of complex time-dynamic

biological phenomena.
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In addition to conditional mean estimation, which is the usual regression task, in some applica-

tions, one may be interested in estimating the conditional distribution and conditional quantiles of

Y given the predictors. This is a more challenging task in the case of functional predictors X. The

problem of extending the mean regression with functional predictors to the case of a conditional

distribution has been studied using different approaches (Cardot et al., 2005; Chen and Müller,

2012). Specifically, Chen and Müller (2012) have proposed to estimate the conditional distribution

of the respoinses Y given predictor trajectories X as a first step. This can be done by the following

generalized functional regression approach,

F (y|X) = P (Y ≤ y|X) = E(I(Y ≤ y)|X) = g−1
(
α(t) +

∫
Xc(t)β(y, t)dt

)
,

where g is a binomial regression link function such as the logit link.

The conditional quantiles are obtained from the inverse of the fitted conditional distribution.

Applying this nonparametric quantile regression approach to the medfly data, we examine the fitted

quantiles for three particular flies corresponding the the first quartile, median and third quartile of

observed lifetime. The predictor functions for these three flies are shown in Figure 5, along with

the fitted median, first and third quartiles, 0.1th and 0.9th quantiles in the form of a boxplot.

Overall, one finds that these conditional quantiles indeed enclose the observations. Additionally,

the distributions for the two longer-living flies show less spread, with that of the longest-living fly

also showing a right-skew not present in the other conditional distributions.

5 Repeated Functional Data

Repeated functional data exhibit an increased level of complexity, due to the presence of depen-

dencies between the functional recordings. They often will fall under the rubric of large and

complex functional data. Here one faces a situation where curves are repeatedly recorded for

a sample of n subjects. Specifically, for the ith subject (i = 1, . . . , n) one has measurements

at multiple time points {sij : j = 1, . . . ,mi}; at each time sij , a curve/function Xi(· | sij)

is recorded. In practice, these functions Xi(· | sij) are usually observed at a grid of discrete

time points {tijl : l = 1, . . . , Lij}. Therefore, the repeated functional data we observe are
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Figure 5: Left Column: Prediction functions for three specific male medflies. Right Column:

Corresponding estimated conditional quantiles (τ = 0.1, 0.25, 0.5, 0.75, 0.9) of Y given the respective

predictor function in the left adjacent panel. Observed Y values are shown as a horizontal dashed

line.
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{Xi(tijl | sij) : i = 1, . . . , n; j = 1, . . . ,mi; l = 1, . . . , Lij}.

Functional principal component analysis (FPCA) as described in section 2 provides a starting

point for modeling repeatedly observed functional data. An extension to repeated functional data is

the double FPCA approach (Chen and Müller, 2012), which is based on a two-step Karhunen-Loève

expansion. For the ith subject, the function Xi(· | s) observed at a given longitudinal time s is

assumed to admit the following decomposition,

Xi(t | s) = µ(t | s) +

∞∑
k=1

ξik(s)φk(t | s), (Step 1 FPCA) (4)

where µ(· | s) is the mean function at s, and φk(· | s) is the kth eigenfunction of the repeated

functions at s with the corresponding functional principal component (FPC) ξik(s), i.e., φk(· | s) and

ξik(s) are the kth eigenfunction and FPC of the covariance G(t1, t2 | s) = cov(X(t1 | s), X(t2 | s)).

For each k, ξik(s) can be further decomposed by employing a second Karhunen-Loève expansion,

ξik(s) =

∞∑
p=1

ζikpψkp(s), (Step 2 FPCA) (5)

with eigenfunctions ψkp(·) and corresponding FPCs ζikp, i.e., ψkp(·) and ζikp are the pth eigenfunc-

tion and FPC of the autocovariance operator with covariance kernel Rk(s1, s2) = cov(ξk(s1), ξk(s2)).

Combining (4) and (5), we have

Xi(t | s) = µ(t | s) +

∞∑
k=1

ξik(s)φk(t | s)

= µ(t | s) +

∞∑
k=1

( ∞∑
p=1

ζikpψkp(s)

)
φk(t | s)

= µ(t | s) +
∞∑
k=1

∞∑
p=1

ζikpϕkp(t | s),

where ϕkp(t | s) = ψkp(s)φk(t | s). Therefore, the total variation of Xi can be decomposed into the

variation conditional on longitudinal time s and the variation along the longitudinal time s with

random effects ζikp.

