
doi:10.1107/S0907444910014836 733

Quantifying instrument errors in macromolecular
X-ray data sets

Kay Diederichs

University of Konstanz, Faculty of Biology,

M647, D-78457 Konstanz, Germany

Correspondence e-mail:

kay.diederichs@uni-konstanz.de

An indicator which is calculated after the data reduction of

a test data set may be used to estimate the (systematic)

instrument error at a macromolecular X-ray source. The

numerical value of the indicator is the highest signal-to-noise

[I/�(I)] value that the experimental setup can produce and its

reciprocal is related to the lower limit of the merging R factor.

In the context of this study, the stability of the experimental

setup is influenced and characterized by the properties of the

X-ray beam, shutter, goniometer, cryostream and detector,

and also by the exposure time and spindle speed. Typical

values of the indicator are given for data sets from the JCSG

archive. Some sources of error are explored with the help

of test calculations using SIM_MX [Diederichs (2009), Acta

Cryst. D65, 535–542]. One conclusion is that the accuracy of

data at low resolution is usually limited by the experimental

setup rather than by the crystal. It is also shown that the

influence of vibrations and fluctuations may be mitigated by a

reduction in spindle speed accompanied by stronger attenua-

tion.

1. Introduction

In general, data collection at a synchrotron beamline is

expected to deliver the best possible data set for a given

crystal. While it is true that a synchrotron data set is usually

much more strongly exposed and therefore delivers higher

resolution data than data from a rotating-anode generator, it

is sometimes found that home sources deliver more accurate

data, i.e. data with a higher signal-to-noise [I/�(I)] ratio, than

synchrotron data, in particular at low resolution. For some

purposes, such as molecular-replacement calculations and

refinement, the accuracy of the data may not be of the utmost

importance (Borek et al., 2003), but for experimental phasing,

in particular in the case of sulfur-SAD phasing, it obviously is.

The lack of accuracy of an individual measurement may be

partly compensated, within limits given by the time available

for the experiment and by the radiation damage to the crystal,

by averaging of multiple intensity measurements (observa-

tions) of the unique reflections.

Recently, it has been noted (Diederichs, 2009) that at most

synchrotron sites and even with good crystals the I/�(I) ratio

of the strongest (unmerged) observations is rarely above 30

even in the lowest resolution shell. Obviously, counting

statistics are not the limiting factor, as individual reflections

may well have many more than 10 000 counts, which would

allow I/�(I) ratios of more than 100 and low-resolution R

factors of better than 1%.
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The reduced I/�(I) values and elevated R factors are the

consequence of several sources of error that cannot be

corrected by data-reduction software. These include beam

instability, shutter jitter, the goniostat sphere of confusion

leading to non-uniform irradiation of the crystal, non-unifor-

mity of the angular speed of the spindle, shutter–spindle de-

synchronization, detector nonlinearity (e.g. errors, owing to

dead-time effects or other factors, in the conversion of photon

numbers to pixel counts), detector non-uniformity (e.g.

varying sensitivity and gain across the surface) and detector

noise, and crystal vibration arising from the cryostream or

other mechanical or electronic influences. Few of these

sources of error are under the control of the experimenter.

Rather, a beamline user largely depends on the given beam-

line setup and on the scientists who adjust it.

The wavelength and crystal-to-detector distance depend,

for many experiments, on the type and the purpose of the

experiment. However, other parameters are available to the

experimenter and can be used to optimize the quality of the

resulting data (Dauter, 2010) and to minimize the overall

error. The most important parameters are the exposure time,

the oscillation range, the number of ‘passes’ (oscillations of

the spindle within the exposure time of a frame) and the

attenuation of the beam. The maximum oscillation range per

frame may be estimated from basic geometrical considerations

and under certain assumptions an optimal value may be

calculated (Popov & Bourenkov, 2003; Bourenkov & Popov,

2006).

The purpose of this paper is to show that in many cases,

after the usual data collection, information is available to

quantify the amount of instrument error affecting the data.

This may in turn be used to improve the experimental setup

and to optimize the data-collection parameters. The focus of

the paper is on synchrotron data collection.

