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Abstract 
 
Age data frequently display excess frequencies at round or attractive ages, such as even 
numbers and multiples of five.  This phenomenon of age heaping has been viewed as a 
problem in previous research, especially in demography and epidemiology. We see it as 
an opportunity and propose its use as a measure of human capital that can yield 
comparable estimates across a wide range of historical contexts. A simulation study 
yields methodological guidelines for measuring and interpreting differences in age 
heaping, while analysis of contemporary and historical datasets demonstrates the 
existence of a robust correlation between age heaping and literacy at both the individual 
and aggregate level. To illustrate the method, we generate estimates of human capital in 
Europe over the very long run, which support the hypothesis of a major increase in 
human capital preceding the industrial revolution.  
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I. Introduction 

In the twenty-first century, legislatures and educational bureaucracies creak into action at 

the publication of the latest international league tables of educational attainment.1 In the 

U.S., such concerns have a long history and a particular focus on math, dating back to 

post-Sputnik anxiety about falling behind in a technological race with economic and 

national security implications. This led to reforms like the “New Math” of the 1960s, 

measures like the Education for Economic Security Act of 1984, and debates like the 

current “Math Wars” about classroom pedagogy. But these are only the most recent 

manifestations of national math anxiety. More than a century ago it was British fear of 

German technological ascendancy that spurred a reform movement demanding better 

mathematical, technical and scientific education.2 

 Concern with educational policies is not misplaced, according to a voluminous (if 

inconclusive) literature on the determinants of economic growth.3 But growth regressions 

have yielded few insights into the importance of different types of knowledge, education, 

or skill. Large panel datasets rarely have information more detailed than gender- and 

level-specific enrollment or attainment rates. An oft-cited analysis indicating that 

engineering students raise growth while law students lower it is the exception rather than 

                                                 
1 Influential comparative projects include TIMMS (Trends in International Mathematics 
and Science Study; International Association for the Evaluation of Educational 
Achievement), PISA (Programme for International Student Assessment; OECD), and 
ALL (Adult Literacy and Lifeskills; Statistics Canada and OECD). 
2 This fear was captured in the title of a well-known and pessimistic analysis of the 
industrial position of the country: “Made in Germany.” See Sanderson (1999).  
3 A few influential studies that investigate the connection between schooling and 
economic growth include Levine and Renelt (1992), Mankiw, Romer and Weil (1992), 
Barro and Lee (1994), Barro (1997), Sala-i-Martin (1997), Bils and Klenow (2001), and 
Hanushek and Kimko (2000). 
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the rule.4 In studies of individual labor market outcomes, the consistent and powerful 

predictive capacity of human capital variables is not in question. Debate concerns only 

the precise mechanisms at work, for example whether education primarily screens ability 

or creates it, or whether skill- or college-premia are increasing in an era of rapid 

technological change. In this context, achievement and skill test results are often 

introduced as measures of ability alongside educational attainment and experience 

variables. Invariably, ability measured in this way matters; occasionally, it is broken 

down by specific skill areas such as quantitative and verbal reasoning.5 In a study of the 

U.S. labor market, Murnane, Willett, and Levy (1995) found that cognitive ability had 

greater predictive power than educational attainment, with mathematics the ability most 

highly correlated with wages. Similarly, Rivera-Batiz (1992) found that “quantitative 

literacy” significantly (in both senses) raised the probability of full-time employment 

among U.S. workers. Outside the U.S. recent studies have found numeracy to be 

positively associated with labor force participation, full-time employment, annual weeks 

worked, and income in Britain, Canada, and Australia.6 Often numeracy dominates 

literacy as an explanatory factor, particularly for women and among the less educated.  

 Interest in the historical evolution of human capital has been given fresh stimulus 

by the recent development of very-long-run growth models. These models attempt a 

unified explanation of pre-modern Malthusian dynamics and modern economic growth, 

typically assigning a key role to a fertility transition in which families switch from 

                                                 
4 Murphy, Shleifer and Vishny (1991). 
5 Studies with evidence on general cognitive ability include Neal and Johnson (1996) and 
Heckman (1995). 
6 See Chiswick, Lee, and Miller (2003) for Australia; Charette and Meng (1998) and 
Finnie and Meng (2001) for Canada; Parsons and Bynner (2005) for Britain.  
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quantity to quality of children, investing more in human capital.7 The empirical basis of 

such theorizing is shaky, however. For the nineteenth century, measures of human capital 

investment, such as school enrollments and attainment, or census data on literacy, are 

available – at least for some of today’s rich countries. O’Rourke and Williamson (1997) 

were able to include schooling in European convergence regressions for the 1870-1913 

period, for example, concluding that globalization forces were in fact a much more 

important influence on comparative development.8 No data whatsoever  are available on 

individual cognitive ability or on different types of ability. Pushing back into the early 

nineteenth century and before, schooling data dry up and literacy must generally be 

inferred from a proxy: ability to sign one’s name on marriage registers and legal 

documents.9 For the years around 1800, Reis (2005) is able to assemble such data for 15 

European regions. The figures indicate that male literacy varied widely, from over 60% 

in northwestern Europe to below 20% in parts of Italy and under 10% in eastern Europe. 

Pushing back still further into the early modern era, it becomes increasingly difficult to 

find systematic, comparable data. Relatively plentiful data on reading ability in 

Scandinavia and signature ability in the Netherlands, Britain, France, and Spain allow 

Graff (1987) to document a considerable improvement in literacy in the seventeenth and 

                                                 
7 In Galor and Weil (2000), population size eventually causes technological progress to 
speed up, raising the return to human capital, causing families to increase investment in 
human capital, lowering fertility and increasing the rate of growth. Thus is the 
Malthusian cycle broken. Becker, Murphy and Tamura (1990), Lucas (2002), and 
Cervellati and Sunde (2005) are further examples of models explicitly built on such 
human capital foundations.  
8 Tortella (1994), using literacy data, offers a different interpretation, at least for 
southwest Europe.  
9 The limitations of signature ability as a measure of functional literacy are obvious, but 
can also be raised with respect to self-reported “ability to read”. In practice the two 
measures are well correlated where both can be observed. In historical curricula, reading 
instruction was largely completed before writing was started.  
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eighteenth centuries. But there is little information available on the rest of Europe. 

Allen’s (2003) conclusion that human capital has no ability to explain progress and 

poverty in Europe between 1300 and 1800 may result more from his use of urbanization 

as a proxy than from literacy’s actual irrelevance. Indeed, Baten and van Zanden (2006) 

reach the opposite conclusion using book production to measure human capital.  

 What of numeracy as a historical measure of human capital? For Weber, Sombart, 

and Schumpeter, numeracy was at the very heart of modern, rational capitalism. They 

traced the roots of both to the invention of double-entry bookkeeping in late medieval 

Italy. Carruthers and Espeland (1991) describe in some detail the process of abstraction 

and organization inherent in compiling a ledger, which made possible the development of 

concepts like capital, depreciation, and rate of profit.10 It is no accident that the 

introduction of Arabic numerals into Europe (by the merchant Leonardo of Pisa, a.k.a. 

