
                          Onslow, A. CE., Bogacz, R., & Jones, MW. (2011). Quantifying phase-
amplitude coupling in neuronal network oscillations. Progress in
Biophysics and Molecular Biology, 105(1-2), 49-52.
https://doi.org/10.1016/j.pbiomolbio.2010.09.007

Peer reviewed version

Link to published version (if available):
10.1016/j.pbiomolbio.2010.09.007

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1016/j.pbiomolbio.2010.09.007
https://doi.org/10.1016/j.pbiomolbio.2010.09.007
https://research-information.bris.ac.uk/en/publications/35f582b8-79b7-415c-a5ae-613062541876
https://research-information.bris.ac.uk/en/publications/35f582b8-79b7-415c-a5ae-613062541876


Quantifying phaseeamplitude coupling in neuronal network oscillations

Angela C.E. Onslow a,b,c, Rafal Bogacz b,**, Matthew W. Jones c,*

aBristol Centre for Complexity Sciences, University of Bristol, UK
bDepartment of Computer Science, University of Bristol, UK
c School of Physiology & Pharmacology, University of Bristol, UK

a r t i c l e i n f o

Article history:

Available online xxx

Keywords:

Theta rhythm

Gamma rhythm

Hippocampus

Prefrontal cortex

a b s t r a c t

Neuroscience time series data from a range of techniques and species reveal complex, non-linear inter-

actions between different frequencies of neuronal network oscillations within and across brain regions.

Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with

linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal

ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coor-

dination, and we compare the properties of three techniques used to measure phaseeamplitude coupling

(PAC) e Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence

(CFC) e by standardizing their filtering algorithms and systematically assessing their robustness to noise

and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadablemethod

for estimating statistical significance of PAC, a step overlooked in themajority of published studies.We find

that varying data length and noise levels leads to the threemeasures differentially detecting false positives

or correctly identifying frequency bands of interaction; these conditions should therefore be taken into

careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three

measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus

and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal

gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in

deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.

� 2010 Published by Elsevier Ltd.
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1. Introduction

Oscillatory activity is a pervasive feature of biological systems in

general and nervous systems in particular. Neuronal oscillations

reflect interdependencies between the relative timing (phase) and

power (amplitude) of rhythmic activity in individual components of

neurons, networks and systems. Oscillation cycle lengths range from

milliseconds (e.g. 100e200 Hz hippocampal ripples), to seconds (e.g.

cardio-respiratory rhythms in brainstem), to hours (e.g. circadian

modulation of cortical excitability), with oscillations at these distinct

frequencies arising from distinct cellular, synaptic and neuro-

modulatory processes (Buzsaki, 2006; Young and Eggermont, 2009).

The powers of these diverse oscillatory frequencies can be dynami-

cally modulated over a similar range of timescales, as can the

coherence of a given frequency of oscillation between networks of

neurons across numerous brain regions. This within-frequency

coordination reflects and mediates functional connectivity, allowing

specialized structures to both encode information independently and

to interact selectively according to behavioural demands (Fries, 2009;

Varela et al., 2001). However, rather than constituting independent

communication channels analogous to AM radio signals, different

frequencies of neuronal activity simultaneously interact with one

another in nested,multiplexed signals. This cross-frequency coupling

may reflect an important component of the synchronized neuronal

activity believed to underlie brain function, and deciphering its

mechanisms and roles necessitates increasingly sensitive and

complex analyses and models.

1.1. Cross-frequency coupling in neuronal data

Cross-frequency coupling of neuronal activity is evident in at least

two forms: (1) phase synchrony, duringwhich a consistentnumberof

higher-frequency cycles occur within single cycles of a lower-

frequency rhythm (Tass et al., 1998) and (2) phaseeamplitude

coupling (PAC), duringwhich the phase of a lower-frequency rhythm

modulates the amplitude of a higher-frequency oscillation. Although

the extent to which phase synchrony and PAC reflect similar mech-

anisms and roles remains to beestablished, both types of coupling are

evident in a range of EEG, electrocorticogram (ECoG), magneto-

encephalogram (MEG) and local field potential (LFP) data recorded

from a range of brain regions and species. The majority of phase

synchrony examples to date stem from studies of human neocortex

(Darvas et al., 2009a,b; Palva et al., 2005; Palva and Palva, 2007); in

contrast, PAC is prevalent in both human and rodent neocortical,

allocortical and subcortical regions, and currently represents a more

experimentally tractable model of cross-frequency coupling (see

Jensen and Colgin, 2007).

