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Abstract: 

A reliable quantitative analysis in electron tomography, which depends on the segmentation of 

the 3D reconstruction, is still challenging because of constraints during tilt-series acquisition 

(missing wedge) and reconstruction artifacts introduced by established reconstruction algorithms 

such as Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete 

Algebraic Reconstruction Technique (DART). We have carefully evaluated the fidelity of 

segmented reconstructions analyzing a disordered mesoporous carbon commonly used as support 

in catalysis. Using experimental STEM tomography data as well as realistic phantoms, we have 

quantitatively analyzed the effect on the morphological description as well as on diffusion 

properties (based on a random-walk particle-tracking simulation) as key parameters to understand 

the role of porosity in catalysis and in phase separation applications. The morphological 

description of the pore structure can be obtained reliably both using SIRT and DART 

reconstructions even in the presence of a limited missing wedge. However, the measured pore 

volume is sensitive to the threshold settings, which are difficult to define globally for SIRT 

reconstructions. This leads to noticeable variations of the diffusion constants in case of SIRT 

reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the 

anisotropy of the determined diffusion properties was evaluated, which was significant in the 

presence of a limited missing wedge for SIRT and strongly reduced for DART.  

 

Keywords: Disordered mesoporous carbon, electron tomography, fidelity of 3D reconstruction, 

morphology quantification, diffusion properties.  

1. Introduction 

Mesoporous materials have attracted a lot of attention and are of great importance in many 

advanced applications due to their remarkable properties, such as high specific surface area, 
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versatile pore structure, chemical inertness, and good mechanical stability (Ryoo et al., 2001; 

Taguchi & Schüth, 2005; Liang et al., 2008). In heterogeneous catalysis, various porous materials 

have been used as support for the active nanometer-sized particles (Taguchi & Schüth, 2005; 

Yang et al., 2011). All aspects of the performance of supported catalysts (activity, selectivity and 

stability) are strongly influenced by the architecture of the porous support: i) the mesopores (2-50 

nm) and micropores (<2 nm) improve the stability of the catalyst (Zuiderveld, 1994; Taguchi & 

Schüth, 2005); ii) the morphology of the macro- and mesopores (geometry and topology) controls 

mass transport during catalyst preparation, thus determining the distribution of the active centers 

(Ruthven & Post, 2001; Armatas et al., 2003; Gommes, Bons, et al., 2009); iii) the meso- and 

micropore morphology is confining the diffusion of reactants and products thereby affecting 

selectivity and activity (Christensen et al., 2003; Olsbye et al., 2012; Wang et al., 2018).     

 

Bulk techniques such as physisorption or small angle X-ray diffraction provide an average 

measure of the pore structure and pore volume. However, those techniques require assumptions 

on the pore shape and connectivity and are not sufficient for an accurate three-dimensional (3D) 

characterization of the structure of disordered porous materials. To fully understand the complex 

3D structure of meso- and microporous materials and to evaluate how the local and average pore 

structure influences the catalyst properties, alternative techniques are needed. Electron 

tomography in combination with advanced analysis has been demonstrated to provide 

quantifiable 3D structural information at the nanoscale (Kübel et al., 2005; Bals et al., 2007; 

Friedrich et al., 2009; Midgley & Dunin-Borkowski, 2009;). For example, SBA-15, an ordered 

mesoporous silica, has been investigated using electron tomography, which revealed the pore 

corrugation and its spatial correlation along the main channels (Gommes, Friedrich, et al., 2009). 

Furthermore, the sensitive interrelationship between morphology and transport properties of 
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SBA-15 has been highlighted recently (Reich et al., 2018). The pore-scale simulations of 

hindered diffusion within a 3D reconstruction of this material demonstrated that even a small 

amount of structural imperfections in the primary mesopore system has drastic consequences for 

the transport properties. Quantitative information about the pore network in Zeolite Y, including 

two types of blocked mesopores (closed and constricted mesopores), the tortuosity of the 

mesopores, and the size distribution has been obtained by electron tomography (Zečević et al., 

2012). However, any quantitative analysis of electron tomograms critically depends on the 

fidelity of the segmentation, the assignment of each voxel to a specific feature or composition 

depending on the gray level and/or local neighborhood. In general, segmentation of tomographic 

data can be achieved by three approaches: manual segmentation, various types of image 

processing as well as advanced reconstruction algorithms that directly result in (partially) 

segmented reconstructions. Careful manual segmentation is typically considered as benchmark 

for unknown objects. However, manual segmentation is very time-consuming, labor-intensive 

and difficult to perform fully reproducibly. During image processing the 3D volume is processed 

in order to reduce noise and to get well-separated image intensities to enable extraction of the 

features using global (Russ, 1992; Vala & Baxi, 2013; Jähne, 2005) or adaptive local (Niblack, 

1985) thresholding. However, in practice, global thresholding typically over/underestimates some 

of the features in the 3D volume due to noise and, more critical, systematic reconstruction 

artifacts of the commonly used weighted back projection (WBP) or simultaneous iterative 

reconstruction technique (SIRT) (Norton, 1985; Kübel et al., 2010). More recently, advanced 

reconstruction algorithms have been proposed that make use of prior knowledge to improve the 

overall reconstruction quality and fidelity. The discrete algebraic reconstruction technique 

(DART) (Batenburg et al., 2009) includes a segmentation in the reconstruction process itself 

based on the prior knowledge that the overall sample can be represented by a few different 
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materials, corresponding to a few grey levels in the 3D reconstruction. The DART algorithm 

starts from a simple thresholded reconstruction, where voxels close to a boundary are iteratively 

refined to achieve the best agreement between the re-projections from the current segmentation 

and the experimental projections (Batenburg et al., 2009). Thereby, the reconstruction directly 

produces a segmented 3D volume of the original object. As another alternative, total variation 

minimization (TVM) compressive sensing (CS) (Goris et al., 2012) assumes a sparse gradient of 

grey levels as normalization to improve the 3D reconstruction. The fidelity of the different 

approaches has been estimated by a number of groups for various materials and shapes 

(Batenburg & Sijbers, 2009; Biermans et al., 2010; Kübel et al., 2010; Saghi et al., 2011; 

Roelandts et al., 2012; Goris et al., 2013;).  