Estimation procedures for the unknown components of the two-step Karhunen-Loève represen-

tation, including µ(t | s), G(t1, t2 | s), φk(t | s), ξk(s), ψkp(s), and ζkp, were developed in Chen and

Müller (2012), where also various sampling plans and designs for the measurement time locations
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were considered. These include dense regular designs, dense random designs, and sparse random

designs in s. For dense regular designs, where both t and s are measured on regular and dense time

grids, µ(t | s) and G(t1, t2 | s) can be estimated by taking a cross-sectional mean; for dense random

designs and sparse random designs, where the measurement time points are irregular, smoothing

is needed, which can be implemented by local linear smoothers to estimate both µ(t | s) and

G(t1, t2 | s). Based on consistent estimates of µ(t | s) and G(t1, t2 | s), one then obtains consistent

estimates of φk(t | s), ξk(s), ψkp(s), and ζkp.

We implemented this double FPCA approach by using repeated recordings of daily movements

of Mexican fruit flies (mexflies, Anastrepha ludens). Additional details about the data collection

and further descriptions can be found in Zou et al. (2011). Movement data were measured for

16 mexflies on a full diet (protein and sugar) and 16 mexflies on a sugar only diet. Each fly was

continuously monitored for one minute intervals and the spatial X,Y, Z coordinates of the location

of the fly were recorded every 0.2 seconds. Recording started after the eclosion of flies and lasted

throughout lifetime.

We focus on quantifying movement by computing the distances between successive location

measurements for each fly during daytime (between 7am and 7pm daily) for the first 50 days of

the fly’s lifespan. We removed one fly from the analysis which died before 50 days so eventually

we had 31 flies in total, 15 on the full diet and 16 on the sugar diet. The longitudinal time s

represents age in days (1 to 50 days), while time t represents day time, which was measured as

fraction of 24 hours, with measurements recorded on a regular grid of length 36 between 0.2917 and

0.7917, corresponding to 7am and 7pm. For each fly, based on the recorded X,Y, Z coordinates, we

obtained the approximate Euclidean distance traveled for each minute while it was monitored. We

interpolated the distances onto an equidistant time grid, leading to distance observations {Xi(t |

s) : i = 1, . . . , 31; t = 0.2917, . . . , 0.7917; s = 1, . . . , 50}. Some flies had missing values for a whole

day, so the design is best characterized as a dense random design. The movement trajectories of

eight randomly selected flies, four with full diet and the other four with sugar diet, are illustrated

in Figure 6.

The fitted overall mean surface µ(t | s) as shown in Figure 7 demonstrates that on average,
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the distance moved by a fly per minute is larger in the afternoon than in the morning within a

day starting at the age of 10 days, which indicates that the flies are in general more active in the

afternoon. In addition, the overall movement activity increases as a fly ages and reaches a peak at

around the age of 25 days. The level of activity slightly fluctuates afterwards but generally remains

steady.

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Figure 6: Distances traveled per minute for eight randomly selected Mexflies between Day 6 and

Day 11. The four flies at the top are on a sugar diet while the four flies at the bottom are on a full

diet.

The scatter plot of ζi12 against ζi11 shows that ζi11 may represent the distinguishing feature
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Figure 7: Results of double FPCA for daily movement of mexflies. Top left: fitted mean surface;

top right: scatter plot of FPC scores ζi12 against ζi11; bottom left and right: fitted ϕ11 and ϕ12.
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between the flies on the two different food diets. The flies on the full diet mostly have positive

ζi11 values while those on the sugar diet mostly have negative values. Together with the fact that

ϕ11(t | s) is always negative, the flies on the sugar diet are seen to be on average more active than

those on the full diet, which is also confirmed by Zou et al. (2011). While ϕ11(t | s) reflects an

overall activity level, the second conditional eigenfunction ϕ11(t | s) reflects an increase in overall

activity over all times during a day as a fly ages, where half of the flies show such a near uniform

increase while the other half of the flies shows a decrease in activity, as can be seen from the range

of the levels of ζi11.

6 Quantifying Functional Connectivity in the Brain

Quantifying functional connectivity in the brain and identifying regions with strong connections

has been a major focus in neuroscience research over the past two decades, accelerating steadily

with the increasing availability of data from fMRI scans. One such study, conducted at UC Davis

(Hinton et al., 2010), consists of over 700 fMRI scans, each of which represents time courses for

more than 105 voxels in the brain over a period of 480 seconds. Applying standard preprocessing

steps results in a data set easily exceeding 1 TB in size.