2. Methods

Scaling programs account for slow variations in X-ray flux and

irradiated crystal volume throughout a data-collection run,

compensate for differences in absorption owing to the

different paths of incoming and diffracted X-rays and partially

adjust for radiation damage. These systematic effects as well

as random errors arising from counting statistics and other

sources are taken into account in an approach based on a

model of the experiment and the probability distributions

describing its error components (Borek et al., 2003). However,

the model of the experiment and its treatment by the software

may be incomplete (e.g. owing to a lack of information about

a particular effect) and partly inadequate (e.g. owing to

approximations). Thus, systematic effects that are not properly

modelled may give rise to systematic errors.

As a result of the processing, each reflection is assigned an

estimate of the variance �2
hkl of its intensity Ihkl (the hkl

subscript is omitted in the following). A simple model, which

(as required by error-propagation theory; Bevington, 1969)

adds the random and systematic variance components from all

sources of error, has its historical foundation in the error

model applicable to scanners for X-ray film (Leslie, 1999;

Evans, 2006). It is given by

�2
¼ �2

counting þ KI2: ð1Þ

Here, for each reflection, the first term �2
counting gives the

variance from Poissonian counting statistics and includes the

background term. This approach uses a single constant K for

each data set. K may be adjusted such that the observed

spread of intensities of symmetry-related reflections on

average matches their variance, which is equivalent to stating

that on average the �2 values should be around unity. For

strong reflections, the background is negligible and �2
counting is

approximately equal to the intensity I. In this case, taking the

square root and dividing by I leads to

�=I ’ ðK þ I�1
Þ

1=2: ð2Þ

Therefore, I/� cannot be larger than 1/K1/2. Current data-

reduction programs usually employ a more elaborate

approach with, for example, two adjustable constants K1 and

K2 for a data set,

�2
¼ K1�

2
counting þ K2I2; ð3Þ

such that deviations of the actual detector gain (the conver-

sion factor from photons to counts) from the value used for

calculating the Poissonian counting statistics can also be

accounted for (Leslie, 2006).

The variable names K1 and K2 are used throughout this

paper to indicate their general nature. Current data-proces-

sing programs employ mathematically equivalent variations of

(3) and often name the variables in a descriptive way. For

example, SCALA (Collaborative Computational Project,

Number 4, 1994; Evans, 2006) uses the names SDFAC and

SDADD, SCALEPACK (Otwinowski & Minor, 1997) uses

variables called ‘error scale factor’ and ‘estimated error’, and

DSCALEAVERAGE (from the d*TREK package; Pflugrath,

1999) employs the variables Emul and Eadd.

2.1. Upper theoretical limit of I/r in a data set

XDS (Kabsch, 2010a,b), which was used to process the

simulated and measured data sets in this work, employs the

following variation of (3),

�2
¼ K1ð�

2
counting þ K2I2

Þ; ð4Þ

where the variables K1 and K2 are termed a and b in Kabsch

(2010a). With this choice of error model,

ðI=�Þasymptotic
¼

1

ðK1K2Þ
1=2

ð5Þ

is the limiting value of I/� for large I and can serve to quantify

the contribution of systematic error to the total variance of a

reflection.

To use (5), a peculiarity of XDS has to be taken into

account: the program adjusts the variances in two phases of

data processing. Fixed values of K1
0 = 4 and K2

0 = 0.0001 are

employed in the INTEGRATE step and adjustable values K1
00

and K2
00 are computed in the CORRECT step; the latter are
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denoted by a and b in the logfile CORRECT.LP. Combining

these corrections, the resulting constants are K1 = 4K1
00 and

K2 = K2
00/4 + 0.0001 and thus

ðI=�Þasymptotic
¼

1

½K001 ðK
00
2 þ 0:0004Þ�1=2

: ð6Þ

Similar formulae can be found for other data-processing

software. However, as the definitions of the variables differ,

the relevant documentation has to be consulted. Furthermore,

the least-squares procedures used to obtain a �2 value of 1

differ between these programs and some of them also let the

user specify the values of the variables. In addition, different

programs employ different methods for outlier rejection.