 

However, the effect of the limited fidelity of the segmented 3D reconstruction on the 

measured/calculated properties of the investigated material has not been addressed. Moreover, 

investigations providing quantitative information on the geometry and topology of disordered 

pore structures, or even relating this information to relevant transport properties (Müllner et al., 

2016), are still very limited. In this work, we combine electron tomography with advanced image 

analysis to elucidate the 3D structure of a disordered mesoporous carbon, which is commonly 

used as support in heterogeneous catalysis. The fidelity of the segmented 3D object obtained 

from a SIRT reconstruction followed by image processing and with the DART algorithm is 

investigated using both experimental data and realistic phantoms for the material. The effect of 

the reconstruction approach on the pore morphology is discussed in terms of pore size, pore 

length, tortuosity and connectivity. Most importantly, the effect of reconstruction variations on 

physical properties calculated from the support structure is evaluated, looking at obstructed 

diffusion as one of the critical properties of the mesoporous materials. 
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2.  Materials and Methods 

Mesoporous carbon 

Details of the mesoporous carbon synthesis have been published previously (Villa et al., 2015). 

The material has a specific surface area of 589 m2/g with an average pore diameter of 6.9 nm 

according to BET analysis.  

 

Electron tomography data acquisition 

The dry mesoporous carbon powder was directly dispersed on 100x400 mesh carbon coated 

copper grids (Quantifoil Micro Tools GmbH), which was labelled with Au colloidal particles (6.5 

nm diameter). Electron tomography was performed using a Fischione 2020 tomography holder on 

a Titan 80-300 microscope (FEI Company) operated at 300 kV in STEM mode with a 

convergence angle of 10 mrad and a nominal beam diameter of 0.27 nm. STEM images 

(1024x1024 pixels, the pixel size 0.32 nm) were acquired at a camera length of 195 mm with a 

high-angle annular dark-field (HAADF) detector with in inner angle of 31 mrad using the 

Xplore3D software (FEI Company) over a tilt range of ±76º with a tilt increment of 2°. 

Alignment of the tilt series was performed in IMOD (Kremer et al., 1996) using the Au particles 

as fiducial markers to reach a mean residual alignment error of 0.44 pixels.  

 

Reconstruction and segmentation  

The 3D reconstruction of the aligned tilt series was performed using Inspect3D Version 3.0 (FEI 

Company) using the simultaneous iterative reconstruction technique (SIRT) with 25 iterations. In 

the reconstructed volume, the y-axis is parallel to the tilt axis during data acquisition, the x-axis is 

perpendicular to the tilt axis and the z-direction is parallel to the electron beam direction at 0° 
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sample tilt. Several image processing steps were carried out on the reconstructed tomogram to 

segment the 3D volume. The goal of the image processing was to reduce noise and get well-

separated image intensities to facilitate segmentation, while preserving the sharp boundaries 

between components. The image processing was performed using plugins in the Fiji software 

package (Schindelin et al., 2012): i) Noise reduction of the image stack using the PureDenoise 

plugin (Luisier et al., 2010) and the anisotropic diffusion filter (Tschumperlé & Deriche, 2005); 

ii) Enhancement of local contrast using the CLAHE plugin (Zuiderveld, 1994); iii) binarization 

by global thresholding. The generated binary 3D reconstruction volume (labelled as segmented-

SIRT) was further separated into three parts: vacuum, pore and carbon using the pore filling 

approach implemented in Amira 6.1.1 (FEI Company) to separate internal pores and vacuum 

around the mesoporous carbon particle.  The full image processing steps are exemplified in 

Figure 1. For comparison with the DART reconstruction, the aligned tilt series was reconstructed 

using the DART implementation of the TomoJ plugin (MessaoudiI et al., 2007) in Fiji (labelled 

as DART). The resulting tomogram has an edge length of the voxels of 0.32 nm. 

 

Validation of experimental reconstruction and segmentation 

The segmented models based on the segmented-SIRT and the DART reconstruction were used to 

create tilt-series of 2D projections covering the angular range of ±90º in 2° steps. MATLAB was 

used to generate projections based on a simple linear integration of the intensities in the 

projection direction. The mean absolute error (MAE) (Sage & Unser, 2003) was used to estimate 

the difference between the experimental tilt-series and the re-projected segmented images, in 

which the gold markers within the experimental tilt-series images were removed by interpolating 

the image intensities in the corresponding areas using IMOD. For the MAE calculation, the 
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complete tilt-series of projected images was scaled to cover the full 8-bit intensity range of 0-255 

with the intensity of the vacuum regions set to 0. 

 

Phantom study 

The DART reconstruction of the particle was used as a phantom to evaluate the fidelity of the 

reconstruction and segmentation approaches in more detail. For this, 3D reconstructions were 

performed using the re-projected tilt-series in the angular range of ±76º and ±90º with a tilt step 

of 2° created in Matlab by rotating the orginal object using the function ‘imrotate’. Experimental 

error sources such as detection noise, scan errors or limited alignment quality were excluded in 

this phantom study as well as the supporting carbon film. The reconstruction and segmentation 

was done following the same procedure as before for the experimental data. The resulting 

reconstructions are labeled as Phantom.segmented-SIRT and Phantom.DART. For these phantom 

reconstructions, we can quantitatively compare the mesopore morphology and the diffusion 

simulations with the initial phantom in addition to evaluating any differences on a voxel level. 

