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Quantifying pruning impacts on olive 
tree architecture and annual canopy growth 
by using UAV‑based 3D modelling
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Abstract 

Background: Tree pruning is a costly practice with important implications for crop harvest and nutrition, pest and 
disease control, soil protection and irrigation strategies. Investigations on tree pruning usually involve tedious on-
ground measurements of the primary tree crown dimensions, which also might generate inconsistent results due to 
the irregular geometry of the trees. As an alternative to intensive field-work, this study shows a innovative procedure 
based on combining unmanned aerial vehicle (UAV) technology and advanced object-based image analysis (OBIA) 
methodology for multi-temporal three-dimensional (3D) monitoring of hundreds of olive trees that were pruned with 
three different strategies (traditional, adapted and mechanical pruning). The UAV images were collected before prun-
ing, after pruning and a year after pruning, and the impacts of each pruning treatment on the projected canopy area, 
tree height and crown volume of every tree were quantified and analyzed over time.

Results: The full procedure described here automatically identified every olive tree on the orchard and computed 
their primary 3D dimensions on the three study dates with high accuracy in the most cases. Adapted pruning was 
generally the most aggressive treatment in terms of the area and volume (the trees decreased by 38.95 and 42.05% 
on average, respectively), followed by trees under traditional pruning (33.02 and 35.72% on average, respectively). 
Regarding the tree heights, mechanical pruning produced a greater decrease (12.15%), and these values were mini-
mal for the other two treatments. The tree growth over one year was affected by the pruning severity and by the type 
of pruning treatment, i.e., the adapted-pruning trees experienced higher growth than the trees from the other two 
treatments when pruning intensity was low (<10%), similar to the traditionally pruned trees at moderate intensity 
(10–30%), and lower than the other trees when the pruning intensity was higher than 30% of the crown volume.

Conclusions: Combining UAV-based images and an OBIA procedure allowed measuring tree dimensions and quan-
tifying the impacts of three different pruning treatments on hundreds of trees with minimal field work. Tree foliage 
losses and annual canopy growth showed different trends as affected by the type and severity of the pruning treat-
ments. Additionally, this technology offers valuable geo-spatial information for designing site-specific crop manage-
ment strategies in the context of precision agriculture, with the consequent economic and environmental benefits.
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Background
Crop viability essentially relies on the management strat-

egy adopted by the farmer. Among the tasks that impact 

orchard production, tree pruning remains as a costly 

practice with important implications for harvest [1], 

nutrition, pest and disease control, and irrigation strat-

egies [2]. �e pruning type and its intensity modify the 

tree crown to differing degrees of severity, which notably 

affects the tree physiology and, consequently, the fruit 

quantity and quality [3, 4]. Investigations on tree prun-

ing usually involve the characterization of the tree archi-

tecture by measuring several geometric features of the 

crown. �e conventional method consists in using a ruler 

to measure the primary dimensions of the tree (e.g., the 

tree height and its primary axis) and, next, estimating 

the canopy area and the crown volume either by applying 

equations that treat the trees as regular polygons or by 

applying empirical models [5]. Obviously, this task is very 

tedious; it requires intensive fieldwork and usually gener-

ates inconsistent results due to the irregular geometry of 

the tree crown [6].

Current advances in sensors and geo-spatial technolo-

gies offer an alternative to hands-on measurement tasks. 

Rosell and Sanz [7] described the following techniques: 

ultrasound, digital photographic techniques, light sen-

sors, high-resolution radar images, high-resolution X-ray 

computed tomography, stereovision and LiDAR sensors. 

However, although some of these techniques, primarily 

terrestrial LiDAR laser scanning and stereovision sys-

tems, are very precise at measuring crop architecture [8, 

9], they still pose some limitations under real agricultural 

scenarios that are usually characterized by large spaces 

and rugged areas. In these cases, unmanned aerial vehi-

cles (UAVs) or drones have become a cost-effective tool 

for collecting continuous crop information at the field 

scale. �e advantages of the UAVs in comparison to the 

traditional remote-sensing platforms are attributed to 

their lower cost, greater flexibility in flight scheduling 

and their capacity to collect remote images with much 

higher spatial resolution [10–12]. In addition, because 

the UAVs can fly at low altitude and acquire images with 

high overlaps, these images can be processed with auto-

matic photo-reconstruction software and be used to pro-

duce a Digital Surface Model (DSM) of the flight area, i.e., 

the three dimensions (3D) of the topography and all the 

elements (e.g., trees) over the surface [13]. As a conse-

quence, recent investigations have focused on evaluating 

the quality of UAV-based 3D models of tree plantations, 

and they have reported satisfactory results for olive 

trees [14–16], palm trees [17] and Pinus pinea [18]. For 

example, by comparing UAV-based estimations of olive 

trees to on-ground measurements, Torres Sánchez et al. 

[15] obtained coefficients of determination  (R2) of 0.94, 

0.90 and 0.65 for projected canopy area, tree height and 

crown volume, respectively.