The strength of functional connectivity between two voxels or regions is quantified by some

similarity measure between representative time courses. In the neuroscience literature, the most

common measure is (temporal) correlation, so that signals with similar fluctuation patterns are con-

sidered to be strongly connected. Methods in functional data analysis provide several alternatives

for measuring connectivity which are well-supported theoretically.

One such method which has been found useful in practice is Functional Singular Component

Analysis (FSCA, Yang et al. (2011)). Given two zero-mean random processes X and Y defined on

a compact interval T ⊂ R, FSCA defines the (first) covariance as

σ = sup
‖u‖=‖v‖=1

cov(〈u,X〉, 〈v, Y 〉),

where u and v range over functions in L2(T ) and 〈·, ·〉, ‖·‖ are the L2 inner product and norm,

respectively. The functions u∗ and v∗ which attain the maximum are called singular component
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functions, and the coefficients ζ = 〈X,u∗〉 and ξ = 〈Y, v∗〉 are called the singular component scores.

Defining CXY (s, t) = E(X(s)Y (t)) and the corresponding operator CXY : L2(T )→ L2(T ) as

CXY (f)(s) =

∫
T
CXY (s, t)f(t) dt, f ∈ L2(T ),

the covariance and singular functions are the solutions to

CXY (v) = σu, ‖u‖ = ‖v‖ = 1,

whence the term “singular.”

A sequence of singular component functions and scores can be constructed iteratively, where

the optimization takes place over the orthogonal complement of the space spanned by the previous

singular functions. Thus, FSCA provides a means of achieving joint dimensionality reduction for a

pair of processes by reducing these infinite-dimensional objects to a list of pairs (ζk, ξk).

To apply FSCA to the study of connectivity, we considered two regions within the so-called

default mode network, one located within the medial prefrontal cortex (MP) and the other in the

posterior cingulate/precuneus area (PCP). Changes in the connectivity between these regions have

been observed previously in subjects with Alzheimer’s disease (Wang et al., 2007) or even mild

cognitive impairment (Zhang et al., 2009).

Using a subsample of scans of 306 subjects from the UC Davis study, the singular compo-

nent functions and corresponding scores (ζ, ξ) for these two regions were computed (Figure 8).

Unsurprisingly, the singular component functions for the two regions are similar, while the correla-

tion between the scores across subjects is only r = 0.078. The scalar scores can be used in place of

the fMRI time courses for the two regions in connectivity analyses, facilitating a great reduction in

computational cost, as the raw time courses are high-dimensional.

7 Stringing High Dimensional Data for Functional Analysis

Modeling and prediction for very high-dimensional data of dimension p, when p is large, is well

known to be a challenging problem. However, if the p−dimensional observations are ordered and

can be represented as discretized and noisy observations that originate from a hidden smooth
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Figure 8: Singular component from FSCA on time signals from the medial prefrontal (MP) and

posterior cingulate/precuneus (PCP) regions.

stochastic process, one can utilize various functional data techniques to take advantage of the

underlying smoothness. This idea has been conceptualized in a “stringing” method that reorders the

components of the high-dimensional vectors and transforms the observations into functional data.

Established techniques from Functional Data Analysis can be applied for further statistical analysis,

once an underlying stochastic process and the corresponding random trajectory for each subject

have been identified. Stringing can be implemented by distance-based metric Multidimensional

Scaling, mapping high-dimensional data to locations on a real interval such that predictors that are

close in a suitable sample metric also are located close to each other on the interval.

We illustrate the stringing idea with a single nucleotide polymorphisms (SNP) data set and a

gene data set, and also explore the idea of variable selection based on the stringed order. The

SNP genotype data for our first illustration of stringing are from a marker trait association study

where 74 SNPs in 23 candidate genes have been selected from the literature, focusing on different

pathways associated with the folate, lipid, and vitamins A, E, and B-12 metabolism (Chen et al.,

2011). We only retain SNPs that have less than 10 missing values, and subjects in the Caucasian

group, resulting in n = 374 subjects and 64 SNPs. The SNP genotype takes the values 0 (AA), 1
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(Aa), 2 (aa), thus the SNPs can be viewed as ordinal data. We base our analysis on the 64 × 64

distance matrix of pairwise Euclidian distances of SNP genotypes, and then apply Stringing.