 

Morphological characterization of the pore structure 

Skeleton analysis 

In order to quantify the geometry and topology of the pore structure, the pore volume was 

analyzed using the skeletonization function in Amira based on the segmented data. The 

skeletonization procedure reduces the pore space to a branch-node network (i.e., skeleton), as 

described in literature (Fouard et al., 2006) while both the geometrical and topological 

information are preserved. The skeletonization procedure is illustrated in Supplementary Figure 

1. In the process, the mean pore diameter of all individual pores was calculated as average from 

the diameter along each skeleton. The pore length was obtained from summation of number of 
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voxels along skeleton. The pore coordination number was determined by counting the number of 

individual branches connected to a common point. The skeletonized data was further analyzed by 

a home-made code in MATLAB to calculate the tortuosity of the pores. The average tortuosity of 

the pore structure was estimated by analyzing each individual branch of the derived skeleton. The 

tortuosity (τ) of an individual branch is defined as the pore length (dl) divided by the Euclidean 

distance (deucl.) between the pore entrance and exit points: 

                                                                   (1) 

 

Chord length distribution (CLD) analysis 

The pore space within the segmented volume was analysed using CLD analysis (Bruns & 

Tallarek, 2011; Stoeckel et al., 2014; Kroll et al., 2018). For each reconstruction 107 chords were 

generated. These chords originate from randomly chosen points in the void space. From each 

point, 26 equispaced vectors were defined and the length of these vectors determined when they 

hit the solid phase. Chords that projected out of the image were discarded. The resulting chord 

length is the sum of the absolute lengths of any two opposing pairs of vectors. The histogram of 

the chord length distribution was fitted with a k-gamma function (Aste & Di Matteo, 2008) 

                                                         (2) 

where lc is the chord length, Γ is the gamma function, µ is the first statistical moment of the 

distribution, and k is a second-moment parameter defined by the mean and the standard deviation 

σ as k = (µ2/σ2). The values for μ and k obtained from the k-gamma fit to the CLD are quantitative 

measures for the average pore size and for the homogeneity of the pore volume distribution (Gille 

et al., 2002; Aste & Di Matteo, 2008; Hormann & Tallarek, 2013; Müllner et al., 2016).  
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Diffusion simulations 

Diffusion in the void space of cubic subdomains for each reconstruction was simulated by a 

random-walk particle-tracking technique (Delay et al., 2005). For that purpose, a large number 

(typically ) of passive, point-like tracers were randomly distributed in the reconstructed 

void space. At each time step  of the simulation, the random displacement  of every tracer 

due to random diffusive motion was calculated as 

,                                                                     (3) 

where  is the tracer diffusion coefficient in the open space and γ is a vector with random 

orientation in space and a length governed by a Gaussian distribution with zero mean and unity 

standard deviation. The value of  was adjusted such that the mean diffusive displacement did 

not exceed  (where  is the voxel size of the reconstruction). To restrict diffusion 

to the void space, a multiple-rejection boundary condition was implemented at the solid–void 

interface: if at the current iteration step a tracer crossed the solid–void interface, this 

displacement was rejected and recalculated until the tracer position was in the void space. At the 

external faces of the reconstructed domain, mirror boundary conditions were imposed, i.e., when 

a tracer hit an external face, it was mirror-reflected from that face. During the simulation, the 

displacements of every tracer along x-, y-, and z-direction were monitored, which allowed us to 

determine time-dependent diffusion coefficients along each direction  according to (Brenner, 

1980) 

                                                         (4) 

where  denotes x, y, or z, and  is the accumulated displacement of the ith tracer along 

direction  after time . A decrease of  with time (i.e., the number of iterations) from the 
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initial value of 1 results from passive interactions of the tracers with the solid phase. At short 

times, only a small fraction of the tracers experiences geometric confinement during their random 

walk. At long times, the transient diffusion coefficients approach asymptotically the targeted 

effective (time-independent) values. 

 

3. Results and discussion 

3.1 Quantitative comparison of the morphological information obtained from 

experimental SIRT and DART reconstructions 

The HAADF-STEM tilt-series (Supplementary Figure 2) gives a first idea of the disordered pore 

structure of the investigated mesoporous carbon material. The internal mesopore structure is 

better revealed in the reconstructed slices (Figure 2a), where their irregular shape and non-

uniform size can be seen. In order to provide any quantitative 3D structural information, some 

kind of segmentation has to be performed after reconstruction. The resulting quantitative analysis 

strongly depends on the fidelity of the obtained segmentation. 

 

Representative 2D slices of the SIRT reconstruction, the segmented-SIRT and the DART 

reconstruction are shown in Figure 2. Most of the features visually detected in the SIRT 

reconstruction (Figure 2a) are also present in the slices of the segmented-SIRT and the DART 

reconstruction (Figure 2b/c). However, when looking closely at the highlighted regions (red and 

blue circles in Figure 2), we found that the size and connectivity of some of the pores in the 2D 

slices is different in the two segmented results and does not necessarily fit to our visual 

interpretation of the SIRT reconstruction. As one measure for the fidelity of the segmented 

reconstructions we used the calculated re-projection tilt-series from the segmented-SIRT and 
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DART reconstruction and compared it to the experimental tilt-series (Figure 3). The mean 

absolute error (MAE) was calculated to estimate the difference between the experimental 

projections and the re-projections. The MAE values for the nine re-projection directions shown in 

Figure 3d are slightly larger for the segmented-SIRT reconstruction than for the DART 

reconstruction, but the differences are so small that it would be difficult to judge which 

reconstruction is better. 

The pore morphology of the segmented reconstructions was quantified by CLD and skeleton 

analysis. The Supplementary Figure 3 schematically shows the CLD analysis of the pore space 

and the resulting CLD for the segmented-SIRT and the DART reconstruction. The distribution of 

chords (Supplementary Figure 3b) and the k-Gamma fitting of the CLD histograms ( Table 1) 

indicate that the geometry and the homogeneity of the pore space are similar for the segmented-

SIRT and the DART reconstruction. From the skeleton analysis, the important features related to 

the geometry and topology of the pore network such as pore size, pore length, tortuosity and 

interconnectivity are summarized in Figure 4. The pore diameter distribution (Figure 4a) shows 

that a higher percentage of pores with diameters below 4 nm are observed in the segmented SIRT 

reconstruction, thereby resulting in a smaller mean pore diameter ( Table 1) compared to the 

DART reconstruction. Nevertheless, the pore length distribution (Figure 4b) and the mean pore 

length are very similar in the two reconstructions, in agreement with the similar mean chord 

length determined from the CLD analysis. Furthermore, the branch tortuosity (Figure 4c) and the 

coordination number of the branch-node network (Figure 4d), two important parameters 

regarding topology, are also similar. This fits to the CLD results and indicates that the overall 

morphology of the two reconstructions is similar, independent of the reconstruction method ( 

Table 1). However, the total pore volume of the two reconstructions differs noticeably (~25%). 