The archetypal example of neuronal PAC was first uncovered in

the CA1 subfield of the hippocampus, where LFP recordings reveal

a consistent, cyclic variation of gamma-frequency (30e100 Hz)

power with concurrent theta-frequency (5e10 Hz) phase (Bragin

et al., 1995; see Fig. 1 for example). Since the connectivity and

activity patterns of hippocampal excitatory and inhibitory principal

neurons and interneurons are increasingly well understood

(Klausberger and Somogyi, 2008), the hippocampus therefore
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Fig. 1. Local field potential data showing thetaegamma PAC in CA1 of rat hippocampus. (A) 10 s of broadband LFP (left, bandpass filtered at 0.1e475 Hz) and corresponding power

spectrum (right) showing predominant theta-frequency power whilst a rat actively explores its homecage. (B) Expanded 1 s segment showing raw signal (top) and bandpass filtered

theta (middle, 5e10 Hz) and gamma (lower, 60e80 Hz, amplified by a factor of 4 for clarity) rhythms. The thick grey line over the gamma signal shows the amplitude envelope and

dashed horizontal lines mark timing of theta cycle peaks; note alignment of theta peaks and gamma envelope during the first half of the trace. The notation to the right is defined in

Methods and used throughout the text.
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presents a valuable model network in which to dissect PAC’s

mechanisms and roles. For example, Wulff et al., 2009 used

a genetically altered mouse line lacking functional GABA-A recep-

tors on a subset of interneurons to suggest a role for rapid, synaptic

feedback inhibition in shaping hippocampal PAC.

Models have attempted to link hippocampal thetaegamma PAC

with CA1-dependent memory processing, whereby subsets of

hippocampal units co-active during individual gamma cycles are

recruited in consistent, sequential order dependent upon theta

cycle phase (Lisman and Buzsaki, 2008; Lisman and Idiart, 1995; see

also Fuentemilla et al., 2010). There is also evidence to suggest that

hippocampal pyramidal cells differentiate in the preferred phase at

which they fire in relation to thetaegamma PAC activity. This could

allow for the simultaneous implementation of multiple coding

schemes for memory items, stored in both a sequential and non-

sequential context (Senior et al., 2008). Recent data from LFP

recordings from both rat and human hippocampus provide

evidence for a functional role of thetaegamma PAC in mnemonic

processing (Axmacher et al., 2010; Shirvalkar et al., 2010; Tort et al.,

2009), but these hippocampal models and examples also reflect

a broader hypothesis of PAC function: hierarchies of inter-locked

oscillatory frequencies allow ensembles of anatomically localized

neurons co-active on short timescales (i.e. within higher-frequency

cycles, e.g. Siegel et al., 2009) to be temporally aligned (‘bound’)

across longer timescales and anatomical distances by lower-

frequency modulation (see Sarnthein et al., 1998). VanRullen and

Koch (2003) posited a PAC-based model of alphaegamma-

frequency interactions mediating perception, and a recent example

of data supporting a functional role for hippocampal PAC showed

that separable bands of the gamma-frequency range coincide with

different phases of the theta rhythm in CA1. It was suggested that

PAC of gamma at these different frequencies reflects the dynamic

influence of afferent inputs from CA3 and entorhinal cortical

regions to CA1 during different phases of the theta cycle (Colgin

et al., 2009); as such, similar phenomena may reflect interactions

in other systems of connected brain regions.

Beyond the hippocampal formation, PAC phenomena have been

reported in sensory, frontal and parietal human neocortex during

a range of auditory, linguistic and working memory tasks (Canolty

et al., 2006; Osipova et al., 2008; Sauseng et al., 2008), plus in

monkey auditory and visual cortices (Lakatos et al., 2007; Lakatos

et al., 2008) and rodent olfactory bulb (see Rojas-Libano and Kay,

2008). The oscillation frequencies demonstrating PAC in these

various systems and behaviours are by no means restricted to

thetaegamma cross-frequency interactions, but also encompass

delta (1e4 Hz) and alpha (8e12 Hz) rhythms, though variable

definitions of frequency band labels can confound comparisons

across species. Importantly, some studies suggest a continuous

hierarchy of frequencies, with delta modulating theta which in turn

modulates gamma (Lakatos et al., 2005); simultaneous PAC across

such a range of timescales raises important questions about the

underlying network structure giving rise to the phenomenon, as

well as the relative functional contributions of oscillations at

distinct frequencies.

