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SARS-CoV-2 is transmitted primarily through close, person-to-person interactions. Physical

distancing policies can control the spread of SARS-CoV-2 by reducing the amount of these

interactions in a population. Here, we report results from four waves of contact surveys

designed to quantify the impact of these policies during the COVID-19 pandemic in the

United States. We surveyed 9,743 respondents between March 22 and September 26, 2020.

We find that interpersonal contact has been dramatically reduced in the US, with an 82%

(95%CI: 80%–83%) reduction in the average number of daily contacts observed during the

first wave compared to pre-pandemic levels. However, we find increases in contact rates over

the subsequent waves. We also find that certain demographic groups, including people under

45 and males, have significantly higher contact rates than the rest of the population. Tracking

these changes can provide rapid assessments of the impact of physical distancing policies

and help to identify at-risk populations.
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T
he dynamics of COVID-19 in a population are funda-
mentally dependent on rates of interpersonal interaction
and on patterns of who interacts with whom. With the

sharp increase in COVID-19 cases globally, many countries
adopted physical distancing practices at an unprecedented scale
in an effort to reduce transmission. On 16 March 2020, seven
counties in the San Francisco Bay Area ordered residents to
shelter in place in response to evidence of community trans-
mission of COVID-19. Over the subsequent days and weeks,
other US cities and states followed suit. At the start of April 2020,
the majority of people living in the US were under orders to
dramatically restrict their daily activities. By the end of April,
however, some localities began easing restrictions, and there is
presently considerable heterogeneity in physical distancing poli-
cies across US states, counties, and cities1.

Strong physical distancing measures are effective in controlling
the spread of the virus only if they are able to reduce the amount
of close interpersonal contact in a population. To quantify how
much interpersonal contact is changing as the pandemic evolves
in the US, we developed the Berkeley Interpersonal Contact
Survey (BICS). The BICS study collects information about the
total number of contacts people have, as well as detailed infor-
mation about who people are interacting with. This detailed
information is particularly important for informing epidemiolo-
gical models and for identifying populations at greatest risk to
COVID-19. Age-structured contact rates are especially relevant
for COVID-19 because of age-related variation in clinical out-
comes, and possibly susceptibility and transmissibility2.

Here, we describe changes in contact rates and patterns over
the course of the pandemic, and identify important correlates of
close interpersonal contact in the US. We also evaluate the
effectiveness of physical distancing policies by estimating the
impact of reduced contact rates on the reproduction number,
R0—the average number of secondary infections arising from a
single infection in a fully susceptible population.

Results
Data collection. Data collection took place in four waves: between
22 March and 8 April 2020 (pilot study, Wave 0); between 10 April
and 4 May 2020 (Wave 1); between 17 and 23 June 2020 (Wave 2);
and between 11 and 26 September (Wave 3). We surveyed a total
of 9743 respondents in the US (Wave 0 n= 1437, Wave 1 n=
2627, Wave 2 n= 2431, Wave 3 n= 3248). Survey respondents
were asked to report the number of people they had contact with
on the day before the interview. Respondents reported a total of
49,321 contacts and provided detailed reports about 29,880 con-
tacts. We oversampled respondents in certain cities; analyses here
are weighted to account for sample composition (“Methods”).

Interpersonal contact in the United States. Since physical dis-
tancing policies are intended primarily to reduce non-household
contacts, we investigate both the total number of reported contacts
and the number of reported non-household contacts. Fig. 1a, b
show histograms of the number of contacts (Fig. 1a) and non-
household contacts (Fig. 1b) reported by respondents in each wave.
Respondents reported a median of two contacts (0 non-household)
in Wave 0, a median of three contacts (1 non-household) in Wave
1, a median of three contacts (1 non-household) in Wave 2, and a
median of four contacts (2 non-household) in Wave 3. Qualita-
tively, the pattern of contacts is similar in each wave, but with
increasingly higher levels of contact in Waves 1, 2, and 3, when
compared to Wave 0. We confirm this increase in contact levels
over time with a model-based analysis below.