Fibonacci) and the earliest accounts of mathematics education date from this same time 

and place. Numerous scuole d’abbaco thrived in Renaissance Florence according to 

Goldthwaite (1972), where the young sons of the commercial classes studied for a year or 

two a mathematics curriculum that would change little before the nineteenth century.11 

Italy remained the European center of publication and instruction in mathematics and 

accounting until at least 1500, according to Swetz (1987). Emigh (2002) has investigated 

the numeracy of ordinary Tuscans in this period by analyzing their tax declarations for 

                                                 
10 The authors argue that although double-entry bookkeeping truly was a superior 
technology, that its potential was seldom exploited by practicing merchants. It came to 
have a powerful rhetorical significance, as a symbol of meticulousness and probity.  
11 Routine commercial calculations in the middle ages could include conversions between 
non-decimal monetary systems with fluctuation exchange rates, estimation of the volume 
of containers, the reckoning of interest, or the division of profits between partners with 
different amounts of capital invested at different times.  
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the famous Florentine catasto of 1427. She finds that ordinary citizens and peasants much 

more often provided too much quantitative information (rents, size of plots, yields, debts, 

salaries) than too little, with respect to the demands of the tax officials. This implies that 

causation ran from market activity to numeracy to tax design, rather than in reverse. 

Cohen (1982), another historian of numeracy, finds that in the expansion of market 

activity in the early nineteenth century U.S. was only partially responsible for making 

Americans “a calculating people.” A reform of math pedagogy actually de-emphasized 

commercial applications in favor of teaching abstract thinking in this period.12 A 

sophisticated literature on the history of numeracy certainly exists, but it does not yield 

statistical measures. Can we quantify quantitative reasoning?  

 It turns out that we can. As signature ability can proxy for literacy, so accuracy of 

age awareness can proxy for numeracy, and for human capital more generally. A society 

in which individuals know their age only approximately is a society in which life is 

governed not by the calendar and the clock but by the seasonal cycle, in which birth dates 

are not recorded by families or authorities, in which numerical age is not a criterion for 

access to privileges (e.g. voting, office-holding, marriage, holy orders) or for the 

imposition of responsibilities (such as military service or taxation), in which individuals 

who know their birth year have difficulty accurately calculating their age from the current 

year. Within a society, the least educated and those with the least interaction with state, 

religious, or other administrative bureaucracies will be least likely to know their age 

accurately. Age awareness thus tells us something about both the individual and the 

                                                 
12 Equally important was the triumph of “political arithmetic” as the favored tool for 
assessing the experiment of republican America and influencing public opinion. This 
presupposed a certain basic level of numeracy.  
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society he or she inhabits. Approximation in age awareness manifests itself in the 

phenomenon of age heaping in self-reported age data. Individuals lacking certain 

knowledge of their age rarely state this openly, but choose instead a figure they deem 

plausible. They do not choose randomly, but have a systematic tendency to prefer 

“attractive” numbers, such as those ending in 5 or 0, or even numbers, or in some 

societies numbers with other specific terminal digits. Age heaping can be assessed from 

any sufficiently numerous source of age data: census returns, tombstones, necrologies, 

muster lists, legal records, or tax data, for example. While care must be exercised in 

ascertaining possible biases, such data are in principle available much more widely than 

signature rates and other proxies for human capital. 

 Age heaping is a well-known phenomenon among demographers. Already a half-

century ago influential studies by Bachi (1951) and Myers (1954) investigated age 

heaping and its correlation with education levels within and across countries. Myers 

(1976) demonstrated the correlation at the individual level between age awareness and 

income. For others, including epidemiologists, age heaping is a problem to be solved, a 

source of distortion in age-specific vital rates. In this context it remains a standard topic 

in U.N. analyses of developing country population data.13 Development economists and 

anthropologists use age heaping as a measure of data quality and consistency. 

Meanwhile, historians have studied age heaping as a topic of interest in its own right. A 

pioneering example is the study by Herlihy and Klapisch-Zuber (1978) of the Florentine 

tax records from the fourteenth and fifteenth centuries. In a chapter devoted to age 

                                                 
13 Discussions of age heaping as a problem in the demography literature include Coale 
and Kisker (1986), Preston, Elo, Rosenwaike and Hill (1996), and Vallin, Meslé, 
Adamets, and Pyrozhkov (2002). Denic, Khatib and Saadi (2004) discuss the issues for 
medical research. See also U.N. Statistics Division (2003).  
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heaping, they documented marked heaping on even numbers for children and on 

multiples of five for adults, to a degree similar to that reported for Egyptian census data 

in 1947. Among other findings, they demonstrated that age heaping diminished 

substantially over successive tax enumerations from 1371 to 1470, and that it was more 

prevalent among women, in rural areas and small towns, and among the poor. A second 

well known example is the study of Duncan-Jones (1990), who used ages from 

tombstones to estimate age heaping for men and women in twelve provinces of the 

Roman Empire. He found age heaping on multiples of five at levels not dissimilar to 

those for medieval Tuscany or developing countries of the 1950s and ’60s and higher for 

women than men.14  

 The first use of age heaping as an indicator of human capital in the economic 

history literature is relatively recent. Mokyr (1983) tested for positive selection or “brain 

drain” in pre-famine Irish emigration by comparing age heaping among migrants and in 

the population at large. Developing original measures of age heaping along the way, he 

found no support for the conventional wisdom that the best and brightest emigrated. Budd 

and Guinnane (1991) studied Irish age misreporting in linked samples from the 1901 and 

1911 censuses. They found considerable heaping on multiples of five in the 1901 census, 

which was greater among the illiterate, the poor, and the aged. The introduction of state 

pensions for individuals 70 and older in 1908 changed incentives regarding age reporting. 

For those potentially eligible, there was on the one hand an incentive to exaggerate age, 

on the other a concern to report age accurately, since pension examiners had access to 

census returns. On balance, age heaping declined significantly in the 1911 census, and its 

                                                 
14 Other interesting studies of age heaping are Kaiser and Engel (1993) on early modern 
Russia, and Jowett and Li (1992) on contemporary Chinese ethnic groups.  
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variation across social groups became much less clear. The longitudinal data enabled the 

authors to check the consistency of individual age reports. Mean elapsed time was not 10 

but approximately 12 years, the positive discrepancy being larger for Catholics, 

illiterates, and those reporting heaped ages in 1901. In another study of Ireland, O’Grada 

(2006) used a higher degree of age heaping among Dublin’s immigrant Jewish population 

to show that their lower literacy did not refer only to the English language and that their 

lower mortality was the result of religious practices rather than education. In a similar 

linked census sample for Britain in 1851 and 1881, Long (2005, forthcoming) assessed 

both aggregate age heaping at the county level and, exploiting the repeated observations, 

individual age discrepancies. Fully a quarter of his sample of 1851 school-aged children 

reported ages in 1881 with discrepancies of from two to five years. While countywide 

age heaping had a limited impact on individual outcomes once other county 

characteristics were controlled for, individual age discrepancy has a significant impact on 

socio-economic status, wages (10% higher for 0-discrepancy individuals), and the 

probability of rural-urban migration. What these studies have in common is that all find 

evidence of significant age heaping, and that it varies across individuals or groups in a 

way consistent with its interpretation as a measure of human capital.  

Researchers in a number of disciplines are familiar with age heaping, and it has 

been deployed as an indicator of human capital in studies of particular times and places. 

But several different measures of age heaping have been employed, complicating 

comparisons. And more generally, awareness of age heaping is somehow less than the 

sum of these parts. Age heaping has an unexploited potential to yield new insights into 

the comparative historical evolution of human capital. In this paper we sketch the outlines 
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of an age heaping methodology. Sections II and III use simulations to investigate the 

reliability of various available measures of heaping for the first time. Sections IV and V 

establish the connection of age heaping with another measure of human capital – literacy, 

at both the individual and aggregate level, in both contemporary and historical data. 

