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Here we quantify the time-dependent mechanical properties of a linear viscoelastoplastic material

under contact loading. For contact load relaxation, we showed that the relaxation modulus can be

measured independently of concurrent plasticity exhibited during the loading phase. For indentation

creep, we showed that the rate of change of the contact creep compliance _LðtÞ can be measured

independently of any plastic deformation exhibited during loading through _LðtÞ ¼ 2aðtÞ _hðtÞ=Pmax,

where a(t) is the contact radius, h(t) is the displacement of the contact probe, and Pmax is the constant

applied load during the creep phase. These analytical relations were compared with numerical

simulations of conical indentation creep for a viscoelastoplastic material and validated against

sharp indentation creep experiments conducted on polystyrene. The derived relations enable extraction

of viscoelastic material characteristics, even if sharp probes confer concurrent plasticity, applicable for

a general axisymmetric contact probe geometry and a general time-independent plasticity.

I. INTRODUCTION

As instrumented indentation experiments can be

conducted to apply constant indentation depth while

monitoring a decreasing load, as well as constant applied

load while monitoring an increasing indentation depth, it

is reasonable to expect that one can extract from such

data properties such as the relaxation modulus and creep

compliance. For example, in the case of load relaxation,

ideally a step displacement h tð Þ ¼ hmax
~H tð Þ of the in-

denter probe is applied (where ~H tð Þ is the Heaviside

function) and the resulting load P(t) is monitored. How-

ever, in practice it remains challenging to identify which

relaxation properties can be obtained rigorously from such

a facile experiment, and specifically how the relaxation

modulus can be best extracted from the experimental

data. Several previous useful approaches have been de-

veloped, and here we focus specifically on how one may

obtain the relaxation modulus or creep compliance of the

material when it is likely that plastic deformation of the

material occurs concurrently with this time-dependent

deformation.

For indentation by rigid axisymmetric punches on an

elastic solid, Galin1 derived the following relation2:

PðtÞ ¼ 2M0

ð ffiffiffi

p
p

BÞ1=n
n

nþ 1

Cðn=2þ 1=2Þ
Cðn=2þ 1Þ

� �1=n

hðtÞ1þ1=n ;

ð1Þ

where z5 Brn defines the geometric profile of the indenter

probe (Fig. 1), B is the shape function of the indenter at

unit radius, n $ 0 is the degree of the homogeneous
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function,C(x) is the Euler Gamma function, andM0 can be

termed the indentation elastic modulus. This indentation

modulus M0 provides a snapshot of the stiffness of the

indented material. In the case of a linear elastic, isotropic

half-space, M0 relates to the elastic properties of the

material as:

M0 ¼
E0

1� m20
¼ 4G0

3K0 þ G0

3K0 þ 4G0

; ð2Þ

where m0 is the Poisson’s ratio and where E0, K0, and G0

are the Young’s, bulk, and shear elastic moduli of the

indented material, respectively.

We now consider a rigid punch of axisymmetric shape

indenting an infinite half-space made of a nonaging

linear viscoelastic material. The method of functional

equations3 (or equivalently the s-multiplied Laplace or

Carson transform) allows one to obtain the solution to

a linear viscoelastic indentation problem in the Laplace

domain from the linear elastic solution by replacing

the elastic constants in the elastic solution with the Laplace

transform of the time-dependent expressions of the elastic

moduli multiplied by the Laplace parameter. (The method

of functional equations is in fact restricted to problems for

which the contact area between the indenter tip and the

indented surface is monotonically increasing.4) Applying

this method to Eq. (1), one finds that, during an indentation

relaxation experiment, the function M(t) defined as:

MðtÞ ¼

�

ffiffiffi

p
p

B
�1=n

2h1þ1=n
max

nþ 1

n
Cðn=2þ 1Þ
Cðn=2þ 1=2Þ

� �1=n

PðtÞ ; ð3Þ

depends neither on the applied indentation depth hmax nor

on the geometry of the axisymmetric indenter. We hereafter

termM(t) as the contact relaxation modulus of the indented

material. This function verifies M(t 5 01) 5 M0.

Similarly, we can also consider an indentation creep

experiment in which a step load P(t) 5 Pmax
~H(t) is

applied via the indenter probe, and in which the displace-

ment h(t) of this probe into the material surface is

measured. Applying the method of functional equations

to Eq. (1), one now finds that, during such an experiment,

the function L(t) defined as:

LðtÞ ¼ 2
�

ffiffiffi

p
p

B
�1=n

Pmax

n
nþ 1

Cðn=2þ 1=2Þ
Cðn=2þ 1Þ

� �1=n

hðtÞ1þ1=n

ð4Þ

depends neither on the applied load Pmax nor on the

geometry of the axisymmetric indenter. We term L(t) the
contact creep compliance of the indented material, which

is also sometimes noted as Jc(t).
5 This function verifies

L(t 5 01) 5 1 / M0 and is linked to M(t) in the Laplace

domain, akin to the well-known relation between the creep

compliance and the relaxation function under uniaxial

deformation6:

�

sM̂ðsÞ
��1

¼ sL̂ðsÞ ; ð5Þ

where s is the Laplace parameter, and f̂ ðsÞ is the Laplace
transform of f(t).