To seize on all the benefits of the UAV capacity for col-

lecting detailed information over large areas at a spatial 

resolution of a few centimeters, it is essential to develop 

and apply robust and automatic image analysis tools that 

are capable of computing a huge amount of crop data 

to produce useful maps for crop monitoring or other 

agronomic objectives. �e object-based image analysis 

(OBIA) paradigm includes a wide array of techniques that 

offer a high level of automation and adaptability, improv-

ing on some of the limitations of pixel-based methods 

[19]. OBIA is based on two primary stages, called seg-

mentation and classification. In the first stage, adjacent 

pixels with homogenous digital values are grouped as 

“objects”, which are used as the basic elements of analysis 

and classification [20]. In the second stage, OBIA com-

bines the spectral, topological and contextual features of 

these objects to successfully address complicated classifi-

cation issues, e.g., in rangelands [21, 22], or urban areas 

[23].

�e combined use of UAV images, 3D models and 

OBIA procedures offers new opportunities for the high-

throughput monitoring of crop conditions at the level 

of individual plants or trees [24]. �erefore, this study 

takes advantage of this geo-spatial technology to com-

pute the 3D geometric features of hundreds of olive trees 

with the ultimate objective of quantifying the pruning 

impact on the tree architecture and tree growth. �ree 

different pruning treatments were evaluated by compar-

ing a multi-temporal UAV-based dataset that was col-

lected before tree pruning, after tree pruning and one 

year after tree pruning. �e specific objectives of this 

research were separated in two linked sections (Fig.  1) 

as follows: (a) technological objectives, which involved 

the description and evaluation of the full procedure to 

acquire remote images with the UAV and to generate the 

image-based 3D tree models. �ese objectives included 

the development and implementation of an innovative 

OBIA algorithm with the capacity to automatically clas-

sify and identify every tree of the olive grove and to com-

pute their position, projected area, height, and volume; 

and (b) agronomic objectives, which aimed to explore 

and interpret the temporal variability that was meas-

ured within the olive grove as affected by every applied 

pruning treatment. Additionally, the potential uses of the 

valuable dataset and maps obtained with this technology 

were also discussed, including applications for physi-

ological and agronomical studies as well for designing 

site-specific crop management strategies in the context of 

precision agriculture.
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Fig. 1 Graphical scheme of the stages and specific technological and agronomic objectives of this investigation

Table 1 A sample of the output dataset delivered by the customized OBIA algorithm

a Coordinate system: UTM, zone 30 N, datum WGS84

Tree ID Row Column Central 
 coordinatesa

Pruning 
treatment

Projected canopy area 
 (m2)

Tree height (m) Crown volume  (m3)

X Y Date 1 Date 2 Date 3 Date 1 Date 2 Date 3 Date 1 Date 2 Date 3

1 1 1 485,726 4,217,762 Traditional 15.38 12.44 17.24 3.81 3.72 3.75 44.09 34.74 43.16

2 1 2 485,732 4,217,760 Traditional 15.88 9.61 16.69 4.10 4.01 4.14 47.75 27.52 44.68

3 1 3 485,738 4,217,757 Traditional 13.98 10.77 14.58 3.91 3.62 3.70 35.42 26.68 34.68

… … … … … … … … … … … … … … …

217 10 1 485,786 4,217,808 Adapted 15.34 5.16 11.13 4.37 4.04 4.43 43.81 13.28 31.43

218 10 2 485,789 4,217,806 Adapted 14.96 5.46 12.26 3.81 3.80 3.97 43.81 15.15 35.45

219 10 3 485,795 4,217,803 Adapted 12.64 7.62 13.02 4.53 3.77 3.45 31.73 18.99 27.43

… … … … … … … … … … … … … … …

433 19 1 485,840 4,217,852 Mechanical 7.00 5.75 7.20 3.85 3.48 3.83 18.78 15.67 17.68

434 19 2 485,846 4,217,851 Mechanical 10.11 10.00 13.64 4.31 3.58 3.79 27.28 26.73 31.97

435 19 3 485,850 4,217,848 Mechanical 13.55 13.46 14.93 4.17 3.54 3.61 43.87 39.38 42.49

… … … … … … … … … … … … … … …

648 27 24 486,017 4,217,841 Mechanical 6.06 5.93 6.30 3.48 3.34 3.54 15.27 14.52 15.46
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Results
Technological objectives: multi-temporal quanti�cation 

of the tree 3D features (location, projected canopy area, 

tree height and crown volume) at the �eld scale

�e OBIA algorithm that was developed for this inves-

tigation automatically identified all the olive trees and 

reported their geographic coordinates, projected areas, 

heights and volumes on the three study dates (Table 1). 

�e algorithm also accounted for the relative position of 

the trees, i.e. their row number (from 1 to 27) and their 

order in the row (from 1 to 24), which facilitated their 

localization within the field.