Section VI provides an illustrative example of age heaping’s potential to track human 

capital over a very long span of time and across widely differing societies. Section VII 

offers concluding thoughts and suggestions for further research.  

II. Measuring age-heaping 

To deploy age-heaping as a useful indicator of human capital, we require a 

measure that allows us to track its variation over time and across groups. This is a 

question of how much age heaping is present in the sample, conceptually distinct from the 

question whether age heaping is present at all. For the second of these questions, the 

familiar Pearson chi-squared statistic would be suitable: 

(1)  HP =
ni − ˆ n i( )2

ˆ n ii=1

k

∑  

where H is chosen to stand for heaping and P for Pearson,  i indexes the k ages to be 

considered, and ni and ˆ n i are the observed and expected frequencies, respectively. Note 

that the chi-squared statistic does not attempt to estimate a parameter such as, for 

example, the share of ages incorrectly reported. It can take on quite a wide range of non-

negative values, depending on k and the particular pattern of expected frequencies (the 

null hypothesis). Like the other indices to be considered, HP is based on comparison of 

actual and expected frequencies, and like them it must standardize and aggregate these 

deviations. The chi-squared statistic standardizes by squaring and expressing the result as 

a percentage of the expected frequency. It aggregates by summing with equal weights. HP 
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is asymptotically distributed as a χk−1
2  random variable, facilitating hypothesis testing 

concerning the presence of heaping.  

 But our primary interest is in comparing the degree of age-heaping in different 

samples: the “how much” question. And for this purpose the chi-squared statistic has the 

drawback of scale dependence. For clarity, it is useful to distinguish mathematical from 

statistical or probabilistic, scale dependence. The chi-squared statistic is scale dependent 

in the mathematical sense that inflating both observed and expected frequencies by some 

common factor causes HP to grow by the same factor. It is not scale dependent in a 

statistical sense, in thatE χk−1
2( )= k −1, regardless of sample size. The two statements are 

reconciled by noting that, under the null hypothesis, a larger sample is not expected to 

increase all observed frequencies by the same factor. Rather, the observed and expected 

distributions will tend to conform more closely on average. Mathematical scale 

dependence complicates comparisons, since two samples of different sizes, with identical 

patterns and degrees of heaping, will yield different values of HP. Similarly problematic 

is the dependence of HP on the age range considered (k), which varies across samples. Of 

course, it is possible to consider only subsamples of like size and age-range, but this 

either throws away valuable information or necessitates a cumbersome resampling and 

averaging procedure. Another potential weakness of HP is that it weights the deviations 

for all ages equally, even those for which smaller frequencies and greater variability are 

expected.  

 In this paper two indices based on the chi-squared statistic are considered. Both 

are mathematically scale-independent, and both weight deviations by the age’s expected 

sample share so as to reduce the influence of potentially unreliable observations. They 
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differ in their methods for standardizing the deviations. The first, dubbed the “ABC” 

Index after the initials of authors, is a weighted sum of the squared percentage deviations 

from predicted values: 

(2) HABC =
ˆ n i
Ni

∑ ni − ˆ n i
ˆ n i

 

 
 

 

 
 

2

, 

where the notation is as before and N denotes the sample size. If possible discrepancies 

between expected and actual sample size are ignored, HABC can be rewritten as 1
N

HP, so 

that it is in fact a scaled version of the chi-squared statistic.  

Squaring the deviations has the effect of heavily weighting outliers. The second 

index, “Lambda,” avoids this by relying on the absolute value of the percentage 

deviations: 

(3) Hλ =
ni − ˆ n i∑

ˆ n i∑
=

ˆ n i
N

ni − ˆ n i
ˆ n ii

∑ . 

Neither the ABC nor the Lambda Index embodies particular assumptions about how 

expected frequencies are generated. Both can take on a wide range of values depending 

on the number of ages k and the particular distribution of expected frequencies.15 

Several commonly used indices aggregate observed and expected frequencies 

over terminal digits before calculating deviations. Bachi’s index sums the differences 

between actual and expected frequencies of each terminal digit, considering only the 

                                                 
15 The Lambda Index was proposed by Mokyr (1983), who also considered a “Gamma” 

index, which can be rewritten as 
ˆ n i

N2

ˆ n i − ni( )2

ˆ n ii

∑ , showing it to be a weighted chi-

squared type index. In simulations, Gamma’s performance did not differ in interesting 
ways from that of  HABC and Hλ.  
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positive values – intuitively similar to the use of absolute values in (3).16 The resulting 

sum is expressed relative to sample size: 

 (4) HB = 1

N
I( j ) ⋅ (n j − ˆ n j )

j= 0

9

∑ ,   I( j ) =1 if n j > ˆ n j ,  else I(j) = 0,  

where I(j) is an indicator variable as defined above, and j indexes terminal digits from 0 

to 9. The Bachi index is not mathematically scale dependent, weights terminal digits with 

positive deviations equally, and makes no assumptions about how to derive the expected 

frequencies for each terminal digit. If all expected terminal digit frequencies are assumed 

to be 10%, HB can take values between 0 and 0.90 and can be intuitively interpreted as an 

approximation of the percentage of the sample reporting an inaccurate age. 

Another commonly used measure is Myers’ Blended Index, which differs from 

those considered thus far by making a specific assumption about expected frequencies, 

and by making an adjustment to observed frequencies. Predicted terminal digit shares are 

set at 10% (meaning the index must be applied to age intervals that are multiples of 10 

years). This is of course not always a realistic assumption; in a sample of individuals 

aged 60 to 79, one would expect more ages ending in 0 than in 9, for example. Rather 

than adjust expected frequencies accordingly, HM adjusts the observed frequencies using 

a “blending” procedure.17 Unlike HB, which considers only positive deviations and 

expresses them relative to N, the Myers Index sums the absolute values of all deviations, 

and expresses them relative to 2N: 

                                                 
16 This is only one of three indices proposed by Bachi. The others focus on a particular 
age or a particular terminal digit.  
17 See Shryock and Siegel (1973) for an abbreviated description of Myers’ blending 
procedure. 
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(5) HM = 1
2

˜ n j
N

− .10
j= 0

9

∑ = 1
2

˜ n j − ˆ n j
Nj= 0

9

∑ ,  ˆ n j = 0.1N ∀ j , 

where ˜ n j is the “blended” observed frequency of a particular terminal digit j. The index is 

not mathematically scale dependent, and can vary between 0 and 0.90 like the Bachi. 

The indices considered so far can be used to detect any type of heaping, and do 

not rely on particular mechanisms for generating expected frequencies (with the 

exception of the Myers Index). More specialized measures focus on a particular type of 

heaping. The well-known Whipple Index is designed to capture heaping on ages ending 

in 0 or 5. HW sums the frequencies of all ages ending in 0 or 5 and expresses the result 

relative to one-fifth the sample size: 

(6) HW =
(n25 + n30 + n35...+ n60)∑

1
5

nii= 23

62

∑
. 

The summation notation in the denominator (rather than the N used in Equations 2-5) is 

meant to emphasize that HW must be defined over an interval in which each terminal digit 

occurs an equal number of times, such as 23 to 62. Implicitly, equal terminal digit shares 

in unheaped data are assumed. This would be correct for a uniform distribution of ages, 

but can only be approximate for typical samples in which frequency decreases with age. 