The contact creep compliance and contact relaxation

modulus characterize the time-dependent response (to

which we refer from hereafter collectively as the “creep”

response) of the indented material. For a creep response

which is linear with regard to the applied stress (to which

we refer hereafter as “linear creep”), L(t) and M(t) are

material properties. These properties depend neither on

the geometry of the axisymmetric indenter nor on the

maximum value of the control variable (Pmax for an

indentation creep experiment; hmax for an indentation

relaxation experiment). Table I lists expressions of L(t)
andM(t) for several common contact probe geometries. For

other loading profiles judiciously chosen, there exist other

simple relations which enable as well to link the measured

penetration depth or load to material viscous properties.7

Practically, however, the measurement of the in-

dentation creep and relaxation functions is impeded

FIG. 1. Parameters used to define (a) the geometry of the indenter

probe; (b) the geometry of the contact problem during indentation.

TABLE 1. Contact creep compliance L(t) and contact relaxation

modulus M(t) for different axisymmetric indenter shapes: h is the half-

cone angle (respectively the equivalent half-cone angle in Berkovich

indentation), R is the sphere radius and a is the flat cylinder punch radius.

Indenter shape n B L(t) M(t)

Cone (Berkovich) 1 cot(h) 2tanðhÞ
pPmax

h2ðtÞ p cotðhÞ
2h2max

PðtÞ

Sphere 2 1/(2R) 4
ffiffiffi

R
p

3Pmax
h3=2ðtÞ 3PðtÞ

4
ffiffiffiffiffi

Rh
p

3=2
max

Flat punch / ∞ 1/(an) 2a
Pmax

hðtÞ PðtÞ
2ahmax
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by the time-independent and instantaneous plastic de-

formation (to which we refer from now simply as to

the “plastic” deformation) of the material beneath the

indenter. Such plastic deformation cannot be avoided

below a sharp probe (e.g., below a Berkovich three-sided

pyramidal probe) and often also occurs below spherical

and flat punches. Plastic deformation results in an increase

in indentation depth (at a given load) or in a decrease in

load (at a given depth). As a consequence, Eq. (4) over-

estimates the contact creep compliance, and Eq. (3) under-

estimates the contact relaxation modulus. Consequently, as

noted by Tweedie and Van Vliet,5when plastic phenomena

occur, Eqs. (3) and (4) provide metrics of material response

which are not material properties, as these parameters

depend on the uncontrolled amount of plasticity exhibited

during the experiment and therefore on both the loading

profile and the indenter geometry. Except for materials of

high creep compliance, for which the plastic deformation is

negligible compared to the viscous deformation, and for

which the relaxation modulus or the creep compliance of

a material can be extracted with confidence using visco-

elastic solutions,8 neglect of preceding or concurrent plastic

deformation generally leads to an erroneous estimation of

the viscous properties of the material.

To overcome this limitation, several approaches were

recently proposed. Oyen and Cook suggested that the total

indentationdepth canbedivided amongan elastic, a plastic,

and a viscous contribution.9–12 This intuitive and effective

model remains one-dimensional and does not solve the

creep problem at the level of the material (which deforms

by all three means concurrently). Implicitly evoking the

material constitutive laws, Zhang et al.13,14 proposed the

measurement of viscous parameters by means of loading–

unloading–reloading cycles combined with the concept

of “effective” indenter shape introduced by Pharr and

Bolshakov.15 The “effective” indenter shape is unknown a

priori, and thus the experimental implementation requires

several iterations, making this method less appealing for

routine yet quantitatively accurate indentation analysis.

These authors also developed another procedure, based on

an “effective” flat punch indenter, which is more straight-

forward to implement experimentally but is limited to

indentation relaxation analysis.16 Starting from the finite

element analysis of indentation on plastic linear viscoelastic

materials, Seltzer andMai17 proposed a procedure to separate

the viscoelastic response from the plastic response; their

procedure involves spherical indentations at different loads.

Several authors studied indentation on elastoviscoplastic

materials with finite element methods18,19: some of them

used finite element analysis to back-calculate the viscous

parameters of such materials from indentation by designing

inverse methods based on neural networks20 or on the

minimization of objective functions.21

Here, we propose a novel method for separation of the

creep from the instantaneous plasticity responses of

a viscoelastoplastic material under contact loading. This

analytical approach is both reliable and practical for

linking experimental load, displacement, and time data

to the contact creep and relaxation functions of the

material. Our analysis combines analytical proofs and

numerical simulations of contact creep and relaxation

experiments on nonaging viscoelastoplastic materials for

which the time-dependent (or creep) response is consid-

ered linear as defined above. The analytical forms of

the creep compliance and relaxation modulus are derived

under the assumption that no further instantaneous plastic

deformation occurs during the relaxation or creep phase.

In the context of relaxation, this assumption is validated

analytically and numerically. In the context of creep, this

assumption is not validated numerically and contributes

to a small error in the analytical derivation. Finally, based

on experimental indentations on polystyrene using a sharp

pyramidal probe, the application of the proposed method

to nonlinear time-dependent behavior is discussed.