�e computed values were generally consistent on the 

three dates, decreasing from date 1 to date 2 as a result 

of the pruning operation, and increasing from date 2 to 

date 3 due to the tree development that occurred over 

one year. On average, the projected canopy areas varied 

from a range of 11.6–14.7  m2 on date 1 (before prun-

ing) to 8.4–10.7  m2 on date 2 (after pruning) and to 

13.7–15.1 m2 on date 3 (1-year after pruning). Similarly, 

the tree heights varied over a range from 3.9 to 4.1 m (on 

date 1) to 3.4–4.1 m (on date 2) and to 3.3–4.2 m (on date 

3), and the crown volumes varied over a range from 31.9 

to 42.7 m3 (on date 1) to 22.7–28.1 m3 (on date 2) and to 

of 32.8–41.0 m3 (on date 3).

However, detailed observations of the full dataset 

revealed incorrect dimensions for some trees, which could 

be attributed to errors that occurred during the DSM gen-

eration. �erefore, the quality of the DSM created on the 

three dates was evaluated by visually comparing every 

tree perimeter that was defined by the OBIA algorithm 

(which was based on the DSM information) and the real 

tree perimeter observed in the orthomosaicked image. 

�e accuracy that was achieved for the full 3D tree photo-

reconstruction procedure varied as affected by the type of 

pruning treatment and the flight date (Table 2).

When the three dates were jointly considered, the most 

accurate olive tree photo-reconstruction was obtained for 

mechanical pruning (MP). However, for individual dates, 

the worst and best results for the three treatments were 

all obtained on date 2, after pruning. �ese values varied 

from 75.5% at the adapted pruning (AP) parcel, to 83.3% 

at the traditional pruning (TP) parcel and to 96.3% at the 

MP parcel. �is finding could be due to the specific char-

acteristics of each treatment. �e MP removed protrud-

ing branches, which produced a tree shape that was more 

uniform than that of the other pruning treatments, thus 

facilitating the task of building the 3D point cloud field 

geometry and consequently, the correct definition and 

photo-reconstruction of the MP tree edges. In the AP 

treatment, pruning drastically cut back the crown biomass 

of the trees, which increased the overall tree shape hetero-

geneity. As a result, the accuracy of the photo-reconstruc-

tion of some of the trees decreased. �ese results indicate 

that the pruning treatment affected the tree architecture 

and crown size, and it might have also positively or nega-

tively affected the quality of the UAV-based 3D geo-spatial 

products. Additionally, no correlation between every tree 

location and photo-reconstruction errors was found at the 

orchard scale, which also indicates that other factors with 

respect to the weather conditions (e.g., wind or clouds) or 

operational issues (e.g., flight altitude, orientation of sen-

sor axes or UAV velocity) could apparently produce slight 

random changes at the moment of image shooting. As a 

result of this evaluation, 512 trees (approximately 80% of 

the total) that were correctly photo-reconstructed on the 

three dates were studied in the subsequent analysis, and 

the rest of the trees were discarded to avoid imprecise 

conclusions in the context of the agronomic objectives 

proposed in this investigation.

�e detailed information reported in Table 1 was ranked 

as four levels of projected canopy area (Fig. 2), tree height 

(Fig. 3) and crown volume (Fig. 4), which allowed for the 

observation of all the tree variability at the orchard scale.

A view of these figures on date 1 (before pruning) 

revealed the distribution of the tree sizes throughout the 

orchard, showing a higher number of small trees located 

at the three upper rows of the graph, which corresponded 

to the top zone of the field. On date 2 (after pruning), the 

homogeneity of the tree heights was clearly notable at 

the MP parcel (Fig. 3), as shown by a coefficient of varia-

tion (CV) of only 6%. On this date, a severe reduction of 

the projected canopy areas and crown volumes was also 

observed on the trees located at the AP and TP zones. 

Next, the geometric features on date 3 (1-year after prun-

ing) of a majority of the trees showed similar values to 

Table 2 Number and percentage of trees correctly photo-reconstructed on one of the three study dates (columns Date 1, 

Date 2 and Date 3) and on all the three study dates (column 1–2–3)

Flight dates: Date 1 (Before pruning); Date 2 (After pruning); Date 3 (1‑year after pruning)

Pruning treatment Number of trees Date 1 Date 2 Date 3 Dates 1–2–3

Mechanical 216 185 (85.7%) 208 (96.3%) 191 (88.4%) 177 (81.9%)

Adapted 216 200 (92.6%) 163 (75.5%) 177 (81.9%) 161 (74.5%)

Traditional 216 200 (92.6%) 180 (83.3%) 190 (88.0%) 174 (80.6%)
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the one observed on date 1 for the projected areas and 

crown volumes (Figs. 2, 4, respectively) and on date 2 for 

the tree heights (Fig.  3). �is finding indicates that the 

olive trees grew in area and volume over the duration of 

this experiment, but not in height.