The Whipple index makes no adjustment to correct for this problem. HW can range from 0 

in the case of no observations on 0s and 5s, through 1 in the case of a uniform 

distribution of terminal digits, to 5 in the case of 100% heaping. In application, HW is 

typically multiplied by 100. 

An alternative index of heaping on the terminal digits 0 and 5 makes a less 

restrictive assumption regarding expected frequencies: that they evolve approximately 



 15 

linearly over any three year age range. The “Multiples of Five” index is a simple, equally 

weighted, average of the frequencies of  terminal digits 0 and 5, each expressed relative 

to the average frequency of immediately adjacent ages, as in the following example: 

(7) HM 5 = 1
3

⋅ 2n20

n19 + n21

+ 2n25

n24 + n26

+ 2n30

n29 + n31

 
 
 

 
 
 

. 

III. Evaluating Indices of Age-Heaping 

Which of the indices defined in Section II is best? The familiar criteria used to 

assess estimator performance, bias and variability, are not directly applicable here, as the 

indices under consideration are not estimators of unknown parameters. Three desirable 

properties of an age-heaping index are statistical scale-independence, a linear response to 

the degree of heaping, and the ability to reliably rank samples from populations with 

different degrees of heaping. Because the distributions of the indices are unknown, these 

properties must be investigated by simulation.  

a. Simulation details 

Three types and five degrees of heaping are distinguished in the study. The types 

are: heaping on even numbers, heaping on multiples of five, and mixtures of the two. The 

degrees are: for the pure types, 0, 5, 10, 15, and 20 percent of the sample subjected to 

heaping; and for the mixed type 5 percent even-heaping plus an additional 5, 10, 15, or 

20 percent multiples of five heaping. The predominance in the mixed scheme of heaping 

on multiples of five over even-heaping conforms to the pattern found in a wide range of 

historical datasets. The mixed schemes are the focus of most discussion here.  

The three heaping patterns were imposed on random samples drawn from 

distributions in which frequencies decrease with age, as is typical of data from military, 

census, and randomly-sampled sources. More specifically, samples of size 250, 500, 
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1000, 2000, and 5000 were drawn from the 23-42 range of a N(20,10) distribution 

rounded to integer values, then heaped according to the relevant scheme. The entire 

exercise was repeated for the wider age range 18-57, yielding results sufficiently close to 

those reported here as not to merit separate discussion. 1000 repetitions were carried out 

for each sample size and heaping scheme.  

As noted in Section II, the ABC, Lambda, and Bachi indices do not embody 

specific assumptions about expected frequencies. In the simulation study, expected 

frequencies were generated using locally weighted regression. The intuition is to use a 

regression of observed frequencies on age to generate predicted frequencies, allowing the 

estimated relationship to vary locally. For each age, the slope is estimated using only data 

in a window around that age (here set to include 80% of all observations), using a kernel 

(here the tricube) to weight them inversely with the distance from the age being 

considered. This approach is similar to other smoothing methods, in particular kernel 

density estimation. It has the advantage of being easily implemented and flexible, making 

no a priori assumptions about the form of the underlying (unheaped) distribution of ages. 

Its potential disadvantage is oversensitivity to (undersmoothing of) the observed, 

randomly- or systematically-heaped frequencies. In principle, this problem can be 

addressed by optimal choice of bandwidth. But this choice depends on the type and 

degree of heaping and on the underlying distribution of unheaped ages, all of which are 

unknown in practice. Hence, a uniform (non-optimal) bandwidth was applied for all 

sample sizes, heaping schemes, and indices. The evaluation of the ABC, Lambda, and 

Bachi indices is in fact a joint evaluation of the index itself and the lowess method of 
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deriving expected frequencies. Similarly, the Myers Index is evaluated together with its 

blending method of adjusting observed frequencies. 

Figure 1 about here. 

As an example of the results, Figure 1 displays kernel density estimates of the 

distribution of the Lambda Index under the mixed heaping scheme with a sample size of 

1000. The leftmost curve corresponds to no heaping, the rightmost to maximum heaping. 

It is evident that on average the index value increases with the degree of heaping, as it 

was designed to. The graph also indicates for this specific case that the increase is not 

linear with the degree of heaping, that the distribution is right-skewed at low degrees of 

heaping, that the variance of the distribution increases, and that there is substantial 

overlap in the distributions for successive degrees of heaping. 

b. Scale dependence 

The indices under study are mathematically independent of scale by construction. 

But they may be statistically scale dependent, in the sense that their expected value may 

be a function of sample size. Random sampling variation always creates deviations 

between observed and expected frequencies, even when the population is unheaped. 

Since such deviations are squared, converted to absolute values, or considered only when 

positive in Equations 2-5, there is no tendency for them to cancel each other out, so that 

the means of these indices are not zero even in the absence of heaping. When such 

deviations are expressed relative to expected frequencies or sample size, however, they 

tend to diminish in larger samples. This creates what is termed here statistical scale 

dependence, which creates the same difficulties as mathematical scale dependence.  

Figure 2 about here. 
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 Figure 2 plots the means of all six indices as a function of sample size under the 

05-10 mixed heaping scheme (5 percent even-heaping, 10 percent heaping on multiples 

of five). Statistical scale dependence is apparent for all but the Whipple Index. The ABC 

and Lambda indices perform poorly on this criterion. Their decrease with a doubling of 

sample size (at least when starting from a small sample) is enough to offset the increase 

that would result from doubling the degree of heaping. Among the “all-purpose” indices, 

the Bachi seems to do best. The pattern of Figure 2 is representative of results under all 

types and degrees of heaping, though the severity of scale dependence is somewhat 

reduced when the degree of heaping is extreme.  

c. Response to heaping 

Figure 3 plots mean index values for increasing degrees of mixed heaping, for 

sample sizes of 500. All index means rise monotonically with the degree of heaping, as 

designed, but responsiveness varies considerably. The Multiples of 5 and Whipple 

Indices increase linearly, while the ABC and Lambda Indices increase at increasing rates. 

The sharply nonlinear response of the ABC and Lambda indices creates two related 

problems. Most importantly, it is difficult to distinguish low degrees of heaping from 

zero and from each other, especially once random sampling variability is taken into 

account. In addition, even substantial differences in heaping across samples become less 

easily interpretable. An increase of 0.2 in the Whipple Index always corresponds to an 

increase of approximately 5% in the share heaped on multiples of five. No analogous 

simple rule describes the indices with a non-linear response. They do not, for example, 

double when the share heaped doubles. The Bachi and Myers Indices have an 

intermediate response pattern, which is reasonably close to linear.  
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Figure 3 about here 

 The response patterns in Figure 3 are representative of all sample sizes and of 

both mixed and pure heaping on multiples of five. Pure even-heaping produces somewhat 

different results. It is no surprise but deserves emphasis that the Whipple Index does not 

respond at all, actually declining somewhat as the share subjected to heaping increases in 

the simulation results. Similarly, the Multiples of 5 Index increases only imperceptibly. 