II. ACCOUNTING FOR PLASTICITY IN

INDENTATION RELAXATION EXPERIMENTS

Let us first consider indentation relaxation experiments,

for which the associated contact mechanics problem is

relatively less complicated. Indeed, as we shall show, under

the assumption of a time-independent Poisson’s ratio the

contact area does not evolve over the relaxation phase. We

focus on an indentation relaxation experiment on a visco-

elastoplastic half-space for which the creep response is linear,

and to which a Heaviside step indentation displacement

h(t) 5 hmax~H(t) is applied. We show subsequently that the

plasticity that occurs during the instantaneous displacement

loading can be separated from the time-dependent creep

deformation during the relaxation phase, such that the

measured force relaxation response P(t) can be directly

linked to the indentation relaxation function M(t) by:

MðtÞ ¼ M0

PðtÞ
Pð0þÞ ¼ M0

PðtÞ
Pmax

; ð6Þ

where M0 is the instantaneous indentation modulus of the

tested material and P(01) 5 Pmax is the maximum force

recorded in the relaxation experiment, immediately after

application of the Heaviside displacement. Note that this

solution requires assuming the time invariance of the

Poisson’s ratio of the indented material. This proof is

outlined below.

A. Analytical proof of rescaling formula for

relaxation experiments

Let r
0
, e

0
, ep

0
, and n

0
be the stress, total strain, plastic

strain, and displacement solution fields generated instan-

taneously by the Heaviside step indentation displacement
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(i.e., at t 5 01). The half-space behaves elastoplastically

during the infinitely fast loading. We tentatively assume

that no further plastic deformation occurs during the

relaxation phase t. 01. (This assumption will be verified

later.) Separating the stress and strain tensors into their

deviatoric (superscript d) and nondeviatoric or volumetric

(superscript v) components, the creep behavior of the solid

during the relaxation phase is governed by the hereditary

integral functions:

rdðtÞ ¼ 2

Z t

0þ
Gðt � sÞ d

ds
edðsÞ � ðep

0
Þd

� �

ds

rvðtÞ ¼ 3

Z t

0þ
Kðt � sÞ d

ds
evðsÞ � ðep

0
Þv

� �

ds ; ð7Þ

where G(t) is the shear relaxation modulus and K(t) is the
bulk relaxation modulus of the indented half-space. We

keep in mind that both G(t) and K(t) are monotonically

decreasing functions. We restrict ourselves to a viscoelas-

toplastic half-space characterized by a time-invariant

Poisson’s ratio m, as frequently assumed in viscoelastic

indentation analysis,22 which implies:

mðtÞ ¼ m0KðtÞ}GðtÞ : ð8Þ

The stresses, strains, and displacements must satisfy at

all times the following field equations:

eðtÞ ¼ ð1=2Þ = nðtÞ þ = nðtÞ
� �T

� �

div rðtÞ
� �

¼ 0 ; ð9Þ

where XT is the transpose of X. The following boundary

and frictionless contact conditions must also be satisfied at

all times:

Outside the area of contactAc:rðtÞ:ez ¼ 0;

Within the area of contactAc:
rðtÞ:n

� �

:t ¼ 0

nðtÞ :n ¼ �hmax þ Brn

8

<

:

;

ð10Þ

where ðn; tÞ represent the outward unit normal and

tangential vectors of the half-space. At t5 01, the solution

fieldsr
0
, e

0
, and n

0
satisfy the field equations [Eq. (9)] and

the boundary conditions [Eq. (10)], while the constitutive

relations [Eq. (7)] are defined as:

rd
0
¼ 2Gð0Þðed

0
� ðep

0
ÞdÞ ¼ 2G0ðed0 � ðep

0
ÞdÞ

rv
0
¼ 3Kð0Þðev

0
� ðep

0
ÞvÞ ¼ 3K0ðev0 � ðep

0
ÞvÞ ; ð11Þ

where G(0) 5 G0 and K(0) 5 K0 are the elastic shear and

bulk moduli of the indented half-space, respectively.

During the relaxation phase (t . 01), for which the

applied displacement is constant, we assume that the

contact area between the indenter and the half-space is

also constant. Using Eq. (8), the following displacement,

stress, and strain fields are readily found to satisfy the set

of governing Eqs. (7), (9), and (10):

nðtÞ ¼ n
0

eðtÞ ¼ e
0
and epðtÞ ¼ ep

0

rdðtÞ ¼ ½GðtÞ=Gð0Þ�rd
0
¼ 2GðtÞ ed

0
� ep

0

� �d
� �

rvðtÞ ¼ ½GðtÞ=Gð0Þ�rv
0
¼ 3KðtÞ ed

0
� ep

0

� �v� �

: ð12Þ

Moreover, sinceG(t) andK(t) are decreasing functions, the
maximum stresses occur at t5 01, which justifies a posteriori

the assumption that no plasticity occurs after loading.

Therefore, the fields shown in Eq. (12) are the solution of

the relaxation indentation experiment in a viscoelastoplastic

solid with time-invariant Poisson’s ratio, and the assumption

of a time-invariant contact area between the indenter and the

half-space over the relaxation phase is justified.