This pore volume difference should result in a significant difference in the MAE calculation, if 
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performed using a forward simulation of the STEM images with a fully quantified detection 

sensitivity (LeBeau et al., 2008). However, for the MAE calculations presented in Figure 3, the 

experimental tilt-series and the calculated projection intensities were both scaled to cover 8-bit, 

thereby compensating for most of the pore volume differences. This difference of the total pore 

volume is mainly caused by the difficulty to define a good global threshold for the SIRT 

reconstruction. Despite the local contrast enhancement, the average reconstructed intensity for the 

pore/solid varies noticeably in different parts of the particle, rendering a global segmentation 

difficult. More details on the effect of the segmentation threshold will be discussed with the 

phantom studies. 

 

3.2 Diffusion simulations based on experimental segmented-SIRT and DART 

reconstructions  

Transport properties of mesoporous materials are one of the critical aspects to understand activity 

and selectivity in catalysis (Ruthven & Post, 2001; Armatas et al., 2003; Gommes, Bons, et al., 

2009) as well as their efficiency as separation media (Dullien, 1979; Brenner, 1980; 

D’Alessandro et al., 2010). To analyse diffusion properties for this particle, taking into account 

the experimental pore shape, we used a cubic domain with a size of up to 220x220x220 voxels to 

derive effective diffusion coefficients through direct pore-scale simulations (Figure 5). With 

increasing domain size, the diffusion coefficients become almost stable, indicating that the 

domain is starting to approach a statistically representative volume considering the structural 

variations in the material. When comparing the segmented-SIRT and the DART reconstruction of 

exactly the same volume (Figure 5c), we found that normalized diffusion coefficient Deff/Dbulk 

within the largest cubic domain from the DART reconstruction differs (~50%) noticeably from 

the segmented-SIRT reconstruction. Considering that the topology of both reconstructions is 
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similar, this significant difference should be due to the larger pore volume (higher porosity) of 

the DART reconstruction. As the limited convergence of the SIRT reconstruction is known to 

introduce local and global intensity variations (Norton, 1985; Kübel et al., 2010) and as we 

experimentally noticed how difficult it is to define a global threshold even after image processing 

to enhance the local contrast, we assume that the DART reconstruction and thus the DART-based 

diffusion simulations are more accurate. However, this is difficult to verify from the 

experimentally available data. Moreover, we have no good experimental measure to judge the 

fidelity of the DART-based diffusion simulations. 

 

3.3 Fidelity of the 3D reconstruction and effect on morphology and diffusivity 

To further evaluate the fidelity of the 3D reconstruction of mesoporous materials and to estimate 

the effect on the calculated properties of this material, we employed the DART reconstruction as 

a phantom to directly quantify differences between the SIRT and DART based reconstructions 

obtained using the same procedures as for the experimental data. The phantom based SIRT and 

DART reconstructions were carried out for tilt-angles ranges of ±76° and ±90° to further evaluate 

effects due to the missing wedge. As already discussed for the experimental data, defining the 

segmentation threshold is critical for evaluating the reconstructions, both for SIRT and for 

DART. We tested some common unbiased approaches to define a global threshold for 

segmentation such as the isodata-algorithm (Ridler & Calvard, 1978), the moment-preserving 

(Tsai, 1985) and Otsu’s (Otsu, 1979) threshold and a representative slice of the corresponding 

segmented volume is shown in Supplementary Figure 4. However, there are significant 

differences (highlighted by red arrows) in all cases compared to the visual features in the initial 

slice of SIRT reconstruction. Therefore, we were visually defining the best onset threshold for the 

segmentation of the SIRT reconstruction. For the DART reconstruction, we estimated the onset 
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threshold from several regions based on the mean pore and carbon intensities as is commonly 

done in the literature (Batenburg et al., 2009; Biermans et al., 2010). Afterwards, we varied the 

threshold by 10% and 20% to evaluate the sensitivity to the threshold settings. The resulting 

effect on the reconstructed pore volume is shown in Figure 6b. The pore volume determined 

from the segmented SIRT reconstruction is more sensitive to variations of the threshold 

compared to the DART reconstruction. This means that, experimentally, it is more difficult to 

reproducibly segment a SIRT reconstruction compared to a DART reconstruction in these 

mesoporous materials. 

 

For a more detailed analysis, we have evaluated representative 2D slices (Errore. L'origine 

riferimento non è stata trovata.Figure 7) of the Phantom.segmented-SIRT and the 

Phantom.DART reconstructions (based on the onset threshold) and the corresponding surface 

rendering of the pores (Figure 8). All four reconstructions show a high similarity with the 

original phantom exhibiting a very similar morphology. However, the size and 2D connectivity of 

some of the pores (highlighted areas in  Figure 7b-e) are affected by the artefacts introduced 

during the reconstruction and segmentation process. To understand the differences between the 

segmented volumes better, the differences are highlighted with red color indicates ‘missing’ 

pixels/voxels and green represents ‘additional’ pixels/voxels in the reconstructions compared to 

the reference phantom. With a good threshold, the missing and additional voxels in the pores are 

more or less balanced. The pore variations are mainly present in a few voxel wide boundary 

region of the pores. As is visually obvious, the Phantom.DART±90° reconstruction exhibits the 

least variations with a lower amount of ‘missing’ and ‘additional’ voxels compared to other 

reconstructions. 
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To quantify the variations between these reconstructions and the reference phantom, the number 

of voxels differing (‘missing’ and ‘additional’) for each reconstruction are counted and compared 

to the total number of pore voxels both on a slice-by-slice basis (Figure 9a) as well as for the 

overall volume. In addition, the structural similarity (SSIM) index (Z. Wang, A. C. Bovik, 2004) 

is used to measure the similarity between reconstructed slices and the corresponding slices of the 

phantom (Figure 9b). The Phantom.DART±90° and Phantom.DART±76° reconstructions show a 

lower pore variation in all investigated slices compared to the Phantom.segmented-SIRT 

reconstructions and the SSIM calculation also indicates that the Phantom.DART±90° data has the 

highest structural similarity with the initial structure. This is confirmed by the overall differences 

in 3D in Table 2. The comparison further clearly shows the effect of the missing wedge. The 

fidelity of both the SIRT and the DART reconstructions obtained with a missing wedge of 28° is 

lower compared to the ones without missing wedge. However, in case of the DART 

reconstruction this difference is smaller and might partially be due to the reduced number of 

projections. The same trend can also be seen looking at the MAE calculations for this phantom 

study (Supplementary Figure 5). All MAE values are well below 1%, which is significantly 

lower compared to the experimental counterpart, presumably mostly due to the missing noise in 

the phantom studies. Furthermore, slight structural changes, contamination and the beam 

convergence might add to the higher MAE values for the experimental reconstructions. 