Importantly, PAC does not occur only within functionally

specialized brain regions, but also across functionally related brain

regions. For example, hippocampalestriatal PAC is dynamically

modulated alongside behavioural task demands in rat (Tort et al.,

2008), and hippocampal theta phase can also modulate neocor-

tical gamma power (Sirota et al., 2008). Like within-frequency

coherence, PAC is therefore well placed to underpin or reflect the

temporal coordination of neuronal networks across distributed

brain regions, though the basic features of excitatory and inhibitory

network connectivity that give rise to PAC of different frequencies

and in different anatomical regions have not yet been established.

1.2. Analysis of phaseeamplitude coupling

Fig. 1 shows 1 s of LFP data recorded from hippocampal CA1 of

a freely behaving rat; whilst PAC is clearly evident upon visual

inspection, these data demonstrate some central challenges that

arise when attempting to quantify its extent and nature. These

include, but are not limited to:

i. a variable signal-to-noise ratio between the amplitudes of

both phase modulating and amplitude-modulated signal;

ii. estimating the statistical significance of any PAC present,

given that PAC may arise by chance in signals simultaneously

containing power in low and high frequencies;

iii. quantifying the time-variant dynamics of PAC, which is non-

stationary and may come and go from one lower-frequency

cycle to the next;

iv. limits imposed by the length of available data series, for

example precluding analyses of low frequency signals;

v. establishing whether PAC applies to all frequencies present,

or is restricted to specific pairs of modulating and modulated

oscillations;

vi. determining whether amplitude-modulated power varies

continuously with modulating phase, or whether step-like

changes in amplitude underlie PAC.

Robust, sensitive analysis methods with sufficient temporal

resolution and statistical power are therefore essential for the study

of PAC, particularly in limited and/or noisy neurobiological data. A

number of methods have been published in recent years, some of

which have been compared and reviewed in different combinations

elsewhere (Cohen, 2008; Penny et al., 2008; Tort et al., 2010). Here,

we briefly review three of the available PAC analysis methods; we

have standardized the algorithms for their implementation to

enable an objective, quantifiable comparison of their advantages

and limitations, which are demonstrated and discussed in relation

to both simulated and real LFP data.

2. Methods

2.1. Notation

Throughout the following sections we denote the raw signals as

XphðtÞ and XampðtÞ, corresponding to the signal assumed to contain

the lower, modulating frequency and the signal assumed to contain

the higher, modulated frequency respectively. In analyses used to

investigate the phase of a slower oscillation modulating the

amplitude of a faster oscillation within the same signal,

Xph ¼ Xamp. Each of the PAC detection measures relies on filtering

one or both of these signals for particular frequencies. Yfph will

denote signal Xph filtered for a particular frequency, fph. Yfamp will

denote the signal Xamp filtered for a particular frequency, famp.

Examples of the raw and filtered signals with corresponding

notation can be seen in Fig. 1.

All the measures require the calculation of Afamp, the instanta-

neous amplitude envelope of the higher-frequency oscillation (also

shown in Fig. 1). The MI measure also requires the instantaneous

phase of the lower-frequency oscillation, denoted qfphðtÞ. These are

calculated by first obtaining an analytic representation of the

appropriate signal, either using the Hilbert transform or filtering

the signal via convolution with complex Morlet wavelets. The

instantaneous amplitude and phase can then be calculated as the

absolute value and the phase angle of the analytic signal

respectively.
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2.2. The Envelope-to-Signal (ESC) measure (Bruns and

Eckhorn, 2004)

The ESC measure calculates the correlation between the

amplitude envelope of the filtered high frequency signal, Afamp, and

the filtered low frequency signal, Yfph.

ESCfph; famp ¼ r
�

Afamp;Yfph

�

2.3. The Modulation Index (MI) (Canolty et al., 2006)

The MI measure generates a complex valued composite signal

such that the amplitude is composed of the high frequency

amplitude envelope values, Afamp, and the phase is composed of the

low frequency signal’s instantaneous phase, qfphðtÞ.

Zfph; fampðtÞ ¼ AfampðtÞ$e
iqfphðtÞ

This composite signal creates a joint probability density function

when viewed on the complex plane. If the average of the signal is

non-zero then, assuming the distribution of fph phase values is

uniform, this indicates a tendency for a particular amplitude and

phase value to co-occur in time. An MI value is calculated as the

absolute value of the average of the composite signal:

MIfph; famp ¼
�

�

�average
�

Zfph;fampðtÞ
�
�

�

�

2.4. Cross-Frequency Coherence (CFC) (Osipova et al., 2008)

The CFC measure calculates the coherence at frequency fph

between two signals: the time-varying energy of the high

frequency signal (calculated as Afamp divided by half the sampling

frequency and then squared, denoted ~Afamp) and the unfiltered raw

signal believed to contain the modulating frequency, Xph.