Thus, values of (I/�)asymptotic from different programs are not

directly comparable.

For strong reflections, (I/�)asymptotic is almost reached and

can thus be obtained from a plot of I/� versus I (Fig. 1). The

latter analysis can be performed routinely for any data-

processing software, but it requires data that are strong

enough to show the asymptotic behaviour and does not deliver

information about K1 and K2. Furthermore, the unmerged

intensities have to be analyzed, which is the default output

format for XDS and can be optionally

chosen for other packages.

2.2. Processing of experimental data
sets

A random selection of eight experi-

mental data sets (Joint Center for

Structural Genomics, unpublished

work) were downloaded from the JCSG

data-set archive (Jaroszewski et al.,

2009). These represent successful

structure solutions using the molecular-

replacement method or experimental

phasing by the SAD or MAD method.

All data sets were processed with XDS

(version 28 December 2009) using

standard procedures. A single pass of

data processing and thus no data-set-

dependent optimization of geometric

parameters and those describing beam

divergence and crystal mosaicity was

employed. The resolution of the data

sets, as judged from the statistics of data

processing, was in good agreement with

that reported for the deposited PDB

files in all cases.

Some data sets were also processed

with MOSFLM (Leslie, 1992), with

generally similar results (data not

shown).

2.3. Simulation of instrument errors

The program SIM_MX (Diederichs,

2009) can be used to generate artificial

data sets with and without (systematic)

instrument errors. For this work, artifi-

cial data sets with 1.6 Å resolution were

generated using SIM_MX with inten-

sities corresponding to an insulin model

(PDB code 2bn3; Nanao et al., 2005) in

space group I213 with a = 77.9 Å. The

intensity values were calculated in

phenix.refine (Adams et al., 2010), using

anisotropic atoms, added H atoms and a

solvent model, and multiplied by 0.01.
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Figure 1
I/� plots for the first data set of each project listed in Table 1. The data points of 3kk7 and 3kgy
which form a weak elongated cloud separated from the strongly populated region belong to
reflections near ice rings.



The data sets correspond to measurements at 1 Å wavelength

and a crystal-to-detector distance of 150 mm with a MAR345

detector, an oscillation range of 1� and an average background

of 30 counts per pixel. The data sets include the very weak

anomalous signal of the S atoms at this wavelength.

A data set devoid of systematic error and data sets modified

by various types and amounts of instrument error were

generated. By default, the crystal mosaicity was specified using

a value of 0.1� for both CELL_STDDEV and ORIENTA-

TION_STDDEV; for some calculations 0.2� or 0.4� was used.

Data sets by default consisted of 32 frames; for data sets 9 and

10, 64 frames were calculated. In all other respects, default

values of the SIM_MX program were used unless noted in

Table 2.

SIM_MX has two features for assessing the influence of

instrument error on simulated data. The first of these simu-

lates non-ideal shutter–spindle synchronization, such as a

shutter always opening too late or closing too early. To this

end, the program allows modification of the contents of 20

sub-ranges of the oscillation range of each frame. To simulate

a 5% error in this category, one sub-range was set to have zero

exposure whereas all other sub-ranges had the correct expo-

sure. The expectation was that this error should result in a

lower limit for (I/�)asymptotic of around 20 (the reciprocal of

5%).

The other feature offered by SIM_MX is a systematic

modification of the pixel contents consisting of multiplication

of the number of photons on a frame by a sinusoidal function

[ f(’) = 1 + csin(d’)] which depends on the rotation angle ’ at

which the photons are diffracted. Such a function may be

understood as one (sometimes the only) component of a

Fourier analysis of the spectrum of fluctuations. The amplitude

of modulation is given by the variable c and its period is

associated with the variable d. This modification can be used

to assess the influence of beam fluctuations of a given period

(which need not coincide with the shutter frequency) or

periodic mechanical motions of the diffractometer or crystal.

The synthetic data sets were processed with XDS. The

correlation coefficient between signed anomalous differences

of intensities referring to random subsets of multiple obser-

vations (Schneider & Sheldrick, 2002) was obtained from the

XDS output file CORRECT.LP for the low-resolution shell (50–

4.76 Å).