Agronomic objectives: Impact of every pruning treatment 

on the tree architecture, annual tree growth and tree 

restoration

�e impact of the pruning treatments on the tree archi-

tecture was evaluated by comparing tree dimensions 

on date 2 (after pruning) and date 1 (before pruning) 

(Fig.  5; Table  3). �e AP treatment was generally the 

most aggressive for the olive trees, producing an aver-

age decrease of approximately 40% in canopy area and 

crown volume. However, the heights of the AP trees only 

decreased by an average of 0.05  m. �ese values were 

slightly greater than the ones obtained for the TP treat-

ment. Regarding the MP treatment, the heights of these 

trees decreased 0.51 m on average, being up to ten times 

the overall decrease relative to the other two treatments, 

although the average reductions in the projected canopy 

area and crown volume were approximately five and four 

times lower than they were for the AP trees, respectively.

Regarding the impact of the pruning treatments on 

the annual tree growth (date 3–date 2), the type of prun-

ing treatment might have a major influence on the veg-

etative response of the trees over time, mostly with 

respect to the crown volume growth (Fig. 6; Table 4). In 

comparing the tree data computed on date 2 and date 3 

(after 1  year), the TP trees showed the greatest growth 

rates in projected canopy area (5.39  m2, 64.27%), tree 

height (0.06  cm, 1.66%), and crown volume (13.90  m3, 

61.49%), although the projected canopy area of the AP 

trees showed higher growth in their percentage val-

ues (5.34  m2, or 71.14%). By contrast, the MP showed 

the lowest growth rates for the three variables (3.25 m2, 

−0.08 m and 4.66 m3, respectively).

�ese results are linked to the ability of the trees to 

return to their initial dimensions from before the prun-

ing task (Fig. 7; Table 5). Of the three treatments applied 

here, most MP trees were totally restored in terms of can-

opy area and volume in comparison to the original tree 

dimensions before the pruning task (date 1), but not in 

terms of the tree height. On average, the trees exceeded 

the canopy area and crown volume by 2.35  m2 and by 

0.87  m3, respectively, although these trees were 0.59  m 

smaller in comparison to their heights on date 1. In the 

case of TP, these trees generally grew back to their origi-

nal dimensions regarding the canopy area (0.39  m2 of 

average excess) and height (0.03 m of average excess), but 

not in terms of crown volume (1.68 m3 of average short-

age). Finally, the AP trees did not generally reach their 

initial canopy area, tree height or crown volume in most 

of the trees.

A detailed analysis of the data by grouping the trees 

according to pruning intensity revealed that tree restora-

tion might be affected not only by the pruning severity but 

also by the type of pruning treatment (Fig. 8). In general, 

the trees that were subjected to more aggressive pruning 

experienced much more vegetative development for the 

three studied treatments. Moreover, it was determined 

that the trees that were pruned to less than 30% of their 

crown volume grew approximately 20–40% over one year, 

Fig. 2 Four-level representation of the projected tree canopy areas 
as computed on the three study dates. The letters indicate the 
pruning treatments as follows: TP (traditional), AP (adapted), and MP 
(mechanical). In the axes, coordinate system UTM zone 30 N, datum 
WGS84
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while the trees that were pruned by up to 50% of their 

crown volume grew more than 75% for the same period. 

However, differences in tree growth were also observed 

among pruning treatments. Our results showed that the 

AP trees were relatively more productive in terms of veg-

etative growth than the other two treatments when the 

pruning intensity was low (<10%) and similar to that of 

the TP trees when the intensity was moderate (10–30%). 

By contrast, the TP generated more vegetative growth 

when the pruning intensity was very high (>50%), and 

similar to the MP when the intensity was high (30–50%).

Discussion
�e direct assessment of the primary dimensions and 

certain geometric features of the olive trees such as the 

projected canopy area, height and crown volume is cur-

rently possible with the combined use of UAV imagery 

and advanced image processing and analysis procedures. 

�is technology opens new opportunities to monitor 

tree status and progress at the field scale, as an efficient, 

objective and accurate alternative to the arduous and 

frequently inconsistent manual measurements on the 

ground [5]. �is investigation takes advantage of this 

Fig. 3 Four-level representation of the tree heights as computed on 
the three study dates. The letters indicate the pruning treatments as 
follows: TP (traditional), AP (adapted), and MP (mechanical). In the 
axes, coordinate system UTM zone 30 N, datum WGS84

Fig. 4 Four-level representation of the tree crown volumes as com-
puted on the three study dates. The letters indicate the pruning treat-
ments as follows: TP (traditional), AP (adapted), and MP (mechanical). 
In the axes, coordinate system UTM zone 30 N, datum WGS84
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innovative UAV-based technology to evaluate the impact 

of pruning treatments in an olive plantation, reporting 

quantitative data for an unprecedented number of trees.