 

With the evaluation above, it is clear that the segmented 3D reconstructions are not perfect, but 

visually they nevertheless appear to be close to the original phantom structure. In order to analyze 

the effect of the differences on the morphology and diffusion properties, we analyzed the 

reconstructed phantom structures analogously to the experimental data. The quantitative 

information on the pore morphology derived from CLD and skeleton analysis are summarized in 
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Table 3. Overall, the morphological parameters are quite similar for all 4 reconstructions 

compared to the reference phantom. Especially the topology of the constructed volume fits well 

based on the mean coordination number and the tortuosity. This fits to the visual analysis of the 

pores (as in Figure 8) and means that connectivity differences seen in individual slices of the 3D 

volume ( Figure 7  ) do not lead to a significant number of changes in the 3D pore connectivity. 

However, looking at the geometry-related parameters, such as pore length and width or the mean 

chord length µ as well as the total power volume, slightly stronger differences are noticeable. 

These parameters are most sensitive to slight threshold variations. In addition, the k values (as a 

measure of the homogeneity) are higher for both the segmented-SIRT and the DART 

reconstructions compared to the phantom reference, especially for the limited tilt range of ±76°. 

This indicates that the reconstruction process causes a smoothing of pore variations, especially if 

the reconstruction is affected by the missing wedge. 

 

The diffusion behavior within the 3D pore volume of the phantom reconstructions have been 

simulated as before in case of the experimental data (Figure 10a) to compare the differences 

between the reconstruction algorithms and to evaluate the effect of the missing wedge. We found 

that the effective diffusion within the largest cubic domain of the Phantom.segmented-SIRT±76° 

reconstruction is about 14% lower compared to the reference, while the value of 

Phantom.segmented-SIRT±90° reconstruction is about 21% higher. This difference is partially 

due to the variations in the pore volume between the reconstructions, which is ~5% lower than in 

the reference for the Phantom.segmented-SIRT±76° (in the volume used for the diffusion 

simulation), whereas the pore volume of the Phantom.segmented-SIRT±90° is ~14% higher 

compared to the reference phantom. For the Phantom.DART reconstructions, the variation of the 

diffusion coefficients compared to the reference is significantly smaller. It is about 7% 
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(Phantom.DART±76°) and about 3% (Phantom.DART±90°) higher than in the reference 

phantom. However, it should be noted that the corresponding pore volume of the 

Phantom.DART±76° is almost the same as in the reference (1% higher), while the pore volume 

in the Phantom.DART±90° reconstruction is 4% higher. This clearly shows that the pore volume 

is not the only factor affecting the variations in diffusion coefficients between the 3D 

reconstructions, but the slight morphological differences and potentially also necking between 

pores play a role. Another critical point is the effect of the missing wedge on the measured 

diffusion properties and, in particular, on the anisotropy of the determined diffusion properties 

that it causes. This was evaluated by separately analyzing the x-component (perpendicular to the 

tilt-axis and the electron beam direction), y-component (parallel to the tilt-axis) and z-component 

(parallel to the electron beam direction) of the diffusion coefficients Figure 10b-c). As the 

investigated volume is not necessarily fully isotropic, we did not compare the absolute diffusion 

components in the different directions but only the differences of each component relative to the 

reference phantom. In case of the Phantom.segmented-SIRT±76°, the diffusion in 3D is 14% 

lower compared to the reference, but the z-component of the diffusion is enhanced and almost the 

same as the diffusion in this direction in the reference. This is the expected result of the missing 

wedge, leading to a lower intensity for pore walls oriented perpendicular to the electron beam, 

thus enhancing the pore length/connectivity in z-direction. In addition, we noticed that the 

missing wedge has a significantly different effect on the x- and y-component of the diffusion 

coefficients. The x-component of the diffusion is 10% lower than the reference value and thus 

slightly enhanced compared to the difference in 3D. However, the y-component of the diffusion 

is strongly reduced; it is 56% lower than the reference.  
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To better understand this anisotropy, we investigated the effect of the SIRT reconstruction from a 

series of projections of a 3D shell model covering a tilt-angle range of ±76° (Supplementary 

Figure 6). As commonly considered, the missing wedge results in a significant reduction of the 

reconstructed intensities of the shell in z-direction, because this part of the shell has strong 

Fourier coefficients within the missing wedge (Supplementary Figure 6a/b). However, the 

reconstruction also reveals a slight anisotropy for the central slice in x- and y-direction 

(Supplementary Figure 6c). This leads to the highest reconstructed intensities for pore walls 

perpendicular to the y-direction, which is a bit higher than the intensities perpendicular to the x-

direction and again higher than the intensities perpendicular to the z-direction (Supplementary 

Figure 6d). In turn, the components of the effective diffusion coefficient should be inversely 

affected, which is exactly the trend we notice in our diffusion simulations based on the 

Phantom.segmented-SIRT±76° reconstruction compared to the reference. For the 

Phantom.DART±76° reconstruction, the anisotropy of the diffusion components is significantly 

reduced compared to the Phantom.segmented-SIRT±76° reconstruction. This means that the 

DART reconstruction significantly reduces the missing wedge artifacts. However, a deeper 

analysis shows that we still see the same trend as for the SIRT reconstruction. The z-component 

is enhanced (13%) compared to the reference, the x-component and the y-component are almost 

the same. This residual anisotropy suggests that the DART reconstruction did not fully converge 

to suppress the missing wedge artifacts. 