For up to three contacts, respondents were asked to report
detailed information, including the contact’s age, sex, relationship
to the respondent, and the location of the contact event. Using
this information, we estimated the composition of respondents’
contacts by relationship and by location (see “Methods”). Figure 1
shows the estimated average number of non-household contacts
each person reported to have taken place by contact’s relationship
(Fig. 1c) and location (Fig. 1d). These are contacts respondents

Fig. 1 Reported interpersonal contact across four survey waves. a, b Histograms of reported number of contacts (a) and non-household contacts

(b) among respondents for each wave. Reported contacts are topcoded at 10 in these plots. The vertical lines show the median number of contacts.

c, d Estimated average number of non-household contacts each person reported to have taken place by contact’s relationship (c) and location (d) based on

n= 29,880 reports about detailed contacts (“Methods”). Uncertainty estimates are 95% intervals derived from the bootstrap. Each point shows estimated

average numbers of non-household contacts in each category, per person. For example, Panel c shows that the average respondent reported almost 0.8

non-household contacts with family members in Wave 2. Avg. average.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20990-2

2 NATURE COMMUNICATIONS |          (2021) 12:893 | https://doi.org/10.1038/s41467-021-20990-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


reported with people who do not live in their household. It is
therefore possible that some of these “home” contacts took place
in the respondent’s household; this would happen if, for example,
neighbors came over to visit. They could also have taken place in
someone else’s household as would happen if, for example, the
respondent had visited a friend at the friend’s house. Across
Waves 0 to 3, the average number of interactions with family,
friends, and work colleagues increases, and in Waves 1 to 3, these
three relationships are responsible for most non-household
interpersonal contact. In Wave 0, with contact levels uniformly
very low, no single relationship stands out as explaining most
non-household interaction. Across Waves 0 to 2, the most
common location of reported contacts was someone’s home; by
Wave 3, work and home had similar levels of reported contacts.
Across Waves 0 to 3 we find increases in the number of work
contacts and home contacts, and between Waves 0 and 1 we see
increases in contacts at stores and businesses.

Previous studies have found that during non-pandemic periods
the average number of contacts is related to characteristics of
people—e.g., age and household size—and to structural factors
like day of the week—weekday versus weekend3. To investigate
correlates of contacts in the US during the emergence of COVID-
19, we fit negative binomial regression models to data for all
contacts and to data for non-household contacts (see “Methods”).
Figure 2 summarizes inferences from the model for non-
household contacts by showing conditional effects plots for
different covariate values (see Supplementary Table 4 for the
posterior mean estimates and 95% credible intervals for all
coefficients from the two models). These conditional effects plots
show the expected number of non-household contacts and the
95% posterior credible interval for different covariate values;
covariate values not being manipulated in each panel are fixed at
the values for a white female aged 35–44 from the national sample
who lives in a two-person household during a weekday in wave 3.
For example, Fig. 2a compares the predicted number of

non-household contacts on a weekday and on a weekend for a
white female aged 35–44 from the national sample who lives in a
two-person household during wave 3 (Supplementary Fig. 2
shows analogous results from a model fit to all contacts).

Several interesting findings emerge from Fig. 2. The model
estimates confirm that the average level of non-household contact
increased with each wave, but the pace of this increase varied by
city: for example, model estimates suggest that contact rates in the
Bay Area and Phoenix steadily climbed from Wave 0 to Wave 3;
in contrast, other cities—including Atlanta, Boston, New York,
and Philadelphia—saw uneven increases in contact levels from
Wave 0 to Wave 3. Patterns of contact rates by race/ethnicity also
vary over time: in Wave 1, Black and Hispanic respondents
reported highest contact rates, but by Wave 3, Whites reported
the highest contact rates. Respondents under age 45, especially
males, report higher contact rates than older respondents. There
is little evidence for differences in numbers of non-household
contact by day of the week or household size. The Supporting
Information contains additional analyses of contact patterns.

Implications for COVID-19 transmission. To estimate relative
changes in transmission over the course of the pandemic, we
estimated the impact of changing contact rates on the repro-
duction number. According to the social contact hypothesis, for
respiratory pathogens such as SARS-COV-2, relative changes in
R0, can be estimated by comparing the dominant eigenvalues of
age-structured contact matrices4,5. Note that our estimated
reproduction number for each time point indicates the trans-
mission potential for the pathogen in a fully susceptible popula-
tion; we cannot directly estimate the time-varying effective
reproductive number—the average number of secondary infec-
tions per case at each time point in the epidemic—without
additional information on the fraction of population that is sus-
ceptible. Thus, our estimated R0 value at each time point repre-
sents the theoretical R0 for an outbreak in a fully susceptible