3. Results

3.1. I/r values of experimental data

The (I/�)asymptotic values of the JCSG data sets, which were

collected on ADSC and MAR CCD detectors, are in the range

14–35 (Table 1). If several data sets (often representing

different wavelengths) were collected for a given project, their

(I/�)asymptotic values usually only show variations of up to

about 10%. The exception is 3kk7, which will be discussed

below (x4.3).

The K1 values are in the range 4–5. This is owing to the fact

that the point-spread function of CCD detectors extends over

several pixels, which means that the gain values for individual

pixels (obtained in the INIT step of XDS) underestimate the

gain value required to obtain accurate variances of the

reflection intensities (Leslie, 2006). K1 compensates for these

errors in gain. It may be noted that K1 values near unity are
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Table 1
Statistics of JCSG data sets.

The data sets were collected in the order given, except that the MAD data sets named E1, E2 and E3 (where they exist) were collected in an interlaced fashion,
alternating the wavelengths after every 30 frames. The oscillation range was 1�, except for data sets ‘1’ for 3kgx, 3kez and 3k5j, which employed a 0.5� range. The
mosaicity (reported as REFLECTING_RANGE_ESD by XDS) was 0.09� for 3kgx, 0.24� for 3bgu, 0.18� for 2ril, 0.25� for 3kk7, 0.08� for 3kez, 0.12� for 3ke7, 0.09�

for 3k5j and 0.09� for 3kgy. K1, K2 and (I/�)asymptotic were calculated from the output of XDS using the formulae in x2.1.

PDB
code Synchrotron Beamline

Date of data
collection

Structure
solution

Data
set

Resolution
(Å) K1

1000 �
K2 (I/�)asymptotic

Exposure
time (s)

3kgx ALS 5.0.3 18 Oct 2009 Molecular replacement 1 1.80 4.9 0.22 30.7 2
3bgu ALS 8.2.2 4 Oct 2007 MAD E1 1.50 4.1 0.25 31.5 1

E2 1.50 4.4 0.21 32.5 1
2 1.50 3.9 0.35 27.0 1

2ril ALS 8.2.2 4 Oct 2007 MAD E1 1.26 4.4 0.52 20.9 1
E2 1.26 4.3 0.50 21.6 1
2 1.26 4.4 0.47 21.9 1

3kk7 SSRL 9-2 31 July 2009 MAD E1 2.46 4.8 0.76 16.6 4
E2 2.46 4.6 0.89 15.6 4
E3 2.46 4.8 0.97 14.6 4
2 2.46 5.0 0.27 27.2 8
3 2.46 5.5 0.37 22.2 10

3kez SSRL 9-2 13 May 2009 SAD 1 1.90 4.0 0.21 34.8 5
3ke7 SSRL 11-1 13 May 2009 MAD E1 1.45 4.1 0.29 29.0 2

E2 1.45 4.1 0.22 33.1 2
2 1.45 4.1 0.28 29.3 2

3k5j SSRL 11-1 8 Jul 2009 SAD 1 1.40 4.9 0.36 23.9 2
2 1.77 5.8 0.30 24.0 4

3kgy SSRL 11-1 7 Jul 2009 MAD E1 1.50 4.4 0.47 22.0 2
E2 1.50 4.5 0.45 22.2 2
2 1.50 4.4 0.52 20.8 2



usually obtained for the Pilatus (Henrich et al., 2009) silicon

pixel detector (data not shown), which has a very narrow

point-spread function.

Fig. 1 shows plots of I/� values as a function of intensity.

One data set (3kez) was weakly exposed and the limit of I/� is

not clearly visible. The other seven plots display a sigmoidal

curve: the (I/�) of the low-intensity reflections (up to an

intensity of about 100 counts) is most affected by background

and therefore does not depend strongly on I, whereas in the

range of intensities up to about 500 counts I/� rises with I. For

large I, I/� approaches a limiting value consistent with the

(I/�)asymptotic value calculated from K1 and K2 (6). This means

that despite their high quality these data sets were noticeably

compromised by systematic errors. Quantitatively, the

asymptotic value of I/� is approached for intensity values

above about 500 counts and a large fraction of all reflections is

affected in these data sets.