 

In the reconstruction based on the full tilt-angle range of ±90°, the Phantom.segmented-

SIRT±90° exhibits slightly higher normalized diffusion coefficients in x- and z-direction 

compared to the y-direction. The SIRT reconstruction of a tilt-series of projections of a 3D shell 

model covering the full tilt-range of ±90° revealed that the intensity in x- and z-direction is lower 
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compared to the y-direction ( Supplementary Figure 6e), which would lead to higher diffusion 

both in x- and z-direction, which is exactly what we observe in our diffusion simulations for the 

Phantom.segmented-SIRT±90° reconstruction. This anisotropy of the SIRT reconstructions even 

with the full ±90° tilt-angle range is due to the discrete angular sampling during tilting (2° tilt 

step here), which can be considered as a set of mini missing wedge in the x-z plane, whereas the 

y-direction along the tilt-axis will not be affected. Also in this case, the anisotropy of the 

diffusion components is again significantly reduced by the Phantom.DART±90°, resulting in a 

just slightly higher component in the z-direction compared to the other two directions. 

 

4. Conclusions   

The morphological description and the diffusion properties of a disordered mesoporous carbon 

material have been quantified based on an electron tomographic reconstruction. The quantitative 

analysis strongly depends on the fidelity of the reconstruction and the segmentation, which are 

affected by pore size variations, the missing wedge during tomographic acquisition and the 

reconstruction approach. The morphological description of the pore structure in terms of simple 

geometric and topological parameters can be performed reliably based on both the SIRT and 

DART reconstruction even in the presence of a limited missing wedge. However, the measured 

pore size and length vary somewhat depending on the threshold used for segmentation, and in 

particular, for the SIRT reconstruction it is difficult to reproducibly define a uniform global 

threshold. This has a noticeable effect on the measured pore volume, which differed by ~25% in 

our experimental SIRT and DART reconstructions. Since diffusion through a pore network 

depends essentially on porosity, i.e., on the void volume fraction, the simulated diffusion 

coefficients also differed significantly (by ~50%) between the experimental SIRT and the DART 

reconstruction.  
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In a phantom study based on the reconstructed mesoporous carbon, we analyzed the fidelity of 

the reconstruction and segmentation approach for disordered mesoporous materials in more 

detail. This revealed that the sensitivity of the pore volume towards the threshold settings is 

higher for the SIRT reconstruction compared to the DART reconstruction, making it more 

difficult to define a good threshold and, thus, to reproducibly measure the pore volume based on 

a SIRT reconstruction. However, we found that the pore variations introduced in the 

reconstruction and segmentation process are mainly present in a few voxel wide boundary region 

of the pores, slightly altering the local size of the pore structure, but not significantly affecting the 

morphology. Mainly due to the differences in the pore volume, the simulated diffusion 

coefficients also varied for the different reconstructions. Nevertheless, in the case of the DART 

reconstruction a reproducible simulation of the diffusion coefficient was possible. 

 

Missing wedge artifacts result in a noticeable anisotropy of the measured x-, y- and z-components 

of the diffusion coefficient based on the SIRT reconstruction, with the highest coefficients in z-

direction and the lowest coefficient in y-direction. This anisotropy is strongly reduced in the 

DART reconstruction, resulting in differences of only a few percent even in the presence of a 

limited missing wedge. 

 

In summary, our studies indicate that a reproducible and reliable analysis of the pore structure of 

mesoporous materials is possible by electron tomography based on a DART reconstruction. It 

enables reliable analysis of the effective diffusion properties, thereby providing input to the 

understanding of morphology–transport relationships, e.g., in heterogeneous catalysis. 
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JÄHNE, B. (2005). Digital image processing. New York: Springer. 

KREMER, J. R., MASTRONARDE, D. N. & MCINTOSH, J. R. (1996). Computer visualization of 

three-dimensional image data using IMOD. Journal of structural biology 116, 71–76. 

KROLL, M., HLUSHKOU, D., SCHLABACH, S., HÖLTZEL, A., ROLING, B. & TALLAREK, U. (2018). 

Reconstruction–simulation approach verifies impedance-derived ion transport tortuosity of a 

graphite battery electrode. Journal of The Electrochemical Society 165, A3156–A3163. 

KÜBEL, C., NIEMEYER, D., CIESLINSKI, R. & ROZEVELD, S. (2010). Electron tomography of 



25 
 

nanostructured materials –towards a quantitative 3D analysis with nanometer resolution. 

Materials Science Forum 638–642, 2517–2522. 

KÜBEL, C., VOIGT, A., SCHOENMAKERS, R., OTTEN, M., SU, D., LEE, T. C., CARLSSON, A. & 

BRADLEY, J. (2005). Recent advances in electron tomography: TEM and HAADF-STEM 

tomography for materials science and semiconductor applications. Microscopy and 

Microanalysis 11, 378–400. 

LEBEAU, J. M., FINDLAY, S. D., ALLEN, L. J. & STEMMER, S. (2008). Quantitative atomic 

resolution scanning transmission electron microscopy. Physical review letters 100, 206101. 

LIANG, C., LI, Z. & DAI, S. (2008). Mesoporous carbon materials: synthesis and modification. 

Angewandte Chemie - International Edition 47, 3696–3717. 

LUISIER, F., VONESCH, C., BLU, T. & UNSER, M. (2010). Fast interscale wavelet denoising of 

Poisson-corrupted images. Signal Processing 90, 415–427. 

MESSAOUDII, C., BOUDIER, T., SORZANO, C. O. S. & MARCO, S. (2007). TomoJ: tomography 

software for three-dimensional reconstruction in transmission electron microscopy. BMC 

Bioinformatics 8, 288. 

MIDGLEY, P. A. & DUNIN-BORKOWSKI, R. E. (2009). Electron tomography and holography in 

materials science. Nature materials 8, 271–280. 