On this basis, we derive the force relaxation history

P(t) for the viscoelastoplastic half-space:

PðtÞ ¼
Z

Ac

ðrðtÞ � nÞ � ezdA ¼
Z

Ac

GðtÞ
Gð0Þ ðr0

� nÞ � ezdA

¼ GðtÞ
Gð0ÞPð0

þÞ ¼ GðtÞ
Gð0ÞPmax ; ð13Þ

where P(01) 5 Pmax is the maximum indentation force

recorded immediately after the Heaviside displace-

ment loading. Starting from the elastic relation

M0 ¼ 2G0ð1þ m0Þ=ð1� m20Þ, one infers from a direct

application of the method of functional equations that

the viscous relaxation solution for the case of time-

invariant Poisson’s ratio can be expressed in the Laplace

domain and in the time domain as3:

M̂ðsÞ} ĜðsÞ0MðtÞ}GðtÞ0MðtÞ ¼ M0

GðtÞ
Gð0Þ :

ð14Þ

Finally, a combination of Eqs. (13) and (14) yields the

relation of interest given in Eq. (6), which relates the

indentation relaxation functionM(t) to the load history P(t).
Strictly speaking, the analytical proof holds for a time-

invariant Poisson’s ratio [see Eq. (8)]. This condition is

not fulfilled for a material which creeps deviatorically but

not volumetrically, for which the Poisson’s ratio m(t) is
time-dependent since:
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K̂ðsÞ ¼ K00m̂ðsÞ ¼ 3K0 � 2ĜðsÞ
6K0 þ 2ĜðsÞ

0mðtÞ not constant :

ð15Þ

Nevertheless, we note that, for an incompressible

material with deviatoric creep, the Poisson’s ratio

m(t) 5 1 / 2 is indeed time-invariant and Eq. (6) holds.

B. Numerical validation

To assess the validity of Eq. (6), we conducted nu-

merical simulations of conical indentation relaxation

for a viscoelastoplastic material via the finite element

method.

1. Numerical implementation

Numerical simulations were carried out with ABAQUS

(Dassault Systemes, Nanterre, France). The included half-

cone angle was h 5 70.32o, which is the equivalent cone

angle of the three-sided pyramidal Berkovich indenter.23

The indentation proceeded from the top surface of the mesh

and normal to the free surface of the material. An axisym-

metric mesh refined in several steps around the indenter

probe was used. The mesh consisted of 7630 nodes and of

7979 CAX4 (4-node bilinear) elements. The displacement

of the indenter probe was imposed, and the load P(t) applied
to the indenter was output from the numerical simulation.

The density of the mesh was such that, during the relaxation

phase, at least 40 elements contacted the indenter. Outside of

the area of contact, the top surface of the sample was stress-

free. Displacements in the direction of indentation were

prevented at the bottom of the mesh, far from the indentation

contact point. To evaluate the influence of such boundary

effects on the simulations, the simulations were repeated

with two sets of boundary conditions. In a first set, friction-

less radial displacements of the bottom surface of the

sample were allowed and the outer surface of the sample

was stress-free. In a second set, both the bottom surface

and the outer surface of the sample were fixed. For all

simulations, the calculated output load changed by less

than 0.5% according to these boundary conditions. To

simulate an instantaneous loading, viscous properties

were dismissed during the loading phase. As a result,

the displacement history applied to the indenter corre-

sponded to a Heaviside function.

Two instantaneous Poisson’s ratios were used in the

simulations: m0 5 0.499 to model an incompressible

material and m0 5 0.25 to model a compressible material.

The viscous behavior of the indented material was

modeled with the deviatoric Maxwell creep model, char-

acterized by its viscosity gM. The duration of each sim-

ulated experiment was at least 15 times greater than the

characteristic relaxation time of this simulated material

gM / E0. The material was elastic perfectly plastic. The

incompressible plastic flow was modeled with an associ-

ated vonMises plasticity model. The ratio of yield strength

to Young’s modulus was ry / E05 10�3, which is a lower

bound value for most materials.24

We considered large displacements. At the material

level, ABAQUS takes into account the coupling between

creep and plasticity by using an implicit (backward Euler)

integration scheme and a Newton Raphson scheme to

solve the resulting nonlinear equations.

2. Results and discussion

Elastic properties in the form of the indentation mod-

ulus M0 ¼ E0=ð1� m20Þ and the maximal displacement

hmax were inputs to the numerical simulation, from which

the resulting load history P(t) was determined. For the

two instantaneous Poisson’s ratios considered, the maxi-

mum load obtained from the simulations was at least

19 times as small as would have been obtained if the

material could not undergo plastic deformation. Therefore,

the simulated indentations exhibited a significant amount

of plasticity.

From Eq. (6), we calculated the normalized contact

relaxation functionM(t) /M05 P(t) / Pmax. The numerical

relaxation function was then compared with a linear

viscoelastic analytical solution for deviatoric Maxwell

creep model4:

MðtÞ
M0

¼ G0 e
�G0

gM
t þ 9K0

3K0 þ 4G0

e
� 3K0G0

gMð3K0þ4G0Þt
� �

:

ð16Þ

Comparison of the analytical and numerical results is

displayed in Fig. 2. For an incompressible material, in-

dependent of the plasticity, Eq. (6) yields a perfect evalu-

ation of the indentation relaxation function of the indented

material. A discrepancy of less than 7% is observed in the

case of a compressible material. Since this discrepancy is

observed for both the viscoelastic and the viscoelastoplastic

materials, this discrepancy can be attributed to the inaccur-

acy of the analytical linear elastic solution itself, on which

our analytical viscoelastic solutions are based, and which

was derived under the assumption of both small displace-

ments and small deformations. Indeed, as discussed by

many for conical indentation,25–27 the solution for linear

elastic indentation is first order in nature as it neglects the

elastic radial contraction of the surface in contact with the

indenter for elastically compressible materials. To compen-

sate for this effect, it is common practice to multiply the

analytical solution for elastic indentation by a correction

factor b 5 b(m, B, n, R / E,...), where b 5 1 for an in-

compressible material. Thus, Eq. (6) is slightly inaccurate in

the sense that it also fails to capture this radial contraction.