3.2. Systematic errors related to shutter–spindle
de-synchronization

A calculation of synthetic data without systematic error

(data set 1 in Table 2) was used to establish the highest value

of (I/�)asymptotic that can be reached by simulation from a

crystal with a mosaicity of 0.1�. For the data simulated here,

the value obtained was 160.9. All other calculations included

systematic errors such that the resulting (I/�)asymptotic values

encompass the range relevant to experiments at a synchrotron,

which is far below this value, which could be considered ideal.

In most calculations, the K1 values are near unity, as no

detector point-spread function is currently simulated by

SIM_MX. The exception is synthetic data set 6 which, owing to

a doubled crystal-to-detector distance, lacks the weak reflec-

tions required to properly define K1 in the least-squares fit; in

this case only (I/�)asymptotic is meaningful.

After establishing a baseline value of 21.9 for (I/�)asymptotic

in a calculation without modification of the default values

(synthetic data set 2), eight calculations (synthetic data sets

3–10) were performed to test the influence of several aspects

of the data-collection strategy. Doubling the mosaicity of the

crystal (synthetic data set 3) increased (I/�)asymptotic to 57.

On the other hand, increasing the flux (tenfold exposure in

synthetic data set 5), doubling the distance (synthetic data set

6), cutting the resolution to 3 Å (synthetic data set 7), chan-

ging the orientation of the crystal (synthetic data set 8),

doubling the number of frames and thereby increasing the

multiplicity (synthetic data set 9) or using half of the oscilla-

tion range (synthetic data set 10) did not change (I/�)asymptotic

in a significant way. A change of wavelength was not simu-

lated, as none of the systematic errors is explicitly wavelength-

dependent.

3.3. Systematic errors related to modulations

Fig. 2 shows plots of the data simulating modulations. For

both low and high periods, the (I/�)asymptotic values reach the

level of the ‘ideal’ data. In the range 0.01–1 oscillations per

second, however, the (I/�)asymptotic values drop to values below

10, with a minimum of 7.5. The minimum value of (I/�)asymptotic

that is expected in such a calculation is the reciprocal of the

average deviation value of 1 + csin(x) from unity. With c = 0.2,

a value of 1/(0.2� 2/3.14159) = 7.85 results, which is consistent

with the results obtained.

The explanation of these results is the following: for suffi-

ciently long periods of the modulation it can be compensated

in the data-reduction software by a scale factor for the whole

frame. Similarly, for periods that are sufficiently short com-

pared with the mosaicity of the crystal, the fluctuation at the

level of integrated intensities averages out. However, the

range 0.01–1 oscillations per second is of practical importance

for data collection at a synchrotron. Within this range, the

period of the fluctuation (measured in degrees of spindle

rotation) is comparable to the mosaicity of the crystal. Con-

sequently, the intensity estimates are strongly affected by the

modulation.

3.4. Influence of instrument error on experimental phasing
prospects

All JCSG data sets with (I/�)asymptotic values of 25 and

higher allowed straightforward structure solution by experi-

mental phasing (data not shown). Unfortunately, to the best of

the author’s knowledge experimental data sets which did not

allow structure solution are not available from the JCSG data

archives.
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Table 2
Statistics of simulated data sets.

The default values are given in the text.

Type of
calculation

Amount of instrument
error simulated

Synthetic
data set No.

Modification with
respect to defaults K1

1000 �
K2 (I/�)asymptotic

Error-free None 1 — 0.98 0.04 160.9
Shutter/spindle

de-synchronization
No signal during last 5% of oscillation 2 — 0.72 2.89 21.9
No signal during last 5% of oscillation 3 Double mosaicity 0.93 0.33 57.0
No signal during last 10% of oscillation 4 Double mosaicity 0.92 1.57 26.3
No signal during last 5% of oscillation 5 Tenfold flux 1.21 2.04 20.1
No signal during last 5% of oscillation 6 Double distance 0.11 26.4 18.4
No signal during last 5% of oscillation 7 Resolution cutoff at 3 Å 0.67 3.97 19.3
No signal during last 5% of oscillation 8 Crystal rotated by 45� around a general axis 0.79 2.58 22.2
No signal during last 5% of oscillation 9 Double number of frames 0.79 2.96 20.7
No signal during last 5% of oscillation 10 Half of oscillation range;