From the multi-temporal analysis of the location and 

the 3D models of every tree in the olive orchard, the 

effect of the pruning intensity on the tree architecture 

and annual tree growth after pruning was quantified. AP 

and TP reduced the crown volume by approximately 42 

and 36% on average, respectively, which is four and five-

fold more compared to that of MP (approximately 10% 

on average). However, the trees that were subjected to 

TP grew slightly more than the AP trees, accounting for 

crown volume increases of approximately 62 and 59% on 

average, respectively. Regarding the effect of pruning on 

tree heights, important differences were only reported in 

the MP trees, which were homogenously cut to 3.5–4 m 

over the surface, as observed in Fig. 3. �e data observed 

in this figure also confirmed the capacity of this UAV-

based technology to accurately measure the tree heights. 

�e trees also experienced minimum changes in terms 

of vertical growth after the pruning treatments, sug-

gesting that the tree primarily grew along the horizontal 

axes. As expected, the trees that were subjected to more 

severe pruning generally experienced higher growth over 

time, although the magnitude of this event was affected 

by the given pruning treatment. In comparing the three 

pruning treatments, it was observed that AP benefitted 

tree development if the pruning intensity was lower than 

10% of the crown volume, although this treatment was 

relatively worse in terms of tree growth when the pruning 

intensity was higher than 30%. �ese overall results were 

obtained in adult irrigated trees, so further analysis are 

needed to support such agronomic conclusions in other 

scenarios, e.g., under rain-fed conditions or with younger 

plantations.

Together with the evaluation of the pruning treat-

ments, remote sensed information about the tree archi-

tecture at the orchard scale also has multiple implications 

for tree physiology, agronomy and field management [25] 

with potential applications for investigations about tree 

growth and yield [4], crown porosity [26], or the inter-

ception of solar irradiation [27, 28], among others. For 

example, the results presented here would improve the 

prediction models that connect the tree crown volume 

Fig. 5 Four-levels representation of the pruning impact on tree 
volume (differences in tree volume between dates 2 and 1). The 
letters indicate the pruning treatments as follows: TP (traditional), AP 
(adapted), and MP (mechanical). In the axes, coordinate system UTM 
zone 30 N, datum WGS84

Table 3 Impact of  tree pruning treatment on the tree architecture, when computed as the di�erences in the projected 

canopy area, tree height, and crown volume between dates 2 (after pruning) and 1 (before pruning)

a Average percentage of increase (+) or decrease (−) of each tree geometric feature between the date 2 and the date 1, as follow: % = (feature_date2 − feature_

date1)/(feature_date1)

Pruning treatments Area
(Date 2 − Date 1)

Height
(Date 2 − Date 1)

Volume
(Date 2 − Date 1)

Mean ± SD  (m2) %a Mean ± SD (m) %a Mean ± SD  (m3) %a

Mechanical −0.89 ± 1.40 −6.97 −0.51 ± 0.40 −12.15 −3.79 ± 4.93 −9.89

Adapted −5.56 ± 2.68 −38.95 −0.05 ± 0.38 −0.65 −17.46 ± 8.73 −42.05

Traditional −5.00 ± 2.87 −33.02 −0.03 ± 0.31 −0.37 −15.58 ± 8.19 −35.72

Fig. 6 Four-level representation of the annual growth on tree vol-
ume after the pruning task (differences in tree volume between dates 
3 and 2). The letters indicate the pruning treatments as follows: TP (tra-
ditional), AP (adapted), and MP (mechanical). In the axes, coordinate 
system UTM zone 30 N, datum WGS84
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and tree canopy density with the tree yields, which is a 

complex issue since these models depend on a large 

number of factors [29]. Some investigations have also 

addressed the relationship of pruning treatments to tree 

productivity and mechanical harvesting [30]. Tombesi 

et  al. [31] studied the influence of the canopy density 

on the efficiency of a trunk shaker after applying sev-

eral pruning intensities, and they concluded that mod-

erate and heavy annual pruning assisted mechanical 

harvesting. By contrast, a lack of pruning caused the 

crown to grow upward and away from the primary 

branches which resulted in defoliation due to a lack of 

light and from parasitic attack.

Additionally, quantifying the impact of pruning on 

the tree volume gives an estimated value of the available 

residual biomass [32], which could serve to calculate the 

potential energy from this raw material [33] or, further-

more, to evaluate the site-specific effects of the applica-

tion of these by-products on the soil in no-till systems to 

prevent land degradation and improve the organic matter 

content [34–36]. �e use of pruned residues as mulch is 

growing [37] and can help prevent pollutant dispersion in 

olive groves [38].

Geo-referenced maps with the locations and dimen-

sions of every tree could also be the basis for design-

ing a programme for a variable rate application of plant 

protection products [39], and in combination with on-

ground equipment [40, 41], contribute to help fulfill the 

requirements of the European Directive for a Sustainable 

Use of Pesticides [42].