The other indices increase monotonically with the degree of heaping, in a distinctly non-

linear way in the case of the ABC and Lambda Indices. The rate of increase is less than 

for types of heaping including multiples of five, making it difficult to distinguish varying 

degrees of even-heaping. As a practical matter, however, datasets from a wide variety of 

countries and time periods have failed to yield an example of pure even-heaping. When 

present, even-heaping is “outweighed” by heaping on multiples of five.  

d. Precision and the probability of ranking errors 

Accuracy in ranking samples depends not only on the response of the index mean 

to age heaping, but equally on its variation around that mean in repeated sampling. Figure 

1 illustrated how the distribution of the Lambda Index varied with the degree of heaping, 

shifting steadily to the right, decreasing in skewness, and increasing in variance. The 

substantial overlap of the estimated densities for successive degrees of heaping in Figure 

1 signaled likely difficulties in distinguishing small variations in the degree of heaping 

from random sampling noise. Index distributions are also a function of sample size. This 

is illustrated for the Bachi Index in Figure 4, which plots kernel density estimates for 05-

10 heaping in sample sizes of 250, 500, 1000, 2000, and 5000. The Bachi’s previously-

noted scale dependence is again evident; the low, wide curve with the rightmost mode 
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corresponds to a sample of 250, while the tall, narrow, leftmost curve is for sample size 

5000. Also evident is a quite dramatic decrease in the variance of the distribution as the 

sample size increases, a characteristic of all the indices.  

Figure 4 about here. 

 A useful gauge of reliability in discerning the degree of heaping turns out to be 

the probability of incorrectly ranking sample pairs. A ranking error occurs when the 

sample from a population with a low degree of heaping, say 05-05, yields an index value  

exceeding that for the sample from a population subject to a greater degree of heaping 

such as 05-10. We could write this as H 05−05 > H 05−10, or alternatively 

D = H 05−10 − H 05−05 < 0. The distribution of differences like D can be estimated by 

recourse to the already simulated index realizations under various types and degrees of 

heaping. In many cases these differences have an approximately normal distribution. 

Figure 5 provides an example: the estimated density of the difference D = HB
05−10 − HB

05−05 

for the Bachi Index. The probability of a negative difference, hence a ranking error, is 

given by the shaded area, which in this case equals 0.15. 

Figure 5 about here. 

Table 1 presents estimates of the probability of a ranking error for different 

sample sizes under the mixed heaping type. The differences refer to “adjacent” degrees of 

heaping; D1= H 05−05 − H 00−00, D2 = H 05−10 − H 05−05, and so on. Immediately apparent 

from the figures in Table 1 is that none of the indices perform reliably in small samples. 

In samples of 250, the “all-purpose” indices routinely misrank samples from unheaped 

populations as having more heaping than those from 05-05 populations: 37% of the time. 

The Whipple Index offers dramatically better performance for low degrees of heaping, 
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and remains the best by a small margin even with more severe heaping. In large samples, 

the accuracy of all indices is much improved, the error probabilities comfortably small. 

Again the Whipple Index is clearly the most accurate of the group, especially in 

distinguishing among relatively low degrees of heaping. It bears emphasis that the 

Whipple is quite incapable of capturing forms of heaping other than multiples of five. 

Among the more flexible indices, the Bachi offers the lowest error probabilities.  

Table 2 reports the analogous probabilities for samples that are two degrees of 

heaping apart. In other words, D20 = H 05−10 − H 00−00, D31= H 05−15 − H 05−05, and so on. 

While all indices have trouble reliably distinguishing fine differences in the degree of 

heaping, the results in Table 2 indicate considerably better accuracy for larger heaping 

differences. Here again, the Whipple Index is clearly the most reliable – so long heaping 

on terminal digits 5 and 0 characterizes the data. In large samples, all indices are 

extremely accurate, with incorrect rankings not a practical problem. 

Tables 1, 2 about here. 

IV. Age heaping and illiteracy today 

 To assess age heaping’s potential as a measure of human capital, we begin by 

using contemporary data to investigate its range of variation and its correlation with 

illiteracy, the most commonly available alternative indicator. The Demographic Health 

Surveys (DHS) sponsored by USAID are a rich source of individual-level data on the 

health, nutrition, and household demographics of women in developing countries. Indices 

of age heaping and rates of illiteracy were calculated from the DHS data for women aged 

23-42 from 415 regions in 52 countries. A functional definition of illiteracy was used in 

the surveys: the inability to read “easily” or to read “a whole sentence.” Based on the 
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results of Section III, the Whipple and Bachi indices were chosen as measures of age 

heaping, the Bachi being calculated from sample sizes of 500 (averaging repeated 

samples where possible). Age heaping ranges widely at the national level: the Whipple 

from below 100 in Kyrgyzstan to a peak of 236 in Sudan; the Bachi by almost a factor of 

five between Trinidad & Tobago (0.06) and Sudan (0.28). Female illiteracy also ranges 

widely in the DHS data, from under 10% in Kyrgyzstan or the Philippines to over 90% in 

Chad, Mali, and Senegal.  

As documented in Table 3, both measures of age heaping are well correlated with 

illiteracy. The regressions use the natural logarithm of age heaping to accommodate the 

moderate degree of nonlinearity in the relationship with illiteracy found in preliminary 

testing; age heaping increases at an increasing rate with illiteracy. Robust standard errors 

are reported due to the presence of heteroskedasticity. While the age heaping – illiteracy 

relationship is strong and statistically significant for both the Bachi and Whipple indices, 

the R2's indicate that it is considerably less noisy in the case of the Whipple. (In these 

bivariate regressions, R2 is just the square of the simple correlation coefficient, hence 

comparable even though the dependent variables differ.) The results are similar for either 

the 52 countries or their 415 separate regions. Adding country dummies to the regional 

regression yields the estimates headed "country fixed-effects."18 The “R2 within” figures 

indicate that within-country variation in illiteracy explains 19% of within-country 

variation in (ln) age-heaping, using either index. The robustness of the slope estimates to 

the inclusion of country dummies shows that the illiteracy-age heaping relationship is not 

                                                 
18 Estimated country effects are not reported in Table 3 for reasons of space, but several 
are large. Chad, Pakistan, Sudan, and Yemen all have unexpectedly high levels of age 
heaping given their levels of illiteracy, for example. 
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driven solely by a few outlying countries with high illiteracy and age heaping. In light of 

these results, it seems reasonable to conclude that age heaping can function not only as a 

direct measure of numeracy but also as a proxy for illiteracy.  

Table 3 about here.   

 Analysis of individual data permits further insight into whether age heaping more 

reflects the characteristics of individuals or of the society they inhabit. From 97 DHS 

surveys a sample of over 700,000 adult (20-49) women from 47 countries was extracted, 

with information on age, illiteracy, and region of residence.19 Given the results of the 

aggregate analysis, in which the Whipple Index was more highly correlated with 

illiteracy than the Bachi Index, we suspect that the predominant form of heaping is 

multiples of five. In fact, the sample share of ages ending in 0 and 5 is 26%, considerably 

in excess of a naïve prediction of 1/5 or 20%. For this reason, heaping is defined in terms 

of terminal digits 0 and 5 in what follows.  