MÜLLNER, T., UNGER, K. K. & TALLAREK, U. (2016). Characterization of microscopic disorder in 

reconstructed porous materials and assessment of mass transport-relevant structural 

descriptors. New Journal of Chemistry 40, 3993–4015. 

NIBLACK, W. (1985). An Introduction to Digital Image Processing. Michigan: Prentice-Hall. 

NORTON, S. J. (1985). Iterative reconstruction algorithms: convergence as a function of spatial 

frequency. Journal of the Optical Society of America A 2, 6–13. 

OLSBYE, U., SVELLE, S., BJRGEN, M., BEATO, P., JANSSENS, T. V. W., JOENSEN, F., BORDIGA, S. 



26 
 

& LILLERUD, K. P. (2012). Conversion of methanol to hydrocarbons: how zeolite cavity and 

pore size controls product selectivity. Angewandte Chemie - International Edition 51, 5810–

5831. 

OTSU, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions 

on Systems, Man, and Cybernetics 9, 62–66. 

REICH, S. J., SVIDRYTSKI, A., HÖLTZEL, A., FLOREK, J., KLEITZ, F., WANG, W., KÜBEL, C., 

HLUSHKOU, D. & TALLAREK, U. (2018). Hindered diffusion in ordered mesoporous silicas: 

insights from pore-dcale dimulations in physical reconstructions of SBA-15 and KIT-6 

silica. Journal of Physical Chemistry C 122, 12350–12361. 

RIDLER, T. W. & CALVARD, S. (1978). Picture thresholding using an iterative selection method. 

IEEE Transactions on Systems, Man, and Cybernetics 8, 630–632. 

ROELANDTS, T., BATENBURG, K. J., BIERMANS, E., KÜBEL, C., BALS, S. & SIJBERS, J. (2012). 

Accurate segmentation of dense nanoparticles by partially discrete electron tomography. 

Ultramicroscopy 114, 96–105. 

RUSS, J. C. (1992). The Image Processing Handbook. Boca Raton: CRC Press. 

RUTHVEN, D. M. & POST, M. F. M. (2001). Diffusion in zeolite molecular sieves. Studies in 

surface science and catalysis 137, 525–577. 

RYOO, R., JOO, S. H., KRUK, M. & JARONIEC, M. (2001). Ordered mesoporous carbons. Advanced 

Materials 13, 677–681. 

SAGE, D. & UNSER, M. (2003). Teaching image-processing programming in Java. IEEE Signal 

Processing Magazine 20, 43–52. 

SAGHI, Z., HOLLAND, D. J., LEARY, R., FALQUI, A., BERTONI, G., SEDERMAN, A. J., GLADDEN, L. 

F. & MIDGLEY, P. A. (2011). Three-dimensional morphology of iron oxide nanoparticles 

with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) 



27 
 

approach. Nano Letters 11, 4666–4673. 

SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T., 

PREIBISCH, S., RUEDEN, C., SAALFELD, S., SCHMID, B., TINEVEZ, J. Y., WHITE, D. J., 

HARTENSTEIN, V., ELICEIRI, K., TOMANCAK, P. & CARDONA, A. (2012). Fiji: an open-source 

platform for biological-image analysis. Nature Methods 9, 676–682. 

STOECKEL, D., KÜBEL, C., HORMANN, K., HÖLTZEL, A., SMARSLY, B. M. & TALLAREK, U. 

(2014). Morphological analysis of disordered macroporous-mesoporous solids based on 

physical reconstruction by nanoscale tomography. Langmuir 30, 9022–9027. 

TAGUCHI, A. & SCHÜTH, F. (2005). Ordered mesoporous materials in catalysis. 

TSAI, W.-H. (1985). Moment-preserving thresolding: a new approach. Computer Vision, 

Graphics, and Image Processing 29, 377–393. 

TSCHUMPERLÉ, D. & DERICHE, R. (2005). Vector-valued image regularization with PDEs: a 

common framework for different applications. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 27, 506–517. 

VALA, M. H. J. & BAXI, A. (2013). A review on Otsu image segmentation algorithm. 

International Journal of Advanced Research in Computer Engineering and Technology 2, 

387–389. 

VILLA, A., SCHIAVONI, M., CHAN-THAW, C. E., FULVIO, P. F., MAYES, R. T., DAI, S., MORE, K. 

L., VEITH, G. M. & PRATI, L. (2015). Acid-functionalized mesoporous carbon: an efficient 

support for ruthenium-catalyzed γ-valerolactone production. ChemSusChem 8, 2520–2528. 

WANG, W., VILLA, A., KÜBEL, C., HAHN, H. & WANG, D. (2018). Tailoring the 3D structure of 

Pd nanocatalysts supported on mesoporous carbon for furfural hydrogenation. 

ChemNanoMat 4, 1125–1132. 

YANG, Y., CHIANG, K. & BURKE, N. (2011). Porous carbon-supported catalysts for energy and 



28 
 

environmental applications: a short review. Catalysis Today 178, 197–205. 

Z. WANG, A. C. BOVIK, H. R. S. AND E. P. S. (2004). Image quality assessment: from error 

visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612. 

ZEČEVIĆ, J., GOMMES, C. J., FRIEDRICH, H., DEJONGH, P. E. & DEJONG, K. P. (2012). 

Mesoporosity of zeoliteY: quantitative three-dimensional study by image analysis of 

electron tomograms. Angewandte Chemie - International Edition 51, 4213–4217. 

ZUIDERVELD, K. (1994). Contrast limited adaptive histogram equalization. In Graphics gems IV, 

pp. 474–485. Massachusetts: Academic Press. 

 

 



29 
 

 

Table and Figures 

Table 1: Morphological descriptors for the pore structure of the segmented-SIRT and DART 

reconstructions. 

Table 2: Pore variation and SSIM calculation for the phantom segmented 3D reconstructions. 

Table 3: Quantitative morphological information on the pore structure. 

Figure 1: Illustration of the image processing steps after SIRT reconstruction for the mesoporous 

carbon. 

Figure 2: Typical xy slices of (a) the SIRT reconstruction, (b) the segmented-SIRT and (c) the 

DART reconstruction (the areas highlighted by red cycles exhibit pore size variations and the 

blue regions indicate differences in connectivity of the pores in 2D). 