CFCfph; famp ¼ coherencefph

�

Xph;
~Afamp

�

2.5. Standardization and implementation

The three PAC detection measures were implemented in

a MATLAB toolbox, available at http://www.cs.bris.ac.uk/Research/

MachineLearning/pac/

In order to directly compare themeasures, a commonmethod of

filtering the data was employed. We chose to filter via convolution

with complex Morlet wavelets with width¼ 7. Preliminary tests

with various different types of filters showed that an acceptable

alternative to wavelet filtering is to use a two-way least squares

filter such as that implemented by the eegfilt function (part of the

EEGLAB toolbox for MATLAB http://sccn.ucsd.edu/eeglab/). Infinite

Impulse Response filters such as the Butterworth filter do not have

sufficient frequency response characteristics to capture the neces-

sary time-frequency information which determines PAC signals.

Our implementation of the three measures also includes

a method of statistical significance testing; again this is common to

all threemeasures. The high frequency amplitude envelope signal is

shuffled in order to disrupt the time-ordering of values. This is

achieved by dividing the data into sections, the number of which is

set equal to the number of seconds of data or 1000, whichever is the

larger value. The boundaries of the sections are placed at random

locations chosen with uniform probability throughout the signal.

The sections are then rearranged at random to create the final

shuffled signal. This procedure retains the mean, variance and

power spectrum of the original signal whilst removing the

temporal relationship between amplitude values. Discontinuities

are introduced and there is evidence that this can introduce

spurious PAC detection results (Kramer et al., 2008), however the

performance on artificial data was still deemed sufficient,

presumably since the discontinuities are independently distributed

in time. A population of 50 shuffled signals are created and

compared to the original low frequency signal in order to generate

a distribution of PAC values using the appropriate measure. PAC

values lying in the top 5% of this distribution were deemed

significant.

2.6. Generation of artificial data

In order to test the performance of the three PAC detection

measures we generated artificial data in which we could control if

and to what extent PAC occurs. Since the majority of neuronal

recordings presenting PAC focus on theta modulating gamma

rhythms (Bragin et al., 1995) we chose to create signals containing

power at fph¼ 4 Hz and famp¼ 60 Hz. The sampling frequency

Fs¼ 1017 Hz.

To build our data first we generated two signals, one oscillating

at fph and one at famp:

sigfphðtÞ ¼ sinððfph=FsÞ2ptÞ (2.4.1)

sigfampðtÞ ¼ sinððfamp=FsÞ2ptÞ (2.4.2)

Artificial data without PAC were generated by simply adding

these two signals and some Gaussian white noise, WN:

signoPAC ¼ sigfphðtÞ þ sigfampðtÞ þ s$WN (2.4.3)

where s is the standard deviation of WN, used as a scaling factor to

increase the level of noise.

Artificial data containing PAC were generated in a similar way to

amplitude-modulated radio waves, forming the product of

sigfampðtÞ and the signal sigfphðtÞ increased by 1 (so its minimum is

at 0), and adding white noise:

XampðtÞ ¼ K$sigfampðtÞ$
�

sigfphðtÞ þ 1
�

þ s$WN (2.4.4)

where K¼ a scaling factor used to control the amplitude of the

60Hz signal.

A second artificial signal, XphðtÞ, containing only an oscillation at

fph¼ 4 Hz and some white noise was used as a comparison signal.

XphðtÞ ¼ sigfphðtÞ þ s$WN (2.4.5)

Sample artificial signals are shown in Fig. 2A. It is possible to add

this component signal to the signal containing PAC, XampðtÞ, and

then compare this signal with itself in order to look for coupled

frequencies, however this has a tendency to produce spurious

artifacts with some of the measures.

2.7. Quantifying the performance of PAC measures

Several related tests were conducted to compare the perfor-

mance of ESC, MI and CFC methods.