The probability of reporting a multiple of five age is modeled as a logistic 

function of both individual characteristics and regional illiteracy. Table 4 reports the 

estimated marginal effects of each explanatory variable, evaluated at the mean of all 

variables. In the most basic model, personal illiteracy raises the probability of reporting a 

multiple of five age by 5.7 percentage points, a large effect relative to the six points of 

excess frequency observed at these ages, and the estimate is highly statistically 

significant. When regional illiteracy is added to the equation, its estimated effect is 

significant in both senses of the word. Increasing the regional illiteracy rate by one 

standard deviation (26.8) from its mean (47.7) increases the predicted probability of an 

                                                 
19 These surveys overlap the regional data sources and include repeated surveys of the 
same country, but not the same households in the same country except by chance.  
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individual reporting a heaped age by about three percentage points, equivalent to the 

effect of individual illiteracy in this equation. In columns three and four the effect of the 

regional illiteracy rate is estimated separately for literate and illiterate individuals. The 

constants (not reported) of course differ across the two groups. But so do the slope 

coefficients; among illiterates, the marginal effect of regional illiteracy is more than twice 

that among literates. Illiterates are in this sense more dependent on their neighbors.  

Table 4 about here. 

We can probe the determinants of age heaping more deeply by adding age-group 

dummies to the explanatory variables. The probability of reporting a heaped age can vary 

with age itself, even controlling for personal and social illiteracy. One reason is that older 

individuals are more likely to forget their ages.20 (The extremely old, who sometimes 

deliberately exaggerate their age, have been excluded from the sample.) Secondly, 

society may provide different incentives to different groups to distort their true age. For 

example women still single in their thirties or beyond might feel pressure to report a low 

age to increase “marriageability”, and this distortion could be associated with some form 

of heaping (though not necessarily multiples of five).21 Finally, the degree of regional 

illiteracy may have been greater when today’s older individuals were young, or 

alternatively the quality and quantity of education may have changed in ways not 

captured by personal illiteracy but relevant for calculating or knowing one’s age. In cross 

sections like the DHS data, the time trend that might capture such effects is 

indistinguishable from an aging effect. The third model in Table 4 therefore adds 

                                                 
20 See the discussions in Kaiser and Engle (1993) and Ewbank (1981). 
21 See Retherford and Mishra (2001) and Narasimhan et al. (1997). 
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dummies for age below 30 and age greater than or equal to 40 (thereby taking the 30s as 

the reference group).  

 Both personal and regional literacy continue to exert a substantial impact in the 

expanded model. Personal illiteracy raises the probability of reporting a “heaped” age by 

2.1%. Regional literacy has a similarly powerful effect; starting from the sample mean, 

increasing the illiteracy rate by 20 percentage points raises the probability of any 

individual (literate or not) reporting a heaped age by some 2.4%. Finally, the age-group 

effects indicate that the probability of reporting a heaped age rises with age itself, by 

2.5% from the 20s to the 30s, by a further 1.4% in the 40s and above. Experimentation 

with alternative specifications confirms the impression that the largest increase in age-

heaping occurs in the 30s, which might suggest cultural influences or a recent expansion 

of schooling, rather than age-induced forgetfulness. The individual-level analysis thus 

confirms that age-heaping reflects a number of different factors, all of interest to 

economists: personal human capital, social capital in the form of record keeping, 

awareness of the calendar, age-specific rights and responsibilities, or generalized 

education, as well as cultural factors specific to particular societies.  

V. Age heaping and illiteracy in the past 

 Are the patterns identified in Section IV for contemporary developing countries 

also to be found in historical data? We seek an answer to this question in U.S. census data 

from the nineteenth century, specifically the Integrated Public Use Micro Samples 

(IPUMS) of the censuses of 1850, 1870, and 1900.22 Records for nearly 650,000 men and 

                                                 
22 The individual records for 1890 do not survive, while the age data from 1880 and 1910 
are given in ten-year age intervals for some states and nationalities. The IPUMS data are 
available online from the Minnesota Population Center at the University of Minnesota.  
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women aged 20-69, with data on race, age, literacy, and birthplace were extracted from 

the IPUMS databases. Given the difficulty of precisely estimating age heaping in small 

samples, only the 83 American states and mostly-European foreign birthplaces with at 

least 100 observations were used. In the early censuses, literacy was defined simply as 

the ability to read and write any language. The absence of any reference to proficiency 

makes illiteracy rates lower than in the DHS data.  

As shown in Figure 6, age heaping and illiteracy vary quite widely across birth 

regions with at least 100 observations, from less than one percent among the white 

populations of several Northeastern states to values in excess of 75% among the former 

slaves of the American South in the 1870 census. Age-heaping measured by the Whipple 

Index ranges from lows in the vicinity of 100 to above 220 for the black populations of 

Southern U.S. states and for Ireland, Mexico, and parts of the American Southwest. Also 

evident in Figure 6 is the clear positive correlation of the two human capital measures 

among native whites, blacks and immigrants.  

Figure 6 about here.  

Regression analysis reveals patterns that vary only slightly over time and between 

groups. The estimated effects of birth region illiteracy on age heaping are strong, 

positive, and statistically significant in all cases (Table 5). Indeed, the relationship is 

stronger than in the DHS data. For comparability, the semilog specification was retained 

although there is little evidence of nonlinearity in the IPUMS data. With two exceptions, 

point estimates of the slope cluster around 0.008, a value clearly greater than the figures 

near 0.006 for the Whipple Index in Table 3. Also greater are the regression R2s in the 

census data, indicating a less noisy relationship in historical than in contemporary data. 
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The estimated slopes imply that a one standard deviation increase in illiteracy predicts an 

increase in age heaping of from .7 to .9 standard deviations, depending on the sample in 

question. In two cases, coefficient estimates are lower: blacks in 1870 and native whites 

in 1900. In both cases this can be attributed to sample composition.23 It is worth noting 

that the correlation of illiteracy and age heaping is quite robust, emerging also in pooled 

and region fixed-effects models.  

Table 5 about here. 

Individual data permit a more detailed analysis of the determinants of age 

heaping. Table 6 reports for the IPUMS data the marginal effects estimated from 

regressions like those underlying Table 4 (DHS data), in which the probability of 

reporting a multiple of five age is modeled as a logistic function of personal illiteracy, the 

regional illiteracy rate, and age group. Dummy variables are added for women (both 

genders being present in this sample), and for the Irish. Irish immigrants constitute 6% of 

the sample, trailing only New York, Pennsylvania, and Ohio among birthplaces. They 

present high values of illiteracy, but very high values of age heaping relative to the rest of 

the sample. (African-American populations display the reverse pattern after the Civil 

War: high values of age heaping, but extremely high illiteracy rates, relative to the sample 

average.)  

                                                 
23 In the case of African-Americans, the slope declines as former slaves in the Southern 
states enter the sample in 1870. (In the 1850 census, slaves were not individually 
enumerated, so the IPUMS data include only free blacks.) Values of both illiteracy and 
age heaping among the former slaves are initially bunched around extremely high values, 
without displaying a very systematic relationship. By 1900, significant differentiation 
among freed black populations emerges, conforming well to the typical log-linear 
relationship. As for native whites, one third of the decrease in slope in 1900 is due to the 
addition of South Dakota to the sample, another third to other Midwestern and Western 
states.  
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 The estimates indicate that the probability of reporting a heaped age depends on 

both personal illiteracy and the illiteracy rate in the region of birth, in all censuses and for 

all groups. And the order of magnitude of the estimated effects is quite similar to that in 

the contemporary DHS data. For native whites, regional illiteracy is initially the more 

powerful factor; in 1850 personal illiteracy raises the probability of reporting a heaped 

age by less than 1%, while a 20 point increase in regional illiteracy raises the same 

probability by 4%. Even a literate person in a highly illiterate society is not so unlikely to 

report a heaped age, then. By 1900, it is instead personal illiteracy that dominates, raising 

heaping probabilities by over 3% (exactly the excess frequency observed for ages 

divisible by five), while a 20 percentage point increase in illiteracy raises this probability 

by only 2%. African-Americans show a similar trend in the relative strength of the two 

effects, though both are more powerful than among whites in 1900. Among native-born 

Americans, then, age heaping comes more and more to indicate personal than social 

circumstances. Among immigrants, by contrast, the evolution is in the opposite direction, 

making generalization difficult. In some other respects there is a measure of convergence, 

both within and across groups. Among both native- and foreign-born whites, initial male-

female differences diminish to statistical and meaningful insignificance by 1900. And in 

all three groups, clear differences in heaping propensity by age diminish markedly. In this 

respect convergence between groups is also evident; the ageing – age heaping effect is 

initially much stronger in the immigrant and African-American populations, and among 

them it diminishes most strongly. This is again consistent with age heaping reflecting less 

and less the individual’s environment and demographic characteristics, more and more 

his or her individual human capital.  
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Table 6 about here.  