Figure 3: Projected images at 0° for (a) experimental STEM tilt-series, (b) segmented-SIRT and 

(c) DART reconstructions. (d) MAE calculation for re-projected images from the segmented-

SIRT (purple) and DART (blue) reconstructions at angles of -70°,-50°,-30°,-10°, 0°, 10°, 30°, 50° 

and 70°. 

Figure 4: (a) Pore size distribution, (b) pore length distribution, (c) pore tortuosity and (d) 

coordination number based on the segmented-SIRT and the DART reconstruction.   

Figure 5: (a) Overall 3D morphology of the mesoporous carbon particle, (b) cubic substructure 

used for the diffusion simulations and (c) calculated effective diffusion coefficients normalized 

by the bulk diffusivity in dependence of the cube edge length for the segmented-SIRT and the 

DART reconstruction.  

Figure 6: (a) Intensity histogram of a 3D reconstruction showing two main peaks corresponding 

to pore (void) and carbon (solid); (b) effect of threshold on the reconstructed pore volume within 
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Phantom.segmented-SIRT and the Phantom.DART reconstructions (the dashed line indicates the 

pore volume of the reference phantom).  

Figure 7: Slices of the (a) DART phantom reference, (b) Phantom.segmented-SIRT±76°, (c) 

Phantom.segmented-SIRT±90°,(d) Phantom.DART±76° and (e) Phantom.DART±90° 

reconstructions with (f-i) the differences in the pore structures: the pixels of the red and green 

parts represent ‘missing’ and ‘additional’ voxels of the reconstructed pore compared to the 

phantom. (Areas highlighted by red circles exhibit pore size variations and the blue regions 

indicate differences in the connectivity of the pores.) 

Figure 8: 3D view of a selected pore: (a) reference, (b) Phantom.segmented-SIRT±76°, (c) 

Phantom.segmented-SIRT±90°, (d) Phantom.DART±76° and (e) Phantom.DART±90°. 

Differences are highlighted in red (missing voxels) and green (additional voxels). 

Figure 9: (a) Percentage of pore variation (the dashed lines indicate the average values of the 

pore variation in the 3D volume) and (b) SSIM calculated for slices distributed throughout the 

reconstructed volume for the four phantom reconstructions. 

Figure 10: Effective diffusion coefficients normalized by the bulk diffusivity as a function of the 

simulation box size. (a) 3D, (b) x-component, (c) y-component and (d) z-component. 

Table 1 

Data CLD analysis Skeleton analysis 

 
µ 

(nm) 
k  

Pore volume 
(105 nm3) 

Pore diameter 
(nm) 

Pore length 
(nm) 

Tortuosity 

segmented-SIRT 11.1 3.13  4.39 5.2±2.6 13.1±11.0 1.17±0.31 
DART 11.0 3.10  5.67 5.6±2.1 13.3±10.3 1.15±0.24 

 

Table 2 

Segmentation Pore variation (%) SSIM 

Phantom.segmented-SIRT±76° 21 0.946 
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Phantom.segmented-SIRT±90° 19 0.947 
Phantom.DART±76° 15 0.954 
Phantom.DART±90° 7 0.973 

 

Table 3 

Data 
CLD 

analysis 
Skeleton analysis 

 
µ 

(nm) 
k 

Pore 
volume 

(10
5
 

nm
3
) 

 Pore 
volume 
within 
largest 
cubic 

domain 

(10
5
 nm

3
) 

Pore 
diameter 

(nm) 

Pore 
length 
(nm) 

Tortuosity 

Coordination 
number 

3 >3 

DART 11.0 3.10 5.67 0.79 5.6±2.1 13.3±10.3 1.15±0.24 94.8% 5.2% 
Phantom.segmented-

SIRT±76° 
11.5 3.23 5.44 0.75 5.6±2.5 14.6±11.8 1.16±0.48 95.6% 4.4% 

Phantom.segmented-

SIRT±90° 
12.3 3.16 5.78 0.90 6.2±2.5 14.8±11.2 1.15±0.23 96.0% 4.0% 

Phantom.DART±76° 11.7 3.23 5.54 0.80 5.9±2.4 13.8±11.2 1.12±0.17 94.9% 5.1% 

Phantom.DART±90° 11.4 3.15 5.60 0.82 5.8±2.3 13.7±11.2 1.14±0.21 94.8% 5.2% 

 

 

Figure 1  
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Figure 7   
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Figure 9 



36 
 

 

Figure 10 
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Supplementary Information 

Supplementary Figures 

Supplementary Figure 1: Scheme of the skeletonization process: distance map calculation, 

thinning and the derived skeleton (left to right).   

Supplementary Figure 2: 0° HAADF-STEM image from a tilt-series of the disordered 

mesoporous carbon. The aligned tilt-series is available online as movie. 

Supplementary Figure 3: Schematic illustration of the CLD analysis of the pore space: (a) 

chords scanning the solid−void border from a random point in the pore space, (b) chord length 

(lc) distribution for the pore space of the segmented-SIRT and DART reconstructions and best fits 

to the k-gamma function. 

Supplementary Figure 4: (a) Gray-scale slice of the Phantom.segmented-SIRT±90° 

reconstruction and the corresponding binary slices defined by the (b) isodata-algorithm, (c) 

moment-preserving and (d) Otsu’s thresholds and (e) best visually defined threshold representing 

most of the features. 

Supplementary Figure 5: MAE calculation for the Phantom.segmented-SIRT and 

Phantom.DART reconstructions at angles of -70°,-50°,-30°,-10°, 0°, 10°, 30°, 50° and 70°. 

Supplementary Figure 6: Phantom study of a shell reconstructed using SIRT with a tilt-range of 

±76°: (a) surface rendering of the reconstructed structure; central (b) xz and (c) xy slices and the 

corresponding intensity profile of central lines in x, y and z directions (red, green and blue lines in 

b and c) indicating the anisotropy effect of the missing wedge on the reconstructed intensity; (e) 

The intensity profile of central lines in x, y and z directions of the same shell phantom 

reconstructed using SIRT with a tilt-range of ±90°. 
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