double number of frames
0.86 2.93 19.9



Synthetic data allow the evaluation of the impact of dete-

riorated data quality. Synthetic data sets 1 and 3, with their

high (I/�)asymptotic, could indeed be used for SAD structure

solution using SHELXD/E (Sheldrick, 2008), whereas all of

the other data sets did not lead to substructure solution and

phasing. However, being able to solve a structure is a quali-

tative feature of a data set. To obtain a quantitative relation

between (I/�)asymptotic and a parameter that has been shown to

be strongly related to the prospect of solving a structure with

SAD, SIR or MAD, the correlation coefficient between signed

anomalous differences within a data set (Schneider & Shel-

drick, 2002) was calculated for these synthetic data sets. Fig. 2

shows that (I/�)asymptotic and this anomalous correlation

coefficient, which was computed for reflections to 4.76 Å

resolution, both depend in the same way on the amount of

systematic error introduced.

Fig. 3 shows that the anomalous correlation coefficient for

the synthetic data with its very weak anomalous signal is

higher than 20% whenever (I/�)asymptotic is higher than 20. For

values of (I/�)asymptotic less than 10 the anomalous correlation

coefficient is negligible and for (I/�)asymptotic values larger than

50 it approaches a value of 74%, the average of the resolution

shell.

These values refer to a particularly difficult case, which

simulates the anomalous signal of sulfur at a wavelength of

1 Å. For more typical SAD or MAD phasing projects the

anomalous signal is usually stronger. Over the years, the

author has solved several SeMet MAD structures with

(I/�)asymptotic values of 15 or higher; however, whenever

(I/�)asymptotic was lower than 20 phasing and model building

were usually difficult. These experiences refer to a multiplicity

of about 3–4 (for each member of a Friedel pair). The author

has also seen cases of good crystals giving (I/�)asymptotic values

of 10 or lower. In these cases, radiation damage usually

destroyed the crystals before a useful anomalous signal could

be obtained from averaging of multiple observations.

4. Discussion

Possible sources of error in the intensity values in an X-ray

experiment are the crystal itself, the experimental setup and

the software that processes the data. The total error in the

scaled intensity of a specific reflection may be split up into a

random part (arising from counting statistics and amenable

to reduction by averaging of multiple observations) and a

systematic part (which has either a lowering or an augmenting

effect on a particular observation). Whereas the random

component is associated with the scattering of the crystal, the

X-ray flux of the beamline and noise from the detector and

electronics, the systematic component may be subdivided into

the software part, the crystal part and the instrument part
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Figure 3
Plot of the relation between anomalous correlation coefficient and
(I/�)asymptotic for the synthetic data sets as a function of the frequency of

the harmonic modulation of intensities. Colours correspond to those in
Fig. 2.

Figure 2
(a) Plot of (I/�)asymptotic as a function of the frequency of the harmonic
modulation of intensities (SIM_MX parameter MODULATION_IN_
PHI). The amplitude of the modulation was set to 20% (c = 0.2). The
frequency given is relative to 1 s exposure of frames with an oscillation
range of 1�; halving the speed of the spindle would have the same effect as
doubling the modulation frequency. The variation of the (data set-
internal) anomalous correlation coefficient in the 50.0–4.77 Å resolution
shell is shown in (b). Red, mosaicity of 0.1�; green, 0.2�; blue, 0.4�.



(beamline, diffractometer, detector, cryocooling), which will

be discussed in this order.

The goal of the discussion is to judge the relative amounts of

these contributions and to dissect their roles, in particular with

respect to (I/�)asymptotic. It will be seen that for a given

mosaicity the value of (I/�)asymptotic mainly depends on the

instrument error.