Conclusions
�is investigation combined aerial images that were col-

lected with an UAV on three different dates (before prun-

ing, after pruning and 1-year after pruning), 3D models 

of the olive tree field that were created by photo-recon-

struction procedures and an original OBIA algorithm 

Table 4 Impact of tree pruning treatment on annual tree growth, computed as the di�erences of projected canopy area, 

tree height, and crown volume between the date 3 (1-year after pruning) and the date 2 (after pruning)

a Average percentage of increase (+) or decrease (−) of each tree geometric feature between the date 3 and the date 2, as follow: % = (feature_date3 − feature_

date2)/(feature_date2)

Pruning treatments Area
(Date 3 − Date 2)

Height
(Date 3 − Date 2)

Volume
(Date 3 − Date 2)

Mean ± SD  (m2) %a Mean ± SD (m) %a Mean ± SD  (m3) %a

Mechanical 3.25 ± 1.50 37.37 −0.08 ± 0.19 −2.32 4.66 ± 4.60 23.65

Adapted 5.34 ± 1.71 71.14 −0.05 ± 0.24 −1.14 11.58 ± 4.98 58.51

Traditional 5.39 ± 2.03 64.27 0.06 ± 0.20 1.66 13.90 ± 6.06 61.49

Fig. 7 Four-level representation of the tree restoration in terms of 
volume (differences in tree volume between dates 3 and 1). The 
letters indicate the pruning treatments as follows: TP (traditional), AP 
(adapted), and MP (mechanical). In the axes, coordinate system UTM 
zone 30 N, datum WGS84

Table 5 Impact of the tree pruning treatment on tree restoration, when computed as the di�erences in the canopy area, 

tree height, and crown volume between date 3 (1-year after pruning) and date 1 (before pruning)

a Average percentage of increase (+) or decrease (−) of each tree geometric feature between the date 3 and the date 1, as follow: % = (feature_date3 − feature_

date1)/(feature_date1)

Pruning treatments Area
(Date 3 − Date 1)

Height
(Date 3 − Date 1)

Volume
(Date 3 − Date 1)

Mean ± SD  (m2) %a Mean ± SD (m) %a Mean ± SD  (m3) %a

Mechanical 2.35 ± 1.76 26.14 −0.59 ± 0.42 −14.26 0.87 ± 6.47 10.26

Adapted −0.23 ± 2.50 1.95 −0.10 ± 0.36 −1.99 −5.88 ± 7.81 −10.76

Traditional 0.39 ± 2.32 6.68 0.03 ± 0.28 1.01 −1.68 ± 6.80 0.29
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to evaluate the impacts of three different pruning treat-

ments (traditional, adapted and mechanical) on hundreds 

of irrigated trees. �e projected canopy area, tree height 

and crown volume were quantified and compared among 

pruning treatments and flight dates.

�e full procedure had high accuracy, and it cor-

rectly identified and measured every olive tree on the 

three dates with the exception of some cases when the 

3D point cloud was incorrectly generated. As a general 

trend, the trees that were subjected to AP showed the 

highest foliage losses after pruning, followed by trees 

under TP. However, trees under TP experienced higher 

growths than the other trees for the quantification of 

this vegetative response one year after pruning. Due to 

the typical MP typology, the trees under this treatment 

maintained a more constant vegetative growth during 

this study.

�is research offers valuable information for design-

ing site-specific olive tree management strategies in the 

context of precision agriculture, which allows for the 

optimized application of agronomic tasks such as prun-

ing, fertilization, pesticide use or irrigation, with the 

consequent economic and environmental benefits. �e 

technology presented here can be made adaptable and 

transferable with corresponding adjustments to other 

woody crops such as vineyards or fruit orchards.

Methods
Study area and description of the pruning treatments

�is research was performed in a commercial 20-year-

old olive grove located in Villacarrillo, in the province of 

Jaen (southern Spain, central coordinates 485,885  m X, 

4,217,810 m Y, system UTM zone 30 N, datum WGS84). 

A rectangular field of approximately 3 ha that was under 

drip-irrigation was selected for the experiment. �is field 

was made up of 648 olive trees of the Arbequina variety, 

and it was laid out as 27 trees long and 24 across the field, 

with an intensive single-tree pattern of 8 × 4 m tree spac-

ing. �e field soil was loamy and silty clay loam, with at 

least 1.5  m deep without stoniness, and no limitations 

for crop production. �e irrigation was controlled at a 

dose of approximately 800 m3 per hectare, which corre-

sponded to 3200  l per tree. A natural cover crop, 1.5 m 

wide and composed of grass and legume species, covered 

the soil among the tree lines. �e cover crop was con-

trolled with a brush-cutter, meanwhile herbicides were 

applied in early autumn and spring to control weeds 

under the olive trees. Fertigation was applied at 100 units 

of fertilizer per hectare.

�e pruning strategy was part of a broader research 

program with the aim of studying the efficiency of dif-

ferent olive pruning and mechanical harvesting sys-

tems. �erefore, a simple demonstration strip design 

Fig. 8 Percentage of annual tree growth after pruning as affected by the pruning severity and type of pruning treatment. Lines over the columns 
indicate the standard deviations
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was selected in order to prioritize viability of mechani-

cal pruning, which relies on continuous work at large 

areas, instead of designing a complex field experiment. 