Fig. 2 Conditional effect plots showing the predicted mean number of non-household contacts and 95% posterior credible intervals for several

covariates. Predicted mean number of non-household contacts is shown for (a) day of the week; (b) household size; (c) race/ethnicity; (d) age/sex group;

and (e) geography. Predictions come from a negative binomial model fit to reported numbers of non-household contacts made by n= 9743 survey

respondents. Colors are used in panels c–e to show estimated interactions. Covariate values not being manipulated in each panel are set to values for a

white female aged 35–44 from the national sample who lives in a two-person household during a weekday in wave 3 (“Methods”). Uncertainty bars show

95% posterior credible intervals. Supplementary Fig. 2 shows the same predictions for an analogous model fit to all contacts.
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population subject to the observed age-structured contact matrix
at that time point.

We calculated age-structured contact matrices, adjusting for
the age distribution of survey respondents and the reciprocal
nature of contacts, for each wave of the BICS study (see
“Methods”). We compare these with baseline data on pre-
pandemic contact patterns in the US to understand the impact of
physical distancing policies on contact rates and the implications
for the transmission of SARS-CoV-2. There are surprisingly few
existing estimates for the rate of contact in the US before the
COVID-19 pandemic6–8; here, we compare our estimates to
contact patterns estimated from a probability sample of US
Facebook users in 2015 (ref. 9) (see Supplementary Fig. 7 for a
comparison of available pre-pandemic estimates of contact
patterns).

We find large declines in daily interpersonal interaction
compared to business as usual, with the largest decline in Wave
0 (82%) followed by Wave 1 (74 %), Wave 2 (68%), and Wave 3
(60%). Figure 3 shows the estimated age-structured contact
matrix and the reduction in interpersonal contact in each age
category for the four BICS waves compared to the 2015 study. We
find considerable declines across all age groups, particularly in
Wave 0, with largest absolute decline in the 25–35 age group.
However, even at these low absolute levels of interpersonal
contact, we continue to find distinctive patterns of assortative
mixing by age found in previous contact studies.

We estimated the relative reduction in R0, assuming (1) that
contact patterns in the population before physical distancing
became widespread were equivalent to the 2015 study9 and (2)
that disease-specific parameters remained unchanged over the
course of the survey period (see “Methods”). We find 73% (95%
CI: 72–75%), 57% (95% CI: 53–61%), 48% (95% CI: 43–53%), and
36% (95% CI: 29–42%) declines in the implied R0 in Waves 0, 1,
2, and 3 respectively, relative to the pre-pandemic period. The
contact patterns observed in our survey suggest a substantial
reduction in R0 under physical distancing, particularly during the
Wave 0 study period. Figure 4 shows the R0 estimates for the four
survey waves, assuming an average R0 value of 2.5 in the absence
of physical distancing. The dramatic reduction in contact rates
observed in Wave 0 was sufficient in reducing R0 to 0.66 (95% CI:
0.38–0.96) in Wave 0. However, with the easing of physical
distancing and increase in overall contact rates, R0 increased to
1.06 (95% CI: 0.61–1.53) by Wave 1, 1.29 (95% CI: 0.74–1.86) by
Wave 2, and 1.59 (95% CI: 0.91–2.30) by Wave 3. We repeat the
analysis using contact patterns from UK participants in the
POLYMOD study3, which has been the gold-standard for
modeling age-specific contact patterns in many settings, as the
pre-pandemic baseline; our results are qualitatively similar
(Fig. 4).

While physical distancing reduces the risk of transmission by
reducing contact rates in the population, there is evidence to
suggest that the adoption of other non-pharmaceutical interven-
tions, such as the usage of face coverings or masks, can further
reduce transmission. To account for this, we repeated the analysis
by restricting contacts to only those where no mask usage was
reported (Fig. 4). Accounting for mask usage reduces the relative
increase in the implied R0. The two scenarios modeled here
represent the extreme ends of the possible spectrum of protection
conferred by mask usage, i.e., from no efficacy to perfect efficacy
in reducing transmission; actual R0 is likely to fall within these
two bounds.

Discussion
We find large reductions in the number of contacts reported in
our survey compared to business as usual, suggesting that the

physical distancing measures adopted in the US in March and
April had their intended impact. Compared to the contact survey
conducted in 2015 (ref. 9), our estimates suggest that in Wave 0
there was about 82% (95% CI: 80–83%) reduction in the daily
average number of contacts per person. This finding is similar to
the declines in contact rates, relative to pre-pandemic
levels, recently observed elsewhere; 86% decline in Wuhan,
China, 88% decline in Shanghai, China10, 74% decline in the
United Kingdom5, 82% decline in Luxembourg11, 85% in Italy
and between 73 and 75% decline in Italy, Belgium, France, and
the Netherlands12.