VI. Human capital accumulation in the long run 

The evidence indicates that age heaping is well correlated with literacy, at both 

the aggregate and individual level, in both contemporary and recent historical periods, 

within countries around the world and between them. In addition to its inherent interest as 

an indicator of numeracy, age heaping can therefore also be taken as a proxy for literacy. 

In both senses it is a measure of human capital. But age data are available for many times 

and places where other measures such as literacy are not. Age heaping can be estimated 

from any documentary or archaeological source yielding a sufficiently large sample, from 

tombstones to marriage registers, necrologies, legal records, muster lists, and of course 

census data. To illustrate age heaping’s potential as culture- and time-spanning index of 

human capital, we calculate values of the Whipple Index from published and archival 

data from several countries, over a period running from classical antiquity up through the 

nineteenth century (Figure 7). 

Figure 7 about here. 

The data for Roman times are drawn from Duncan-Jones (1990), who calculated 

the prevalence of multiples of five among tombstone ages, separately for men and women 

and for twelve provinces of the Empire. The archaeological sources date primarily from 

the Principate (roughly 0-200 C.E.), to a lesser extent from the subsequent period. 

Tombstone data may be subject to bias in age heaping, but the direction is unclear. On the 

one hand, primarily wealthier families would have been able to afford funerary 

monuments; on the other, ages may have been estimated by relatives or religious 

authorities. In Figure 7, Duncan-Jones’ index of rounding has been converted to a 
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Whipple Index by a simple linear transformation and averaged over men and women.24 

The figures for Italy, France (Gaul) and Germany are tightly clustered in the 250-300 

range, while that for the Alpine region is something of an outlier (with respect to other 

provinces not shown in Figure 7 as well). The next available estimate is for one of 

medieval Europe’s most advanced regions, Tuscany. Our calculation covers both sexes 

and ages 23-62, and is based on data from the celebrated Florentine cadastre of 1427 

published by Herlihy and Klapisch-Zuber (1978). Within Tuscany the Whipple Index 

varies from 189 for males in the city of Florence to 314 for women in the smaller towns 

and rural areas. The overall average of 287 shows no meaningful change from Italian 

values in the Roman Empire a millennium before.  

Moving forward a century to the years around 1500 reveals continued stagnation 

in human capital levels. The apparent increase in Italian age heaping is in fact probably a 

regional difference, for the later figure is an average for the southern towns Pozzuoli and 

Sorrento (modern Campania), based on census data reported in Duncan-Jones.25 Though 

data specific to Roman Campania are lacking, the Renaissance value of 378 exceeds that 

of all Roman provinces but the Alpine region, making any sort of improvement since the 

earlier period highly unlikely. The German estimates for this period refer to the 

Southwest region (modern Württemberg). They are based on new archival data exploited 

                                                 
24 The figures for Italy and the Alpine region are simple averages of constituent 
provinces: Rome and Italy outside Rome in the first case, the provinces of Noricum and 
Pannonia in the second. Aggregation is advisable where possible due to likely small 
sample sizes underlying Duncan-Jones’ figures. Noricum is in modern Austria. No data 
are available for Raetia to its west in modern Switzerland. Pannonia, to its east, is in 
modern Hungary, hence no longer geographically in the Alps. In Roman times, however, 
the two provinces were ethnically similar and economically integrated.  
25 The Pozzuoli census was conducted in 1489, that of Sorrento in 1561. Geography 
rather than chronology dictated averaging Pozzuoli with Sorrento rather than Tuscany 
(1427). The original source for the Southern data is Beloch (1937).  
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here for the first time: the population muster rolls (an early type of census) of 1523 from 

the town of Balingen.26 Whipple Index values in the range of 310-330 are on the high 

side of Roman provincial figures – about the same as the index for males in Roman 

Germany.27 In central Europe, too, human capital levels of Roman times were at best 

maintained, or perhaps recovered after an intervening decline. 

At some point in the early modern period, age heaping in Western Europe begins 

to diminish. In France and in the neighboring Alpine region, the decline is early and 

gradual. The Alps are represented here by Geneva, for which estimates based on death 

reports are given in Duncan-Jones (1990). Between the mid-sixteenth and the mid-

eighteenth centuries, the Whipple Index value falls steadily from over 300 to under 200, a 

level decisively below anything seen in medieval Europe or Roman antiquity. Early 

eighteenth century France has an even lower degree of age heaping, according to 

Duncan-Jones’ Paris death report data. And this low incidence of age heaping seems to 

have been characteristic of France already in the late seventeenth century, judging by 

preliminary results from other datasets.28 Census data from the nineteenth century show 

                                                 
26 The Württemberg data are for ages 23-52. The authors gratefully acknowledge Lisbeth 
Zahawi for providing these data from the Balingen City Archive. 
27 Figure 7’s relatively low Whipple Index for Roman Germany (256) results from 
averaging the male figure of 329 with an astonishingly low female estimate of 183, based 
on a sample of unknown size. The apparent increase of the index may therefore be 
spurious.  
28 Among 3,700 French soldiers born between 1650 and 1700, and aged from 23 to 52, 
the Whipple Index is a very low 153. The data are a military sample made available by 
John Komlos at www.uni-tuebingen.de/uni/wwl/dhheight.html. For a full analysis of age 
heaping in this dataset, see Crayen and Baten (2006).  
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age heaping in France to have diminished even further among the birth cohorts around 

1800, and to have fallen to negligible levels by the mid-1800s.29  

Other countries in the sample display somewhat different patterns, though sharing 

the general downward trend. In Germany, the decrease in age heaping is later and more 

rapid. German estimates for the decades around 1700 are for the town of Lippborg in 

western Germany (near the Ruhr). The data from the family and soul registers preserved 

in the city archive are analyzed using age heaping techniques for the first time here.30 In 

the space of a few decades, age heaping in Lippborg fell from values around 300, typical 

of both late medieval and Roman Germany, to decisively lower levels near 200. This 

rapid fall must have continued, for by the time census data become available for the birth 

cohorts of the mid-nineteenth century, age heaping has all but disappeared.  