2.7.1. False positives

In order to test whether the measures would erroneously report

significant PAC when it was not engineered into artificial data, we

generated 10 s of XnoPACðtÞ, (see Equation 2.4.3). The PAC detection

measures were tested by comparing this signal with itself and

looking for false coupling at 4 Hz modulating 60 Hz. This test was

repeated for 1000 iterations for each measure.
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2.7.2. True positives and data length-dependence

The PAC detection measures were tested by comparing the PAC

containing signal, XampðtÞ (Equation 2.2.4), with the signal con-

taining the modulating frequency, XphðtÞ (Equation 2.2.5), and

looking for coupling at 4 Hz modulating 60 Hz. This test was

repeated for 100 iterations. The standard deviation of the noise was

increased to see how this affected the true positive detection rate.

These experiments were repeated with artificial signals of length 6,

10 and 14 s, in order to examine data length-dependence.

2.7.3. Correct detection of PAC frequencies as a function

of increasing noise

We then tested to see if the highest value of PAC detected by

each of the measures occurs at frequencies close to the true fph and

famp contained in the artificial data. As for the true positive tests

previously, the standard deviation of the noisewas increased and at

each level the three PAC measures were tested, comparing the PAC

containing signal, XampðtÞ, with the signal containing the modu-

lating frequency, XphðtÞ. In these tests however, the measures were

employed to look for PAC over a range of possible frequencies: from

1 Hz to 101 Hz in bands of 5 Hz width. The first frequency bin of

interest (in terms of both fph and famp) was from 1 to 5 Hz, with the

centre frequency defining the appropriate wavelet kernel set at

3 Hz, the second was from 6 to 10 Hz, with the centre frequency set

at 8 Hz and so on. Investigation of a range of possible coupling

frequency values allowed the creation of a ‘PACgram’, highlighting

the frequencies between which the strongest coupling was found

using a colour scale. A correct detection was defined as the largest

PAC value occurring in a region of sufficient frequency resolution

surrounding the correct value of 4 modulating 60 Hz. This region

was determined to be between 1 and 15 Hz in terms of the

modulating frequency, fph, and between 45 and 75 Hz in terms of

the modulated frequency, famp, allowing up to 10 Hz margin for

error along the x-axis of the PACgram and up to 15 Hz along the

y-axis.

2.7.4. Correct detection of PAC frequencies as a function

of decreasing amplitude envelope magnitude

We then investigated the performance of the measures as the

amplitude of the higher-frequency oscillation decreases. The

experiments described in Section 2.5.3 were modified, the noise

level of the generated signals, XphðtÞ and XampðtÞ, was kept constant

at s ¼ 1 and instead the amplitude of the 60 Hz oscillation

ðsigampðtÞÞ was decreased by a scaling factor K. Again the signals

were examined between 1 and 101 Hz in bands of 5 Hz in order to

create PACgrams and the same criteria for correct detection was

applied.

3. Results and discussion

We first tested if the methods detect statistically significant PAC

at a fixed combination of frequencies (4 Hz modulating 60 Hz was

used throughout simulations, modeling the thetaegamma PAC

reported in a range of neural data) in artificial data that did not

contain PAC. As we expected all methods detected significant PAC

on average on 5% of simulated signals, and there were no statisti-

cally significant differences between the methods.

Unsurprisingly, consistent detection of statistically significant

PAC in artificially-generated signals containing PAC was dependent

upon noise levels and data length. As shown in Fig. 2, MI, ESC and

CFC methods all correctly identified significant PAC at the fixed

combination of frequencies under low noise conditions; with high

Fig. 2. Comparison of true positive detection as a function of varying noise level and data length. (A) Raw simulated data signals containing 4 Hz modulating 60 Hz PAC, generated

with different noise levels. Examples show standard deviation, s, of white noise set to 1, 5 and 10 respectively; arrows point to corresponding points on analysis graph. (B) Mean

proportions of true positives (defined as significant PAC located within fph¼ 1e15 Hz and famp¼ 45e75 Hz) detected by each of the three PAC measures with increasing noise levels

(dark grey diamonds ESC; light grey squares MI; mid grey triangles CFC). Left to right panels show the same experiment conducted on 6 s, 10 s and 14 s signals. Error bars show

�s.e.m.
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noise, the statistical properties of our shuffling procedure gave rise

to mistaken PAC detection on approximately 5% of trials, satisfying

the preset false positive rate of alpha¼ 0.05. CFC consistently out-

performed ESC and MI across intermediate noise levels, with CFC’s

advantage becoming more apparent as the length of data analysed

was increased from 6 s to 14 s (Fig. 2B). Improvements in the

performance of MI and CFC with data length are also shown for real

data in Fig. 4, and are a consistent feature of these analyses.