As time elapsed, physical distancing policies were relaxed and
then, in some jurisdictions, reimposed. We find that over this
time period the rate of close interpersonal contacts in the US
gradually increased from an unprecedented low level in March,
pushing the estimated R0 values above 1 by June. In addition to
an overall increase in the average number of reported contacts, we
also find an increase in the number of contacts at work, as well as
at stores and businesses; this has implications for SARS-CoV-2
transmission as the economy reopens.

Our analysis here has several important limitations. In this
study, we used a quota sample from an online panel rather than a
probability sample. Previous contact studies have also used var-
ious alternatives to probability samples13–17. Online panels allow
data to be collected rapidly and frequently, whereas the time and
cost required to design and implement a probability sample are
prohibitive. Further, obtaining a probability sample during a
pandemic is complicated by the logistical challenges arising from
the need to protect interviewers and respondents. However,
future work based on a national probability sample would be a
valuable complement to our study.

There may be some recall bias in our survey estimates, as
respondents were asked to report on contacts from the previous
day. There may also be social desirability bias arising from
awareness of social distancing policies. Our surveys were only
conducted in English, meaning that we are not able to reach
people who only speak other languages. We do not survey chil-
dren, and are unable to capture contacts within age groups below
the age of 18. Finally, our estimates of relative changes in R0 do
not take into account possible age-specific differences in sus-
ceptibility or infectiousness, or possible changes in infection
transmissibility due to other factors.

The BICS study is ongoing, and will continue to collect data for
the next several months, with the goal of measuring changes in
contact patterns as interventions change and schools and work-
places reopen. The data from the BICS study provide a unique
opportunity to understand how interpersonal contact patterns are
changing in the US over the course of the pandemic, and the
epidemiological implications for COVID-19 and other respiratory
pathogens. Future work will focus on applying these estimates to
parameterize age-structured mathematical models of SARS-CoV-
2 transmission and to monitor and evaluate the effectiveness of
physical distancing policies over time.

Methods
Survey methodology. We designed and fielded a survey to measure interpersonal
interaction in the United States. Following the POLYMOD project3 and subsequent
studies5,10,18, survey respondents were asked to report the number of people they
had conversational contact with on the day before the interview; in Waves 1 to 3,
we also asked about physical contact. Respondents were asked to provide detailed
information about up to three of their reported contacts; this detailed information
included who those contacts were, how long those contacts lasted, and where they
took place. In Wave 0, respondents were asked to report all contacts, and to then
report how many of their contacts were not household members. Starting with
Wave 1, respondents were asked to provide a household roster, and then report
only contacts outside of the household.

The survey instrument was created in Qualtrics and respondents were recruited
using Lucid, an online panel provider. In each wave, we obtained two samples: first,
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a quota sample that is intended to be representative of the United States; and,
second, several smaller quota samples from specific cities: New York, the San
Francisco Bay Area, Atlanta, Phoenix, and Boston. In Wave 1, Philadelphia
was added.

All survey respondents provided informed consent and the project was
approved by the UC Berkeley IRB (Protocol 2020-03-13128).

Weighting
Respondent-level weights. We adopt a model-based approach to inference, which is
appropriate for our quota sample19. Except where noted, we pool results from the
national and city samples together in this analysis. We use calibration to produce
pseudo-probabilities of inclusion, and use these pseudo-probabilities of inclusion as
the basis for weights used to make population-level inferences20,21. We calibrate

Fig. 3 Comparison of age-structured contact matrices with baseline. a–d Age-structured contact matrices from the four BICS waves after adjusting

for the age distribution of survey respondents and the reciprocal nature of contacts; lighter colors indicate higher number of average daily contacts.

e–h Difference in the average number of contacts between the 2015 study and the four BICS waves; lighter colors indicate a larger absolute difference

between the 2015 study and the BICS data. i–l Average number of reported contacts for each respondent age group for the BICS data (darker color)

compared to the 2015 study (lighter color), along with 95% confidence intervals derived from the bootstrap. The BICS estimates are based on n= 3163 in