Indeed, for a compressible material with deviatoric creep, the

apparent Poisson’s ratio evolves over the relaxation phase,
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which yields a slight change in contact area. This change is

not taken into account in the theoretical derivation presented

above, which assumes a time-independent Poisson’s ratio.

Nevertheless, even for compressible materials, Eq. (6)

gives very satisfactory results in comparison to numerical

predictions, and thus provides a tool to access time-

dependent properties unbiased by concurrent plastic

deformation, directly from an indentation relaxation

experiment within a specified range of b.

III. ACCOUNTING FOR PLASTICITY IN

INDENTATION CREEP EXPERIMENTS

As most instrumented indenters are load controlled at

the level of instrument design, it is often more straightfor-

ward and preferable to prescribe a specific load history

and record the resulting time-dependent indentation depth

evolution h(t). Thus, below we develop a rescaling formula

for indentation creep experiments, which, analogously to

the relaxation rescaling formula Eq. (6), should allow one to

separate the creep behavior from the time-independent

plastic deformation occurring during the loading phase.

We focus on an indentation creep experiment on a viscoe-

lastoplastic half-space exhibiting a linear creep response,

and to which a Heaviside step indentation load

PðtÞ ¼ Pmax
~HðtÞ is applied. The measured indentation

depth response h(t) is linked to the contact creep compliance

function L(t) as:

_LðtÞ ¼ 2aðtÞ _hðtÞ
Pmax

; ð17Þ

where a(t) is the radius of the projected contact area

between the probe and the indented surface. Note that, for

a linear viscoelastic material that undergoes no concurrent

plastic deformation, Eq. (17) is valid, as can be readily

observed from differentiation of Eq. (4).

A. Analytical proof of rescaling formula for

creep experiments

Instead of considering a typical contact creep experi-

ment (for which the contact load is increased up to Pmax

and maintained constant while h(t) is acquired), let us

consider a thought experiment (see Fig. 3) with the

following load history: (i) instantaneous loading to Pmax,

(ii) instantaneous and complete unloading to P 5 0,

(iii) instantaneous reloading to Pmax, and (iv) acquisition

of creep response at maintained Pmax.

The indentation depth h(t) over the creep phase of this

thought experiment is the same as over the creep phase of

a typical contact creep experiment. We assume that the

reloading–creep phase exhibits no plasticity. Under this

assumption, which we will discuss later, the viscous

reloading–creep phase can be considered itself as an

indentation creep experiment in a viscous material with

no instantaneous plasticity. The effect of instantaneous

plasticity (plastic deformation took place during the pre-

liminary loading–unloading cycle) on this indentation

FIG. 2. Normalized indentation relaxation function M(t) / M0 calcu-

lated from numerical simulations combined with Eq. (6) and from linear

viscoelastic analytical solutions [Eq. (16)]. (a) Linear viscoelastic

material. (b) Linear viscoelastic material also exhibiting von Mises

plasticity. The dimensionless time is tE0 / gM .

FIG. 3. (a) Load versus time scheme; (b) load versus depth response of

the thought experiment for (1) instantaneous loading, (2) instantaneous

unloading, (3) instantaneous reloading, and (4) creep phase.
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creep experiment is twofold. First, the indentation is

imposed by a probe of known geometry on a surface.

The surface is plastically deformed (by the preliminary

loading–unloading cycle) and thus the geometry of the

deformed surface is unknown. Second, the plastic defor-

mation (which occurred during the preliminary loading–-

unloading cycle) leads to self-equilibrated residual stresses

within the indented half-space. As a first step, we disregard

the effect of residual stresses on the overall creep response.

We then consider the perturbation of residual stresses.

In the absence of residual stresses, the effect of

plasticity on the reloading–creep phase is limited to the

deformation of the surface of the indented half-space.

Thus, the reloading–creep phase is a linear viscoelasto-

plastic indentation on a surface that is no longer flat. We

apply the method of functional equations to convert the

reloading–creep phase into an equivalent elastic problem.3

The equivalent elastic problem is the elastic indentation of

a surface of unknown geometry, which itself is equivalent

to the elastic indentation of a flat surface by an indenter

of unknown geometry. The relation between the contact

radius a and the indentation depth h is defined as:

a ¼ f ðhÞ ; ð18Þ

where f (h) is an unknown function. From an application of

the BASh formula to the equivalent elastic problem,28

the indentation stiffness S is linked to the indentation

depth h as:

S ¼ dP
dh

¼ 2M0a ¼ 2M0 f ðhÞ ; ð19Þ

which, after integration, becomes:

P ¼ 2M0FðhÞ ; ð20Þ

where F(h) is the primitive of f(h) for which F(0) 5 0.

Following the methodology of previous works,4 which

derive analytical solutions for linear viscoelastic indenta-

tion, the contact creep compliance L(t) is linked to

experimental data as:

LðtÞ ¼ 2FðhðtÞÞ
Pmax

: ð21Þ

Finally, after differentiation, we obtain the relation of

interest [Eq. (17)]:

_LðtÞ ¼ d
dt

2FðhÞ
Pmax

� �

¼ 2 f ðhÞ _hðtÞ
Pmax

¼ 2aðtÞ _hðtÞ
Pmax

; ð22Þ

which relates the measured creep response h(t) to the rate
expression of the contact creep compliance L(t), indepen-
dently of the plastic deformation that occurred during the

loading phase.