Nevertheless, these simulations demonstrate that CFC may be the

better choice of analysis method for short duration, noisy signals,

particularly given a priori reasons to examine PAC at a specific

combination of fph and famp frequencies.

The analysis in Fig. 2 focused on a single PAC frequency pairing

of 4 Hz and 60 Hz signals, thereby ignoring any erroneous PAC

detection at other frequencies. In contrast, Fig. 3 quantifies the

proportion of significant PAC detected within the appropriate

frequency ranges (1e15 Hz modulating 45e75 Hz) in the face of

increasing noise; erroneous detection of significant PAC elsewhere

in the frequency spectrum can therefore contribute to poor

performance by this measure. MI, ESC and CFC methods performed

similarly in this test. CFC was slightly more consistent at interme-

diate noise levels, but dropped to lower performance than MI and

ESC at high noise. The low proportion of correctly identified PAC by

CFC at high noise levels shown in Fig. 3 is due to incorrectly

detected regions of PAC at frequencies outside the ranges specified

as correct (see also example in Fig. 5A). MI appears able to detect

significant PAC in the correct frequency region even on approxi-

mately 40% of high noise trials, though did generate some vari-

ability in precise PAC frequencies detected. This remarkable

robustness to noise is not purely artefactual, since MI only detects

significant PAC in the expected 5% of tests on independent signals.

Further tests are therefore required to establish whether this

reflects a tendency of MI to detect significant PAC at low fph
frequencies.

The analyses shown in Fig. 4, like those in Fig. 3, are based upon

correct detection of PAC in appropriate frequency ranges (again

with 4 Hz modulating 60 Hz in the simulated data), but with

varying XampðtÞ 60 Hz power rather than varying noise levels in

XampðtÞ. Accuracy of ESC and MI measures was consistently higher

than of CFC until 60 Hz amplitude was scaled by a factor K� 0.02;

all three measures performed optimally given higher 60 Hz power.

Fig. 5 demonstrates the performance of ESC, MI and CFC tech-

niques on real LFP data recorded simultaneously from hippocampal

CA1 and deep layers of the medial prefrontal cortex (mPFC; pre-

limbic subdivision) using chronically implanted, microwire elec-

trodes in an adult male, Lister Hooded rat freely behaving in

a familiar homecage (see Jones and Wilson, 2005 for recording

details). Fig. 5A shows that all methods detected statistically

Fig. 3. Correct identification of PAC as a function of signal noise level. 10 s simulated signals containing 4 Hz modulating 60 Hz PAC were created and the standard deviation of the

noise added was increased. Performance was scored by quantifying the proportion of trials in which maximal PAC was correctly located within fph¼ 1e15 Hz and famp¼ 45e75 Hz.

(A) Example PACgrams generated by ESC, MI and CFC measures as standard deviation of the noise, s, varied from 1, 5 and 10. Colour scale represents the magnitude of PAC found.

Pixels in which no significant PAC was detected are set to 0. Note different colour scales. (B) Mean results showing decreasing performance as noise levels increase (dark grey

diamonds ESC; light grey squares MI; mid grey triangles CFC). Error bars show �s.e.m.
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significant intra-hippocampal PAC consistent with previous

reports, with 5e10 Hz theta phase modulating power of gamma

oscillations at 60e80 Hz. None of the methods detected significant

intra-cortical PAC (data not shown). However, important differ-

ences between methods became apparent when analyses are

applied to 6 s vs. 1 min data segments. Whilst all three methods

detected thetaegamma coupling at the expected frequencies

during the 6 s data segment, ESC reported PAC in a much more

restricted frequency range than MI and CFC, with the latter in

particular detecting some significant PAC at higher frequencies. Of

course, lower right-hand regions of the PAC plots reflect impossible

combinations of higher frequencies modulating lower frequencies

and can be ignored. Nevertheless, the extent to which all statisti-

cally significant PAC detected by CFC reflects real neurophysiolog-

ical processes remains to be established.

Analysis of a continuous, 1 min data segment tends to focus MI

and CFC PAC estimates, though CFC still reports significant PAC at

higher frequencies; in contrast, the thetaegamma PAC magnitude

estimated by ESC reduces in comparison to the 6 s analysis. The

most likely cause of variance between 6 s and 1 min estimates is

non-stationary PAC during the longer segment, which has differ-

ential impact on the methods used here. The ESC measure is more

sensitive to intermittent PAC, since non-coupled epochs within

a longer segment will decrease the value of the overall correlation

Fig. 5. Detection of PAC in local field potentials recorded simultaneously from rat hippocampus and prefrontal cortex. (A) ESC (top row), MI (middle row) and CFC (lower row)

analyses of 6 s (left column) and 1 min (right column) of continuous LFP recorded from CA1 of rat hippocampus, demonstrating thetaegamma PAC consistent with previous reports.