Wave 0, n= 7473 in Wave 1, n= 7842 in Wave 2, and n= 11,402 in Wave 3 reported contacts; The 2015 study estimates are based on n= 5944 reported

contacts. Top row shows BICS Wave 0; second row shows BICS Wave 1; third row shows BICS Wave 2; and bottom row shows BICS Wave 3.
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based on: age categories (18–23, 24–29, 30–39, 40–49, 50–59, 60–69, 70+); sex; age
by sex interactions; education (non-high school graduate, high school graduate,
some college, college graduate); race (white, Black, other); Hispanicity; household
size category (1, 2, 3, 4, 5, or more); and whether the respondent’s county is rural/
suburban/urban. Figure 5 shows the distribution of respondents before and after
calibration weighting. All population values except for rural/suburban/urban are
taken from a 1-year extract of the 2018 American Community Survey provided by
IPUMS22. We ascertain whether each respondent lives in an urban, suburban, or
rural area by mapping the respondent’s zip code to county, and then using the
county-level urban/suburban/rural codes from the CDC. In order to map zip code
to county, we use the crosswalk developed by Sood23. We perform the calibration
using the R packages autumn (https://github.com/aaronrudkin/autumn) and leaf-
peepr (https://rdrr.io/github/rossellhayes/leafpeepr/).

Contact-level weights. In Wave 0, the pilot study, respondents were asked for their
total number of contacts and for the number of contacts who were not household
members. Then, respondents were asked to provide detailed information for three
of these contacts; this detailed information included contact age, sex, relationship
to respondent, and contact location. If respondents reported more than three total
contacts, they were asked to report in detail about the first three contacts who came
to mind. Starting with Wave 1, respondents were asked to report about the age and
sex of all of their household members, and then to report the number of contacts
they had with non-household members. Respondents were then asked to report
detailed information for the first three non-household member contacts who came
to mind.

In all waves, some respondents reported more than three total contacts, but
only provided detailed information about three contacts. In these cases, in order to
make inferences about the total number of contacts, we use within-respondent
weights. For example, suppose respondent i reports a total of di= 6 contacts, and
provides detailed information about 3 of them. Then each of the three contacts
receives a weight of ai ¼

6
3
¼ 2. If, on the other hand, respondent j reports a total of

dj= 2 contacts and provides detailed information about both of them, then aj= 1.
Conceptually, ai is the number of respondent i’s contacts represented by each

contact who gets reported about in detail9, discusses this weighting approach in
greater detail.

When we make population-level inferences about contact characteristics, such
as the relationship and location distributions shown in Fig. 1, we use these contact
weights in combination with the respondent weights9. For example, to estimate the
proportion of contacts at work, we use

bpwork ¼
P

i2swi ai z
work
iP

i2swi di
; ð1Þ

where

● s is the sample of all respondents
● wi is the respondent-level calibration weight
● ai is the within-respondent weight for respondent i’s contacts
● z worki is a variable that has how many of respondent i’s detailed contacts were

reported to have happened at work
● di is the total number of contacts respondent i reports

The intuition is that wi is the number of people respondent i represents in the
general population, and ai is the number of i’s contacts that is represented by each
detailed contact.

Statistical model. To investigate factors associated with interpersonal contacts, we
developed statistical models. We fit separate models to (1) the total reported
contacts and (2) the number of reported non-household contacts. In each case, we
model the expected number of contacts using a negative binomial distribution. The
negative binomial distribution is appealing because it allows for overdispersion—
that is, it enables us to model count data that exhibit more variance than would be
expected under a Poisson distribution. This modeling approach has previously
been used to study contact data3.

Fig. 4 Implied R0 estimates for each wave. The implied R0 from the BICS contact matrices for each wave relative to two baseline contact matrices from

the 2015 study and the UK POLYMOD study, and assuming a baseline R0 value drawn from a normal distribution with mean 2.5 and standard deviation

of 0.54. Circles indicate R0 estimates calculated from age-structured contact matrices for all reported contacts (n= 3163 in Wave 0, n= 7473 in Wave 1,

n= 7842 in Wave 2 and n= 11, 402 in Wave 3); diamonds indicate R0 estimates calculated from age-structured contact matrices for contacts where no

mask usage was reported (n= 5777 in Wave 1, n= 5818 in Wave 2 and n= 7583 in Wave 3). Ninety-five percent confidence intervals were derived from

the bootstrap. FB: 2015 Facebook survey.
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In our model, the log of the expected number of contacts for respondent i is
given by

μi ¼ αþ XT
i β; ð2Þ

where Xi is a vector of covariates that includes age category, gender, household size,
survey wave, city, race/ethnicity (Non-Hispanic White, Non-Hispanic Black/
Hispanic/Non-Hispanic Other), and whether or not the day being reported about is
a weekday. We include age by sex interactions, wave by race/ethnicity interactions,
and wave by city interactions. β is a vector of coefficients to be estimated.