(I/�)asymptotic was chosen as the focus of the discussion

owing to its property as a limiting value of the signal-to-noise

ratio of the strongest reflections. Alternatively, its reciprocal

value may be considered as the systematic component of the

error contributing to the internal R factor of the data, as

Rmerge’ 0.7979h�/Ii (Stout & Jensen, 1968). Thus, if �2 is near

1, the lower limit of the low-resolution Rmerge is close to about

0.8/(I/�)asymptotic, and its actual value is increased beyond that

by random error.

4.1. Systematic error contributions from software

Any investigation into (I/�)asymptotic values of experimental

and synthetic data can only be meaningful if the data

processing itself produces little error compared with that

resulting from the experimental setup. In theory, the value of

(I/�)asymptotic for ‘perfect’ synthetic data, i.e. those derived

from a model that agrees with that of the data-reduction

software, should approach infinity. In practice, perfect data are

impossible to generate and likewise data reduction cannot

have perfect results, e.g. owing to the finite accuracy of

computer calculations. Furthermore, approximations and

compromises in both the data-producing and data-processing

software preclude perfect data being obtained in a simulated

experiment.

In the case of SIM_MX, the number of X-rays traced is

finite, all mosaic blocks are assumed to have the same size and

the unit-cell parameters, rotation angles and wavelengths are

assumed to be normally distributed around their means. Data-

reduction software has to decide which pixels contribute to a

reflection and which pixels contribute to the background, and

the choice may not be completely consistent with the nature of

the simulated data. In addition, bugs may exist in any piece of

software and calculations with synthetic data can reveal such

bugs. However, there are no known bugs in SIM_MX or XDS

at the time of writing. The large value of (I/�)asymptotic obtained

with data devoid of systematic error confirms that the data-

reduction program itself introduces little systematic error.

4.2. Systematic error contributions from the crystal

Radiation damage may become the biggest contribution to

systematic error if it is allowed to destroy the diffraction

pattern of the crystal. Analysis of (I/�)asymptotic for partial data

sets offers a simple way to detect radiation damage and may

suggest a suitable cutoff on the number of data frames to be

processed. For the experimental data sets investigated in x3.1

radiation damage plays a subordinate role: if parts of the data

sets are processed (first quarter, first half or first three quarters

of all frames) the resulting (I/�)asymptotic values are similar to

(but up to 10% higher than) those obtained with the full data

sets (data not shown).

In principle, absorption in the crystal and its mounting

device (loop) may also contribute to the overall systematic

error. However, the currently available data-reduction soft-

ware has undergone decades of development to properly

model these effects; therefore, it may be assumed that the

remaining systematic error is small.

Some crystals have defects that are apparent in the shape of

their reflections, which may appear to be split or smeared and

are difficult to model and profile-fit. Similarly, ice rings result

in lowered (I/�)asymptotic values because the integrated inten-

sity of symmetry-related reflections may be affected slightly

differently. The scaling procedure takes these intensity varia-

tions into account by adjustment of K1 and K2, which in turn

raises the � values of all reflections.

Crystals with strong radiation damage, defects in their

reflection profiles or ice rings will therefore exhibit a low

(I/�)asymptotic and cannot be used to quantify instrument error.

However, as long as the profiles of the reflections (even of

high-mosaicity crystals) can be adequately modelled by the

software and radiation damage is low, the contribution of the

crystal to the total systematic error should not be significant.

Therefore, in practice any fresh crystal with a clean diffraction

pattern that covers the detector is suitable for assessing

instrument error, because space-group symmetry provides an

ideal internal calibration of the diffraction experiment.

4.3. Systematic error contributions from the instrument

For a given amount of instrument error, it is shown with

synthetic data in x3.2 that the (I/�)asymptotic value does not

depend on flux, oscillation range, distance, crystal orientation,

number of frames or resolution. The experimental data in x3.1

and Table 1 show that it does not depend on wavelength (for

MAD data sets) or oscillation range (for 3k5j) either. The only

remaining variable is therefore spindle speed. As Figs. 2 and 3

suggest, a reduction in systematic error may be achieved by

increasing the exposure time per degree of spindle rotation, as

this will smooth out some of the high-frequency systematic

errors introduced by the experimental setup.