The SNP data in the stringed order are presented in Figure 9, overlaid with recovered underlying

processes Xi(t) for six subjects. These recovered processes have been obtained by functional prin-

cipal component analysis, as described in section 2. Following this stringing step, one can further

apply functional data analysis techniques. For example, one can build functional linear regression

models as described in section 3, using stringed SNP functions Xi(t) to predict a relevant response

Y , such as plasma homocysteine (Hcy). A next goal is then to identify SNPs that are significant

for Hcy level regulation.
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Figure 9: SNP data represented in stringed order with fitted curves using functional principal

component analysis, for nine randomly selected subjects.

For a second illustration of Stringing, we present data from a study of the survival of patients
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with diffuse large-B-cell lymphoma (DLBCL) (Rosenwald et al., 2002). Here one is interested in

predicting survival from individual high-dimensional microarray gene expression data. The data

consist of n = 240 patients, for each of whom p = 7399 gene expression levels were measured. For

initial screening, we follow the same approach as described in Chen et al. (2011), and select the

top 240 genes that have the largest individual Cox scores, where Cox score is defined as the Score

test statistic for gene effect in univariate Cox regression models. The patients are randomly divided

into training (160 subjects) and test (80 subjects) groups; only the training group data is used to

perform Stringing and to establish the stringed order of genes. The genes in stringed order for four

randomly selected subjects are visualized in Figure 10.

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

Figure 10: Genes in stringed order for four randomly selected subjects.

Next we explore an idea of variable selection based on the stringed order. The starting point for

this selection is that we expect smoothness in gene profiles, specifically that after stringing genes

placed close to each other on the interval have a similar effect on the response. While a direct full

search of all possible subsets of genes is impossible, the expected continuity motivates to consider

subintervals as units, which is computationally much faster.
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Specifically, we further divide the 160 subjects randomly into subsets of 110 (S1) and 50 (S2)

subjects. We use S1 to train a Cox model, and S2 to evaluate the prediction performance of the

model. In a first step we divide the ordered genes into 8 adjacent intervals and implement a full

search of any possible combinations of these 8 intervals as predictors in a Cox model. We build Cox

regression models by using the center gene in the corresponding interval as predictors and evaluate

the performance of each model on the subset S2. Then the model with the smallest deviance for

the Cox model on S2 is selected, which leads to the selection of regions 1, 2 and 8. The regions are

marked blue in Figure 11. We further divide each of the selected regions into 6 regions, resulting

in 18 regions (each contains 5 genes). Then a second search over models that contain k regions, for

k ≤ 6 is performed. The best model contains the center gene from five sub-regions as marked red

in Figure 11. Since we use center genes in each region when building the regression model, where,

for example, 18 is the center gene of the region [16,17,18,19, 20], we could further search around

those center genes to fine tune the model. The final best model contains genes with indices [19, 23,

29, 38, 228] out of the 240 genes. They correspond to genes numbers [5301, 1188, 3810, 3811, 1638]

in the original gene index set (7399 genes).
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Figure 11: Variable selection for DLBCL data: the regions selected from the first step are marked

in blue and the subsequent selections are marked in red.

To evaluate the model with the selected 5 genes, we look at the deviance (DEV) on the testing

sample (n = 80). For 50 simulations based on random splits of training and testing sets, the median
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deviance, using the selected 5 genes, is -10.1. Bøvelstad et al. (2007) reported the median deviance

for three previously used methods based on the same simulation design. These comparison methods

are principal component regression with DEV = −3, ridge regression with DEV = −8.5, and Lasso

with −4.5. The new variable selection method based on stringed order outperforms these methods

as it has a smaller deviance.

8 Conclusions

Functional Data Analysis is well suited for the analysis of large and complex biological data that

include a time-dynamic component and where the time dynamics is an important feature. Such

data abound in ecology and biodemography, monitoring and tracking, genomics, and many medical

applications. Often one is interested in studying relationships between variables that consist of both

vectors and functional components, and by now there exist a large number of functional regression

models that aim at various scenarios of combinations of scalar and functional variables. Specifically,

functional data analysis provides a flexible tool for sparsely measured longitudinal data as they are

commonly encountered throughout the social and life sciences.

A highly versatile tool that has proven almost universally applicable is functional principal

component analysis that is based on an eigenexpansion of the underlying covariance operators of

the processes observed. This method is highly effective for implementing the necessary dimension

reduction that reduces infinite-dimensional functional and longitudinal data to a vector of functional

principal component scores that are then used for further statistical analysis. While there are various

to accelerate the necessary computations for the case of very large sets of functional data, speeding

up the underlying computations remains an important topic for future research.
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