Given μi, we define λi ¼ expðμiÞ to be the expected number of contacts for
respondent i. Then we model the reported number of contacts for respondent i, yi,
as

yi � Neg-Bin ðλi;ϕÞ; ð3Þ

where ϕ∈ [1, ∞) is a shape parameter that is inversely related to overdispersion;
that is, the higher ϕ is estimated to be, the more similar yi’s distribution is to a
Poisson distribution with rate parameter λi.

In our data, observations from Wave 0 are censored above 10, because the
survey instrument allowed respondents to report up to “10 or more” contacts.
Waves 1 and up allowed respondents to enter any number of contacts, but in this
analysis we top-coded contacts at 29, following previous studies of contact data3.
Reports that are topcoded or censored in any of the waves are treated as right-
censored in the model. We adopt a Bayesian approach to fitting the model. For all
of the regression coefficients β, we assume flat priors. For the intercept and the
shape parameter, we assume very weak priors. Specifically, we assume a priori that
the intercept α is distributed with mean 0 and a large variance by using pr(α) ~
Student-t (3, 0, 10); and we assume a priori that the shape parameter ϕ, is
distributed with mean 1 and a very large variance by using pr(ϕ) ~ Gamma(0.01,
0.01). We did not collect data from Philadelphia in Wave 0, so the coefficient
corresponding to Philadelphia in Wave 0 is constrained to be exactly 0 to allow
estimation to proceed. Supplementary Table 1 shows summary statistics for the
predictors used in our model.

Accounting for censoring, in our models the log posterior of the parameters
given the data, log pr ðα; β;ϕjy;XÞ, is proportional to

log pr ðα; β; ϕjy;XÞ / pr ðαÞ þ pr ðϕÞ þ Σi2snc
wi f NB yijλi; ϕ

� �
þ Σi2sc

wi 1� FNB cijλi; ϕðð Þ½ �

ð4Þ

where snc is the set of responses that are not censored; sc is the set of responses that

are right-censored, with response i∈ sc being censored at value ci; f NBðyjμ; ϕÞ ¼

y þ ϕ� 1
y

� �
μ

μþϕ

� �y
ϕ

μþϕ

� �ϕ

is the PMF of the negative binomial distribution, and

FNB is the cumulative distribution function FNBðyjμ;ϕÞ ¼
Py

x¼0 f NBðxjμ; ϕÞ; and

λi ¼ expðμiÞ ¼ expðαþ XT
i βÞ is the expected number of contacts or non-

household contacts for respondent i. (The parameterizations of all distributions
discussed here are the ones used in stan.) For each model, we run four chains of the
sampler; each chain was run for 1000 warmup iterations and then 1000 sampling
iterations. All R-hat statistics are 1, suggesting that the chains mixed effectively.

The model is nonlinear and has three sets of interacted predictors, making it
challenging to directly interpret coefficient estimates. Therefore, in Fig. 2 and
Supplementary Fig. 2 we show conditional effect plots and 95% credible intervals
for covariates of interest. These plots illustrate model inferences by showing how
the predicted number of contacts varies as a specific covariate varies. To do this, all
other model predictors have to be held at fixed values. In Fig. 2 and Supplementary
Fig. 2, we set predictors not being manipulated in each conditional effect plot to
values for a white female aged 35–44 from the national sample with the average
sample weight who lives in a two-person household during a weekday in wave 3.
Supplementary Table 4 reports the actual coefficient estimates.