We will later need the field solutions to the above

problem. Let rsðtÞ, esðtÞ, and nsðtÞ be those stress, strain,
and displacement field solutions, respectively.

Let us now consider the residual stresses consecutive

to the infinitely fast loading–unloading cycle of our

thought experiment. We restrict ourselves to a viscoelas-

toplastic half-space characterized by a time-invariant

Poisson’s ratio.

We consider first a loading–unloading cycle with no

further reloading. Let rrðtÞ, nrðtÞ, erðtÞ, and erpðtÞ be the
residual stress, the resulting displacement, total strain,

and plastic strain generated by the instantaneous loading–

unloading cycle in the half-space, respectively. Following

the reasoning above, we show that the solution to this

residual stress problem verifies:

nrðtÞ ¼ nr
0

erðtÞ ¼ er
0

erpðtÞ ¼ erp
0

rr
� �d

ðtÞ ¼ 2GðtÞ er
0
� erp

0

� �d

rr
� �v

ðtÞ ¼ 3KðtÞ er
0
� erp

0

� �v
; ð23Þ

where nr
0
¼ nrð0þÞ, er

0
¼ erð0þÞ, and erp

0
¼ erpð0þÞ.

Therefore, under the assumption of a time-invariant

Poisson’s ratio, the residual stresses resulting from the

instantaneous loading–unloading cycle result in no re-

covery.

We consider now the creep phase of the thought

experiment and show that the stress rsðtÞ þ rrðtÞ, strain
esðtÞ þ erðtÞ, and displacement nsðtÞ þ nr

0
are its solution,

where rsðtÞ, esðtÞ, and nsðtÞ are defined previously.

Indeed, since nsðtÞ;rsðtÞ
� �

and nr
0
;rrðtÞ

� �

both verify

the field Eqs. (7) and (9), we infer from the assumption of

linear superposition that this compatibility will also hold

for the sum of these field equations.Moreover, the solution

to the creep experiment with no residual stresses

nsðtÞ;rsðtÞ
� �

satisfies the boundary condition [Eq. (10)]

of the creep problem; the solution to the residual stress

problem nr
0
;rrðtÞ

� �

satisfies the zero boundary conditions

everywhere. Thus, their sum still satisfies the boundary

condition [Eq. (10)] of the creep problem. Therefore,

nsðtÞ þ nr
0
;rsðtÞ þ rrðtÞ

� �

is the solution to an indenta-

tion creep experiment in a viscoelastoplastic material.

The presence of residual stresses due to the loading–

unloading cycle only introduces a constant offset in the

indenter probe displacement (with regard to the indenter

probe displacement of the problem considered in the

absence of residual stress) and has no influence on the

indenter penetration rate. Therefore, relation [Eq. (17)] can
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be applied to indentation creep experiments on viscoelas-

toplastic materials for which the creep is linear with regard

to stresses. Note however that, strictly speaking, the

analytical proof is only valid under the assumption of

a time-invariant Poisson’s ratio. This assumption is

verified for an incompressible material with deviatoric

creep, for which the Poisson’s ratio m(t) 5 1 / 2 is indeed

time-invariant and for which Eq. (17) therefore holds.

B. Numerical validation

As in the case of load relaxation analytical and nu-

merical predictions, to assess the validity of Eq. (17) we

conducted numerical simulations of conical and parabolic

indentation creep experiments on a viscoelastoplastic

material via the finite element method.

1. Numerical implementation

Numerical simulations were carried out with ABAQUS

(Dassault Systemes). The included half-cone angle of the

probe was again h5 70.32o. An axisymmetric mesh refined

in several steps around the indenter probe was used. To

better capture the evolution of the contact area over the creep

phase, extra refinement of the mesh was introduced around

the eventual edge of the contact area during the creep phase

(see Fig. 5). The whole mesh consisted of 15,656 nodes and

of 15,115 CAX4 (4-node bilinear) elements. The load

applied to the indenter probe was imposed, and the dis-

placement h(t) of the probe was output from the numerical

simulation. Due to the extra refinement of the mesh, the

elements in the vicinity of the edge of the contact area during

the creep phase were smaller than one four-hundredth of

the contact radius. To simulate an instantaneous loading,

viscous properties were dismissed during the loading phase.

As a result, the load history applied to the indenter cor-

responded to a Heaviside function.

The viscous behavior of the indented material was

modeled by the deviatoric Maxwell creep model, char-

acterized by its viscosity gM. The instantaneous Poisson’s

ratio was m0 5 0.499. The material was elastic perfectly

plastic. The incompressible plastic flow was modeled

with an associated von Mises plasticity model. The yield

strength-to-Young’s modulus ratio ry / E0 was varied

from 10�2 to 10�1. The duration of the creep phase was

equal to three times the characteristic viscous time of the

material gM / M0. As in the case of load relaxation

simulations, here large displacements were considered.

2. Results and discussion

The indentation modulus M0 ¼ E0=ð1� m20Þ and the

maximal load Pmax were input in the numerical simulation.

The depth history h(t) and contact radius a(t) were output

from the numerical simulation. With Eq. (17), we calculated

the rate _LnumðtÞ of the contact creep function. _LnumðtÞ was

then compared with a linear viscoelastic analytical solution

for deviatoric Maxwell creep model from the literature4:

_LanðtÞ ¼ 1

4gM

1þ ð1� 2m0Þ2
3

e
� E0

3gM
t

" #

: ð24Þ

For all simulations, _LnumðtÞ= _LanðtÞ was constant within
62% over the creep phase. _LnumðtÞ= _LanðtÞ is displayed in

Fig. 4 versusM0 / H, where H5 Pmax / Ac is the effective

hardness calculated at the end of the loading phase.