�e study field was divided in three sub-plots of 9 × 24 

trees each, in which traditional, adapted and mechanical 

pruning treatments were separately performed on March 

4th and 5th, 2015 (Fig. 9). In the TP, the highest branches, 

the crossed ones, and the ones below the base of the can-

opy and established at 60 cm over the soil were pruned. 

In the AP, the inner branches were totally removed, plus 

the crossed and low branches as described in the previ-

ous treatment. �us, a large number of trees under this 

treatment presented a sizeable gap in the central crown 

part. �e AP mainly aimed to adapt the olive architecture 

for canopy shaker harvesting. Finally, in the MP, a trac-

tor with opposite mechanical cuts at a 30º angle removed 

the branches from 3.5 to 4 m above the terrain. �is trac-

tor also used a horizontal mechanical cut to remove the 

branches at less than 70 cm above the terrain.

Multi-temporal UAV �ights and the generation 

of geo-spatial products

A set of remote images of the experimental field were 

acquired through UAV flights that were performed on 

the following three dates: (1) before tree pruning (date 1: 

December 9th, 2014), (2) a short time after tree pruning 

(date 2: April 14th, 2015), and (3) almost a year after tree 

pruning (date 3: February 1st, 2016). �e flight equip-

ment was a quadcopter UAV with vertical take-off and 

landing model MD4-1000 (Microdrones GmbH, Siegen, 

Germany), with a still point-and-shoot camera of model 

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, 

Japan) (Fig. 10). �is camera took 12.2 megapixel images 

in true color (Red, R; Green, G; and Blue, B, bands) with 

8-bit radiometric resolution and at a 14 mm focal length. 

�e camera’s sensor size was 17.3  ×  13.0  mm and the 

pixel size was 0.0043 mm. �ese parameters are needed 

to calculate the image resolution on the ground or, i.e., 

the ground sample distance as affected by the flight 

altitude.

During each flight, the UAV route was designed to take 

photos continuously at 1-s intervals, resulting in a forward 

lap of at least 90%. In addition, a side lap of 60% was pro-

grammed. �e flight speed was 3 m/s and the flight alti-

tudes were 100 m on the first and third dates and 50 meters 

on the second date. Due to the strong windy conditions, 

the 100-m flight was aborted on the second date. �e UAV 

used a total of 24 and 15 min to fly the experiment field 

Fig. 9 Description of the three pruning treatments evaluated in this investigation
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at 50 and 100 m altitude, respectively. �e area covered in 

each flight was 3.5 ha. To fully cover the experimental field, 

the camera collected 840 and 420 RGB images at ground 

sample distances of 1.90 and 3.81  cm/pixel for 50- and 

100-m flight altitudes, respectively. �e flight operations 

fulfilled the list of requirements established by the Span-

ish National Agency of Aerial Security, including the pilot 

license, safety regulations and limited flight distance [43]. 

�e UAV flights were authorized by the person in charge 

of the olive grove as well.

In processing the set of UAV aerial images, the follow-

ing three geo-spatial products of the olive grove were 

produced: (1) the 3D point cloud file, by applying the 

structure-from-motion technique (Fig. 11), (2) the DSM, 

with height information, which was created from the 3D 

point cloud, and (3) the ortho-mosaicked image, with 

RGB information on every pixel. In this research, Agisoft 

PhotoScan Professional software, version 1.2.4 build 2399 

(Agisoft LLC, St. Petersburg, Russia) was used for this 

task. �e mosaicking process was fully automatic with 

the exception of the manual localization of six ground 

control points that were used to georeference the prod-

ucts. �ese ground control points were located in the 

corners and the center of the olive orchard, and their 

coordinates were taken with a GPS device after the flight 

operations. �e automatic process involved the following 

three phases: (1) aligning images, (2) building field geom-

etry, and (3) ortho-photo generation. �e common points 

and the camera position for each image were located and 

matched, which facilitated the refinement of the camera 

calibration parameters. Once the images were aligned, the 

point cloud was generated. Next, the DSM was built on 

the basis of the estimated camera position and the images 

themselves. �is process requires high computational 

resources and it can usually take approximately 5–6  h 

due to the use of many high-resolution images. Finally, 

the images were projected over the DSM, and the ortho-

mosaicked image was generated. �e DSM is a 3D poly-

gon mesh that represents the overflown area and reflects 

the irregular geometry of the ground and the tree crowns. 

�e DSM was joined to the ortho-mosaic in the form of 

TIFF files, which produced a 4-band multi-layer file (Red, 

Green, Blue and DSM). More information about the Pho-

toScan function is described in Dandois and Ellis [44].

Object-based image analysis algorithm for computing the 

3D tree features

An innovative algorithm based on the OBIA paradigm 

was applied to the 4-band multi-layer file that was cre-

ated during the previous stage to classify and identify 

every individual tree in the olive grove and to compute 

the tree geographic position and primary 3D geometric 

features, including the projected canopy area, the tree 

height and the crown volume. �e OBIA algorithm was 

developed using eCognition Developer 9 software (Trim-

ble GeoSpatial, Munich, Germany) and it was adapted 

from the basic version described in Torres-Sánchez et al. 