(B) Cross-structural PAC analysis of simultaneously recorded CA1 and mPFC LFP, showing lack of robust modulation of mPFC gamma power by CA1 theta phase during this 1 min

recording segment. (C) In contrast to (B), mPFC theta phase does modulate CA1 gamma power in these data. Colour scales vary from 6 s to 1 min analyses, but are consistent for each

of the three methods for CA1pheCA1amp, CA1phemPFCamp and mPFCpheCA1amp panels. Pixels in which no significant PAC was detected are set to 0.

Fig. 4. Correct identification of PAC as a function of gamma envelope amplitude.

Simulated signals containing 4 Hz modulating 60 Hz PAC were created (10 s, standard

deviation of noise¼ 1) with decreasing 60 Hz signal amplitudes. The horizontal axis

shows the scaling factor K used to control the amplitude of the 60 Hz signal (see

Equation 2.4.4). ESC, MI and CFC performance was tested by quantifying the highest

level of PAC in the region of fph¼ 1e15 Hz and famp¼ 45e75 Hz. Mean� s.e.m. is shown

for values of K between 0.01 and 0.05.
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between lower-frequency phase and higher-frequency amplitude

envelope. Therefore reduced ESC magnitude in Fig. 5A (note

different colour scales) presumably reflects non-correlated (or

noisy/lower power) thetaegamma epochs within the 1 min

segment. With the MI measure, even intermittent coupling

cumulatively contributes to greater magnitudes of PAC at a partic-

ular combination of frequencies; unless modulating andmodulated

frequencies change and signals fall into another coupling rela-

tionship for a sustained amount of time, PAC magnitude at a given

combination of frequencies will be proportional to the length of

data analysed. Similarly, the coherence estimates employed by CFC

are averaged over sliding windows, hence non-stationary coupling

does not necessarily degrade overall PAC estimates. Note that

unlike ESC and CFC, MI detects a region of lower-frequency PAC in

the 1 min segment analysed here. Again, this may reflect

a weighting of MI towards low frequency combinations.

Fig. 5A therefore demonstrates that MI or CFC methods can

prove superior when analyses are required to quantify averaged

PAC levels over sustained recording periods. However, such aver-

aging of course masks underlying PAC dynamics, which are

certainly of interest when correlating PAC changes with other

neurophysiological parameters and/or behaviour. ESC, MI and CFC

measures can all be adapted (within the constraints of themethods’

frequency resolutions) to allow characterization of time-variant

PAC using a windowing approach. These adaptations are likely to

prove critical to further elucidating PACmechanisms and functions.

Fig. 5B shows analysis of cross-structural, CA1emPFC PAC.

Previous studies using similar recording techniques have reported

that the phase of hippocampal theta modulates the power of

neocortical gamma in rodents (Adhikari et al., 2010; Sirota et al.,

2008). Indeed, the directionality of this reported CA1emPFC PAC

fits intuitively with known anatomical and functional connectivity

in this limbic-cortical system since (i) the hippocampal formation

sends direct, excitatory projections to mPFC (see Thierry et al.,

2000) whereas direct, reciprocal projections from mPFC to CA1

have not been described and (ii) the relative timing of mPFC neuron

action potentials phase-locked to CA1 theta oscillations is consis-

tent with CA1 activity leading mPFC activity in this frequency range

(Siapas et al., 2005). Hippocampal projections to mPFC are there-

fore well placed to control timing of mPFC networks. However,

none of the three methods used here detected robust CA1emPFC

PAC in these sample data. Differences between these reports are

likely to reflect differences in behavioural state since e like

CA1emPFC theta-frequency coherence (Jones and Wilson, 2005) e

the extent of CA1emPFC PAC is presumably highly dependent upon

ongoing behaviour in general, and cognitive behaviours recruiting

CA1emPFC interactions in particular.