On average, Eq. (17) overestimated the contact creep

compliance rate. This overestimation increased with an

increasingM0 /H ratio, i.e., with a decreasingry / E0 ratio.

At most, an overestimation of approximately 36% was

obtained for simulations of M0 / H � 51. In contrast, for

“low”M0 /H ratios (M0 /H# 10), Eq. (17) gave an almost

perfect evaluation of the contact creep compliance rate as

predicted by numerical calculations. To identify the reason

for the discrepancy with Eq. (17), the simulations were

also conducted in the absence of plasticity during the creep

phase: for any ry / E0 ratio, Eq. (17) was then in perfect

agreement with the analytical solution Eq. (24). This ob-

servation proves that instantaneous and time-independent

plastic phenomena do occur during the creep phase, and

that Eq. (17) overestimates the indentation creep compli-

ance rate because of this occurrence of plastic deforma-

tion during the creep phase. The occurrence of plastic

deformation during the creep phase may be surprising.

Indeed, over the creep phase, the contact area between the

probe and the indented surface increases and, as a result,

the average stress below the indenter, i.e., a value math-

ematically equivalent to the indentation hardness H,
decreases. We observed in these finite element simulations

that the plastic deformation occurred in a very localized

fashion, around the perimeter of the contact area (see

Fig. 5). For the simulations in which plasticity was

FIG. 4. Ratio of the contact creep rate _LnumðtÞ obtained from the

numerical simulations and Eq. (17) to the contact creep rate _LanðtÞ
obtained from the analytical solution Eq. (24) versus M0 / H when

plasticity is allowed during the creep phase (blue diamonds) and when

plasticity is prevented during the creep phase (red circles). For all

simulations, the ratios remained constant within 62% over the creep

phase.
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allowed during the creep phase, we increased the mesh

resolution around the contact edge, but this had no effect

on the ratio displayed in Fig. 4. This observation suggests

that the occurrence of plastic deformation over the creep

phase is not a numerical artifact.

In summary, Eq. (17) provides a link between exper-

imental data and the contact creep compliance rate, even

when instantaneous plasticity occurs during the initial

loading phase. However, Eq. (17) does not correct for

the occurrence of plasticity during the creep phase,

which can be significant for materials exhibiting a high

ratio of M / H.

C. Specific case of short indentation creep

experiments

Practically, the creep phase of an indentation creep

experiment is typically limited to a few minutes, often

because sample displacement rates become competitive

with displacement signal drift rates over longer data

acquisition durations. In such cases, one may wish to

consider the specific case of a rather brief measurement

of the material creep response. For short creep phases, the

change in contact radius over the creep phase can be

neglected. To first order, the contact radius is thus

constant over the creep phase, i.e., a(t) � aU, where aU
is the contact radius just before unloading. Under this

approximation, Eq. (17) yields:

_LðtÞ ¼ 2aU _hðtÞ
Pmax

; ð25Þ

where _hðtÞ and Pmax are readily available from experi-

mentation, and aU can be estimated, for instance with the

Oliver and Pharr29 method.

In order for the above equation to be applicable, one

may want to limit the change of contact radius over the

creep phase to 10%. Assuming in first order that the ratio

of the contact depth to the penetration depth remains

constant during this phase, one can impose this restriction

by choosing the duration of the creep phase such that the

penetration depth just after creep is less than 10% greater

than the penetration depth just before creep.

IV. APPLICATION: CONTACT CREEP LOADING

OF POLYSTYRENE

Equation (17) was derived for a time-dependent behav-

ior which is linear with regard to applied stresses. For most

materials, this assumption proves too restrictive. The

purpose of this section is to understand whether the results

presented above can be extended beyond linear creep

behavior. For such materials, we ask whether it is possible

to apply Eq. (17) to obtain a viscous material property

which is independent of the loading profile and thus

physically meaningful. To answer this question, we

carried out indentation creep experiments using a sharp

Berkovich probe on polystyrene, an amorphous homopol-

ymer that is glassy at room temperature. This material

is known to exhibit both creep5 and long-term plastic

deformation30 under typical indentation loading profiles

which use a sharp (e.g., Berkovich trigonal pyramid)

indenter comprising a stiffer material such as diamond.

To solicit different relative amounts of plasticity, different

maximum loads and loading durations were considered.

A. Materials and methods

Indentation creep experiments were conducted with

a NanoTest 600 instrumented indenter (Micro Materials

LLC, Wrexham, United Kingdom) on polystyrene (DuPont,

Wilmington, DE). Different loading rates were achieved

with a prescribed trapezoidal load history: the load was

increased linearly up to Pmax, held constant during the creep
phase, and then decreased linearly. By varying both the load

magnitudes and loading times sL by one order of magnitude,

a large range of loading rates _P ¼ Pmax=sL was achieved,

covering two orders of magnitude. These experiments were

carried out with three load levels (Pmax5 3, 10, and 30 mN)

and three loading times (sL5 3, 10, and 30 s), yielding a total

of nine load cases that varied the loading rate _P ¼ Pmax=sL
from _P ¼ 0:1 mN�s�1 to _P ¼ 10 mN�s�1. The unloading

phase duration sU was chosen equal to the loading phase

duration. For each experiment, the creep phase was 30 s in

duration. Each load case was repeated three times, yielding

a total of 27 indentations on polystyrene.