[15]. However, the procedure presented here was original 

and included improvements and variations related to the 

specifications of this research (Fig. 12).

�e algorithm was specifically programmed to run in a 

fully automatic manner without the need for user inter-

vention, and with the ability to be auto-adaptive to any 

olive grove, independent of the plantation pattern and 

of the given pruning treatment. �e full procedure was 

composed of a sequence of phases (Fig.  13), which is 

described as follows:

Fig. 10 The quadcopter UAV and the Red–Green–Blue (RGB) camera 
used to acquire the remote images of the olive trees

Fig. 11 A partial view of the 3-D Point Cloud for the olive grove 
studied in this investigation, which was produced by the photogram-
metric processing of the remote images taken with the UAV
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Fig. 12 Flowchart of the OBIA algorithm developed in this investigation
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Phase 1, image ortho-mosaic and DSM segmentation 

�e 4-band (B, G, R, and DSM) multi-layer file (Fig. 13a1–

a2) was segmented into 1-m2 square objects by using the 

chessboard segmentation process (Fig.  13b). Because 

segmentation is by far the slowest task of the full OBIA 

procedure, the algorithm used chessboard segmentation 

Fig. 13 Partial views of the primary OBIA algorithm outputs: a the 4-band multi-layer file with the RGB (a1) and the DSM (a2) layers, showing 
the results of mechanical and adapted pruning as applied to the trees on the two top and bottom rows, respectively; b chessboard segmentation 
output; c the coarse classification of the tree (pink colour) and bare soil (white colour) objects based on the difference in DSM (height) values; d the 
coarse classification of the tree borders (blue color); e pixel-based segmentation of the tree borders; f the fine classification of the tree (green colour) 
objects; and g the tree and the bare-soil objects were joined with separately. As a result of the whole procedure, the algorithm computed the 3D 
tree geometric features (projected area, height and volume) and exported the values as vector and table files for further analysis
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instead of the multi-resolution option. In addition, it 

was programmed to only use the DSM band as the refer-

ence for the segmentation, which weighted the variable 

“height” instead of the spectral information. �is con-

figuration produced a notable decrease in computational 

demand, and consequently, an increase in the processing 

speed, without penalizing the segmentation accuracy.

Phase 2, coarse classification of trees and bare soil �e 

segmented objects, whose standard deviation (SD) value 

of the DSM (height) layer was greater than 0.10 m, were 

classified as trees. �e remaining objects were classified 

as bare soil (Fig. 13c).

Phase 3, fine classification of trees: To refine the tree 

delineation, the tree objects were analyzed at the pixel 

level. Firstly, the tree objects that were in contact with 

bare soil were classified as tree border objects (Fig. 13d), 

and next, they were segmented at the pixel size (Fig. 13e). 

�en, the algorithm classified every tree border object 

as a tree or bare soil by comparing their DSM value to 

the surrounding bare soil and tree DSM values (Fig. 13f ). 

Finally, the objects classified as trees were joined into sin-

gle objects and identified as individual trees (Fig. 13g).

Phase 4, computing the tree geometric features �e algo-

rithm automatically calculated the geometric features 

(projected canopy area, tree height and crown volume) 

of all the tree objects by applying a looping process in 

which every tree was individually identified and analyzed. 

During this sequential process, the height of every tree 

was obtained by comparing its maximum DSM value to 

the average DSM values of a bare soil area with a 1  m 

buffer surrounding each tree. Simultaneously, the crown 

volume was calculated by adding up the volumes (by 

multiplying the pixel areas and heights) of all the pixels 

corresponding to every tree. Finally, the OBIA algorithm 

automatically exported the identification, location and 

the three primary geometric features of every tree as vec-

tor (e.g., shapefile format) and table (e.g., Excel or ASCII 

format) files for further analysis.

Data analysis

�e outputs delivered by the OBIA algorithm for the 

three study dates were subjected to descriptive analysis 

with JMP version 10 software (SAS Institute Inc., Cary, 

NC, USA). �e impacts of pruning on the tree architec-

ture and annual tree growth was separately evaluated at 

each pruning zone by analyzing tree-by-tree variabil-

ity over time, i.e., by quantifying the differences in the 

three primary dimensions (projected area, tree height 

and crown volume) between dates 1 and 2 (the impact 

on the tree architecture) and between dates 2 and 3 (the 

impact on the annual tree growth). In addition, the ability 

of the trees to return to their original dimensions before 

the pruning task was quantified by comparing the data on 

dates 1 and 3. �e field experimental design, which pri-

oritized mechanical pruning viability rather than testing 

statistical hypothesis, allowed for ranking pruning treat-

ments according to averaged values obtained in every 

study date and to trends observed over time.
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