Fig. 5C shows the first reported example e to our knowledge e

of mPFC theta phase modulating the power of CA1 gamma oscil-

lations. This mPFCeCA1 PAC occurs at very similar frequencies to

those simultaneously detected within the hippocampus (Fig. 4A),

though is lower in magnitude and not associated with the higher

modulating-frequency PAC detected in CA1, raising the possibility

that the higher fph PAC evident in Fig. 5A may only be detected in

local, intra-network analyses. Further experiments are required to

rule out volume conduction artefacts in these LFP data (see Sirota

et al., 2008), and further analyses of PAC dynamics are required to

relate the timing of mPFCeCA1 PAC to CA1eCA1 and CA1emPFC

coupling. Given the lack of direct projections from mPFC to CA1,

coupling in this direction presumably reflects indirect, polysynaptic

influence of mPFC on CA1, potentially via entorhinal cortex.

Nevertheless, the detection of mPFCeCA1 PAC raises the possibility

that bi-directional, thetaegamma cross-frequency coupling is

dissociable from theta-frequency coherence and reflects additional

mechanisms of interaction between hippocampus and mPFC.

4. Conclusions

We present adaptations to ESC, MI and CFC methods that allow

estimates of statistical significance of PAC, thus addressing impor-

tant concerns that the phenomenon may reflect passive spectral

properties of mixed-frequency signals, rather than underlying

neurophysiology. These statistical methods are critical in consis-

tently quantifying PAC levels, particularly when comparing

different experimental, physiological and pathological conditions.

For example, quantifying the impact of pharmacological and

genetic manipulations on PAC is likely to provide critical insight

into mechanisms (Wulff et al., 2009), and quantifying abnormal

PAC in disease states may reveal roles in generating complex,

information processing impairments in neuro-psychiatric disorders

(Jones, 2010; Lisman and Buzsaki, 2008).

Though ESC, MI and CFC measures are all derived from similar

fundamental principles, analyses of simulated data did reveal

dissociable sensitivity and accuracy during varying conditions of

noise, signal amplitude and data length. No one measure unfail-

ingly out-performed the others: CFC is well-suited to applications

with short data series inwhich known combinations of frequencies

are coupled (Fig. 2), but gives less reliable results than MI or ESC

when surveying noisy data for unknown frequency regions of

coupling (Fig. 3), or when famp power is low (Fig. 4). Whilst MI and

CFC methods are better-suited than ESC to quantification of overall

mean PAC strength in extended time series, the adaptation of all

methods to allow assessment of time-variant PAC should negate

ESC’s shortcomings in this regard. These adaptations will constitute

an essential step towards relating PAC and behavioural dynamics.

All three of the measures implemented here are relatively

computationally intensive in their own right, and more so when

combined with the shuffling procedure used to estimate statistical

significance. Practical constraints are therefore worthy of consid-

eration, particularly when faced with large volumes of continuous

data. ESC and MI algorithms consistently ran more quickly than

CFC, though this issue may be partially bypassed if experimental

design allows for analysis of relatively brief <10 s sections or trials

of data.

Future work could improve the computational efficiency by only

generating PACgram values for frequency combinations falling in

the top half of the matrix, above the main diagonal (bottom left to

top right), since frequency combinations below cannot represent

valid PAC by our definition. This was not done during the current

analyses in order to ascertain if any of the measures suffered from

serious problems with artifactual PAC detection at any given

combination of frequencies. In addition, there may be computa-

tional benefits to using a Fourier transform based phase randomi-

zation procedure (Theiler et al., 1992) to produce surrogate data;

this may also improve detection accuracy by removing the

discontinuities which the current procedure introduces which can

generate spurious high frequency signal components. An inter-

esting extension would be to compare the performance of the

measures on synthetic data generated from computational models.

Whilst thetaegamma PAC within the hippocampus is increas-

ingly well understood in terms of mechanism and function, recent

reports of PAC across other, related brain systems implicate cross-

frequency couplingmore broadly in coordinating neuronal network

function, particularly in relation to complex, cognitive behaviours.

Future work establishing the structure of basic network motifs

enabling PAC should therefore extend understanding of its mech-

anisms and roles; these certainly reach beyond thetaegamma

oscillation timescales, and may reach beyond limbic-cortical

neuronal networks to other circuits featuring rhythmic activity. For

example, it became apparent during the ‘Brain Modes’ workshop

highlighted in this issue that PAC-like phenomena also arise in
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pulsatile hormone secretions (Walker et al., 2010). Cross-frequency

couplingmay therefore arise in a number of biological systems built

upon delayed feedback, reflecting a universal role in coordinating

rhythmic activity across varied timescales.
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