For the 27 experiments, the change in depth h(t) over
the creep phase was on average less than 10%. Assuming

in first order a constant hc / h ratio, where hc is the contact
depth, we estimated a change in contact radius over the

FIG. 5. Deformed mesh and von Mises stresses during the creep

phase for the simulation with ry / E0 5 10�2. The plastic phenomena

occurring during the creep phase take place in the indicated rectangle.
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creep phase less than 10%, so that the contact creep

compliance rate was calculated with Eq. (25). The 27

experiments yielded M0 / H 5 24.161.7, where the

indentation modulus M0 was calculated with the Oliver

and Pharr29method, andHwas the indentation hardness at

the end of the holding phase. Based on the small change in

contact radius over the holding or creep phase, H was

considered a good estimate of the average pressure at

the beginning of the creep phase. In conjunction with the

numerical results displayed in Fig. 4, we estimated the

overestimation of the contact creep compliance rate from

Eq. (25) to be about 10%. This error is of the same order as,

but of opposite direction, to the error induced by neglect of

the radial contraction of the indented material by elastic

solutions; the latter effect is commonly included in the

empirical b-factor.27 Therefore, no correction factor was

included to take into account the potential effect of plastic

phenomena occurring during the creep phase.

The estimation of the contact radius before unloading

was performed with the Oliver and Pharr29method.We fit

the function c0 þ+7

i¼1
cit1=ð2

i�1Þ to the experimental

change in indentation depth during the creep phase. From

an analytical differentiation of the fit function, we obtained
_hðtÞ and applied Eq. (25).

B. Results and discussion

Figure 6 displays the contact creep compliance rate _LðtÞ
over the creep phase for the different load histories. The

responses show some scaling at the very beginning of the

creep phase only: the larger the loading rate _P ¼ Pmax=sL,
the larger the measured contact creep compliance rate _LðtÞ.
This trend is the consequence of a well-known viscoelastic

effect. After a few seconds, however, this effect becomes

negligible. Indeed, the time evolution of the coefficient of

variation (mean normalized by standard deviation) of the

27 experiments, which is also displayed in Fig. 6, is as

follows: for t $ 7 s, the coefficient of variation is smaller

than 7% and almost constant over the creep phase.

Therefore, after a few seconds in the creep phase, the

measured rate of change of the creep compliance _LðtÞ for
polystyrene is independent of the load profile. This

application demonstrates that Eq. (25) provides a physi-

cally meaningful, time-dependent property of the material

(i.e., independent of the load profile).

V. CONCLUSIONS

We have derived simple equations to obtain, under

contact creep loading, the contact relaxation modulus

M(t) and the contact creep compliance rate _LðtÞ of the

indented viscoelastoplastic material. These relations take

into account the occurrence of plasticity during the loading

phase, which at least for conical probe geometries is

unavoidable. These equations are valid for any axisym-

metric indenter shape, for large deformations, and for any

type of instantaneous plasticity. If necessary, the measured

M(t) and _LðtÞ can then be fit to analytical solutions

available in the literature for several rheological models,4

although Eqs. (6), (17), and (25) can be used with any

rheological model of the time-dependent behavior. The

analytical approach was developed under the following

assumptions: time-invariant material Poisson’s ratio, neg-

ligible plastic deformation during the relaxation or creep

phase, linear dependence of the viscous properties with

regard to applied stresses. If any of these assumptions

breaks down, the measurement of viscous properties by

means of the equations here derived will be less accurate.

For indentation relaxation experiments, we proved

analytically that the relaxation phase is viscous only.

For indentation creep experiments, numerical simulations

showed that time-independent plastic phenomena do

occur during the creep phase in a very localized manner

around the edge of the contact area. Equation (17)

corrects for the unavoidable occurrence of plasticity

during loading, but not for the potential occurrence of

plasticity during the creep phase. In the specific case of

Berkovich indentation, the numerical simulations per-

formed (see Sec. III.B) provide a correction factor to

Eq. (17), which takes into account the potential occurrence

of plastic deformation during the creep phase.

For sufficiently short indentation creep experiments,

the change in contact area over the creep phase becomes

negligible and Eq. (17) becomes:

FIG. 6. (a) Contact creep compliance rate _LðtÞ of polystyrene versus

time for different load cases and (b) coefficient of variation of the 27

measured contact creep compliance rates. For each load case, only the

mean value of the three creep tests is displayed: for t$ 5 s, the coefficient

of variation of the three tests corresponding to one load case was always

below 5%.
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_LðtÞ ¼ 2aU _hðtÞ
Pmax

; ð26Þ

where aU is the contact radius at the beginning of the

unloading phase. _hðtÞ and Pmax are readily available from

experimentation, and the estimation of aU (for instance

with the Oliver and Pharr29 method) is required for the

measurement of the indentation elastic modulus M0 and

hardness H. Therefore, in addition to routine indentation

analysis, for whichM0 and H are calculated, the calculation

of the contact creep compliance rate from Eq. (26) can be

achieved readily. These results then provide an additional

means to quantify the viscoelastic characteristics of visco-

elastoplastic materials, independently of loading profile.
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