Epidemiological model. We estimate age-structured contact matrices for each
wave of the BICS study. We group respondents and their contacts into six age bins:
0–18, 18–25, 25–35, 35–45, 45–65, and 65+. For each age group, we estimate the
average daily number of contacts reported by respondents in that age group with
contacts in every age group. In other words, our raw contact matrix, M, has entries
mij which is the average number of daily contacts between respondents in age
group, j, with their reported contacts in age group, i. Adjusting for survey weights,

Fig. 5 Characteristics of survey respondents. We use calibration weights to improve the representativeness of our sample. Each facet shows the

unweighted (red) and calibration weighted (blue) composition of survey respondents for a given covariate.
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we calculate mij as

mij ¼

PT j

t¼1 wt;jyt;i
PT j

t¼1 wt;j

ð5Þ

where wt,j is the weight for reports made by participant t, in age group j, and yt,i is
the number of reported contacts made by respondent t in age group i. Tj is the total
number of respondents in age group j.

Contacts in the population must be reciprocal but due to differences in
reporting in the survey our raw social contact matrix, M, is not. We impose
reciprocity by

cij ¼
mijN j þmjiN i

2N j

ð6Þ

where cij are the entries of the reciprocal contact matrix, C, and Ni and Nj the
population size in age classs i and j, respectively. For the youngest age group, for
which we have no survey respondents, we assume

ci1 ¼
m1iN i

N1

: ð7Þ

These methods have been used previously to generate age-structured contact
matrices from survey data3–5,17,24.

We estimate within age group average number of contacts, cii, for the youngest
age group by adapting methods from previous contact studies5,17, and by using
data from the United Kingdom POLYMOD study3. Specifically, for each wave of
the BICS study, we calculate the ratio of the dominant eigenvalue for the contact
matrix estimated from the BICS data to the dominant eigenvalue of the contact
matrix from the POLYMOD study, with school contacts removed to reflect current
school closures, for all age groups that are overlapping between the two studies.
The within age group average number of contacts for the [0,18) group in the
POLYMOD study is then scaled by this ratio to impute c[0,18)[0,18) in the BICS
contact matrix.

The transmission dynamics of infectious diseases are summarized by the next-
generation matrix, N, that determines how an infection spreads when a pathogen is
first introduced into a fully susceptible population. The basic reproduction number,
R0, is the average number of secondary infections arising from a single infection in
a fully susceptible population, and is typically estimated as the spectral radius
(dominant eigenvalue), ρ(N) of the next-generation matrix, N25. The N matrix is
proportional to the population contact matrix, C. The exact relationship between N
and C is model-dependent, but for respiratory pathogens such as SARS-CoV-2, N
is typically modeled as C scaled by the duration of infectiousness, 1γ, and the

probability of transmission for a single contact, q. Therefore, the spectral radius
of N:

R0 ¼ ρðNÞ ¼
q

γ
ρðCÞ ð8Þ

where ρ(C) is the dominant eigenvalue of the reicprocal population contact matrix.
In other words, R0 is proportional to the dominant eigenvalue of C.

Since R0 is proportional to the dominant eigenvalue of C, relative differences in
R0 under different contact patterns is equivalent to the ratios of the dominant
eigenvalues of the different contact matrices. Specifically, if we assume that contact
patterns in the population before physical distancing became widespread are
equivalent to a baseline contact matrix, and that disease-specific parameters
remained unchanged over the course of the survey period, the relative reduction in
R0 during physical distancing, compared to the baseline, is equivalent to the ratios
of the dominant eigenvalues of the C matrices from the BICS study, CBICS, to the
dominant eigenvalue of the baseline pre-pandemic contact matrix Cbaseline:

RBICS
0

Rbaseline
0

¼
ρðCBICSÞ

ρðCbaselineÞ
: ð9Þ

Further, if we assume a distribution for R0 for COVID-19 in the absence of
physical distancing, we can estimate the implied theoretical R0 during the study
period, by multiplying this ratio with the R0 value in the absence of physical
distancing. We assume that R0 prior to physical distancing followed a normal
distribution with mean 2.5 and standard deviation of 0.54 based on estimates from
literature5,26. We vary the mean baseline R0 value in sensitivity analyses. We
compare the BICS contact matrices to two baseline business-as-usual scenarios:
contact patterns estimated from a probability sample of US Facebook users9 and
contact patterns from the UK POLYMOD study3, which has been widely used in
many settings. We compute confidence intervals for the estimated R0 by repeating
the age-imputation and relative R0 estimation on 5000 bootstrapped samples from
the BICS, POLYMOD, and 2015 study contact matrices.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
We have deposited our data in the Harvard Dataverse, https://doi.org/10.7910/DVN/

M74AJ427.

Code availability
Code to reproduce our analyses is available on GitHub at https://github.com/dfeehan/

bics-paper-release28.
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