One of the JCSG projects demonstrates this effect. In the

case of 3kk7, three data sets (E1 = peak, E2 = high-energy

remote, E3 = inflection) were collected with 4 s exposure and

displayed low (I/�)asymptotic values. Long exposure times in

data sets 2 and 3, which were also collected at the peak

wavelength, increased the (I/�)asymptotic value considerably.

However, data set 3, which was collected last, exhibits a lower

(I/�)asymptotic value than data set 2, presumably owing to

radiation damage.

However, two caveats have to be considered. Firstly, any

increase in dose rate leads to increased radiation damage and

thus a decrease in spindle speed usually has to be compen-

sated for by an increase in beam attenuation. Secondly, the

improvement of (I/�)asymptotic depends on the mosaicity of the

crystal: according to Table 2, a higher mosaicity may mask

instrument error. In other words, instrument errors lead to less
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error in the intensities of high-mosaicity crystals than of low-

mosaicity crystals. This conversely means that to quantify

instrument errors, low-mosaicity crystals such as those

commonly used for beamline calibration (e.g. thaumatin,

lysozyme and insulin) are more suitable than high-mosaicity

crystals.

Another instrument error is detector nonlinearity. This

source of systematic error may be quantified by monitoring

(I/�)asymptotic in a series of frames with increasing flux and may

be analyzed by comparing the resulting reduced data sets.

5. Conclusions

Crystallographers tend to believe that the largest contribution

to � is from counting statistics, that an increase in dose should

raise the maximum I/� value and that the maximum I/� value

of their data sets results from a limitation of their crystals.

However, this work demonstrates that this is usually not the

case. Rather, the data and simulations presented here suggest

that high multiplicity (e.g. for experimental phasing) is only

required because systematic instrument error usually prevents

single observations to be measured sufficiently accurately.

The experimental data used in this study were a purely

random selection from the JCSG data-set archive. As Fig. 1

shows, the accuracy of the data (measured as I/�) obtained

from these macromolecular crystals is limited by (I/�)asymptotic.

The saturation of I/� of the strongest reflections in seven of

the eight plots suggests that a better data-collection strategy

might have been to increase the multiplicity while maintaing

the total dose to avoid the inflation of the systematic error

term which limits the I/� of individual observations. This

would have resulted in higher I/� values after averaging.

This gedankenexperiment demonstrates that knowledge of

the amount of systematic error arising from the instrument

would allow the determination of better data-collection stra-

tegies. Thus, a program such as BEST (Popov & Bourenkov,

2003; Bourenkov & Popov, 2006), which in its published form

assumes a fixed 3% systematic error contribution [equivalent

to a (I/�)asymptotic of 33.3], may be improved by taking an

experimentally determined (I/�)asymptotic value into account.

At low multiplicity, high values of (I/�)asymptotic are not a

sufficient condition for solving a structure. Rather, they are a

required condition; in addition, the random error component

needs to be low enough and the phasing power high enough.

Low (I/�)asymptotic may be compensated by high multiplicity at

the expense of radiation damage.

The (I/�)asymptotic value may be measured for a range of

experimental situations using test crystals. As shown in x3,

these values are influenced, for certain kinds of instrument

error, by the mosaicity of the crystal. Furthermore, the

(I/�)asymptotic values strongly depend on the amplitude and

frequency of any vibrations or fluctuations (modulations) in

the experimental setup. Systematic measurements may

therefore help to pinpoint and eliminate or reduce certain

types of instrument errors at a beamline.

An important practical conclusion from these results is that

an experimenter may, in the unavoidable presence of modu-

lations, optimize the data collection by lowering the spindle

speed and attenuating more strongly and thereby transform all

modulations arising from the experimental setup into the

regime with high (I/�)asymptotic and high anomalous correlation

values on the right-hand side of Fig. 2.

In summary, (I/�)asymptotic conveys an important aspect of

data quality for both the beamline scientist and the beamline

user and the values of (I/�)asymptotic for individual data sets

should be routinely evaluated, recorded and reported in

papers about X-ray structure solutions.

The author thanks the JCSG for making their data sets

available.
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