In the U.S. and Italy, the decrease in age heaping appears to have followed a two-

step path. Both countries arrive in the early nineteenth century with Whipple Indices 

clearly lower than anything observed in medieval or Renaissance times, but clearly 

higher than figures for France and Germany. In Italy we cannot observe the transition; for 

the U.S. a Whipple Index in excess of 200 can be conjectured for the mid-seventeenth 

century, which would put it in the same range as Germany, the Alpine region, and 

perhaps France.31 Both Italy and the U.S. then display a sharp reduction in age heaping 

                                                 
29 Census data for France, Germany, and Italy are all drawn from Rothenbacher (2002) 
and the accompanying CD. Whipple Indices are calculated for ages 23-62, where possible 
averaging values for the same birth cohort observed in different censuses to avoid 
confounding cohort effects with aging effects.  
30 The Whipple Index for Lippborg is based on ages 23-72. The authors express their 
thanks to M.Thérèse Haemers-Van Roey Neerpelt for kindly making these data available.  
31 Fischer (1977), p. 85 reports ratios of frequencies at multiples of ten to a 10-year 
moving average frequency, for a sample of some 4,000 individuals in Essex County, 
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during the mid-nineteenth century, converging on Whipple Index values already achieved 

in France and Germany.  

The latest and most rapid decrease in age heaping is found in Russia. Age 

distributions covering birth cohorts of the late 1600s have been published by Kaiser and 

Engel (1993) for two cities: Tula in central Russia and Viatka (Kirov today) in the 

Northeast. Clear differences are evident between long-settled Tula, where the Whipple 

Index averages 257 over two enumerations, and frontier Viatka, where the analogous 

figure is 342. The average for the two cities reported in Figure 7 is 299, which is similar 

to medieval and Renaissance values found in other sample countries, clearly above early-

declining France and the Alpine region, and in line with only the earliest Lippborg 

figures. By the nineteenth century Russia appears to lag behind the rest of the sample by 

two centuries.32 For birth cohorts of the 1820s and ’30s, among whom age-heaping has 

been largely eliminated in France and Germany, and is low (values around 150) in Italy 

and the U.S., it is still in excess of 200 in Russia. Improvement, when it does come to 

Russia, is revolutionary. By the birth cohort of the 1860s, the Whipple Index falls to 129, 

much closer to (if still above) other sample countries (where the Whipple Index varies 

from 100 in France to 115 in the U.S.).  

 This survey only scratches the surface of historical age data available in published 

sources and archives. And space precludes us here from investigating age heaping’s 

relationship with the few alternative measures of human capital available before modern 

times. But even this illustrative example suggests some fascinating hypotheses. Medieval 

                                                                                                                                                 
Massachusetts, in the years 1636-72. The same index calculated for the Tula data of 1715 
yields very similar values. Tula in 1715 has a Whipple Index of 223. 
32 All-Russian figures were calculated on the basis of materials from the first modern 
census of the Empire, conducted in 1897, located in the INION Library, Moscow.  
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and Renaissance Europe appears to have had the same level of numeracy as in Roman 

antiquity over a millennium before. The lack of improvement is startling. But if we 

hypothesize some decline in numeracy skills during the Dark Ages, the implication is that 

the medieval economic recovery was preceded by or contemporaneous with a parallel 

recovery in human capital levels. It is worth noting that seventeenth century Russia does 

not look out of place in European company, falling clearly behind only after this point. 

Well documented by age heaping is the considerable improvement in human capital 

levels preceding the onset of industrialization and modern economic growth. With 

different timing and intensity, age heaping levels fell dramatically over the early modern 

period in all sample countries but Russia. This lends strong support to accounts that 

assign human capital the role of cause, rather than effect, of the industrial revolution.33  

VII. Summary and directions for future research  

Age heaping has the potential to broaden and deepen the empirical foundation for 

research on human capital and its role in economic development. It is both a complement 

and a substitute for literacy-based measures. It complements literacy by revealing 

different cognitive abilities – abilities that are equally important in determining individual 

labor market outcomes today, and which arose in tandem with the market economy 

historically. It is also complementary in the sense of yielding insights not only about 

individuals but also about the societies in which they live. Age heaping can be a 

substitute or proxy for (il)literacy, as the two are well correlated between and within 

countries, in aggregate and individual data, in contemporary and historical contexts. 

                                                 
33 It parallels developments in literacy in Britain, where signature rates among brides and 
grooms improved slowly but steadily from 1500 to 1750, reaching about 50%. They then 
increased by only about another 10 percentage points over the following century of 
radical economic transformation. See Mitch (1991), pp. 1-4. 
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Though tenuous at very low levels of illiteracy and age heaping, this correlation is 

remarkably robust over the full range of observed variation in contemporary and 

historical data. The type of age heaping that predominates in historical data on European 

adults (on multiples of five) can be accurately measured using a computationally simple, 

intuitive indicator: the Whipple Index. With large samples (1,000 or more), even small 

differences in the Whipple Index reliably reflect differences in the underlying 

populations. Even with samples as small as 250, differences of the magnitude frequently 

observed in the historical record (e.g. 250 vs. 150) very rarely result from random 

variation and can be considered reliable indicators of population differences.  

Our preliminary exploration of age heaping as a measure of human capital 

illustrates the breadth and power of the approach. It yields comparable estimates from 

data that range widely in sources (tombstones, tax records, death records, and census 

data), over time (from antiquity to the turn of the twentieth century), and across space 

(from Russia to North America). It offers decisive support for the hypothesis that an 

increase in human capital levels preceded the industrial revolution. The next stages in the 

development and implementation of the method include: a more comprehensive survey of 

potential data sources and expansion of the database; an investigation of whether age-

heaping or literacy is more closely correlated with measures of economic development; 

and the extension of the study to contexts in which literacy measures are completely 

absent or inherently more problematic, as with the ideographic writing systems of East 

Asia.  
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FIGURES 
 
Figure 1. Distribution of the Lambda Index under increasing degrees of mixed heaping 
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Kernel density estimates (Epanechnikov kernel, bandwidth .01); mixed heaping schemes as 
described in text; sample size 1000; repetitions 1000. 
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Figure 2. Scale dependence under mixed heaping 
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Mean values of indices under mixed heaping scheme 05-10 for indicated sample sizes;  
Multiples of 5 and Whipple indices plotted against right axis; log scale x-axis; 1000 repetitions. 
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Figure 3. Index response to degree of heaping 
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Mean values of indices under mixed heaping schemes as indicated on horizontal axis and described in text; 
sample size 500; Multiples of 5 and Whipple Indices plotted on right axis; 1000 repetitions. 
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Figure 4. Distribution of the Bachi Index for various sample sizes 
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Kernel density estimates (Epanechnikov kernel, bandwidth .075); Sample sizes 250, 500, 1000, 
2000, 5000; Mixed heaping type 05-10. 
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Figure 5. Bachi Index probability of ranking error 
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Kernel density estimate of the distribution of difference between Bachi Indices for random 
samples from 05-10 and 05-05 populations (Epanechnikov kernel, bandwidth .01); Sample size 
500. 
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Figure 6. Age heaping and illiteracy in three U.S. censuses 

 
Whipple Index and illiteracy rate by birth regions (US states and territories, foreign countries and 
provinces) with at least 100 observations; IPUMS data. 
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Figure 7. Age heaping in the long run 
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Notes: Whipple Index values, combined male and female data; time refers to approximate birth 
decade. Sources: Duncan-Jones (1990) pp. 86, 90; Herlihy and Klapisch-Zuber (1978) pp. 656-59; 
City archive of Balingen, Musterungsliste 1523, A 28a M21; City archive of Lippborg, Catalogus 
Familiarum ... parochiae Libborgensis de dato 20. Martii 1750; IPUMS; Rothenbacher (2002); 
Kaiser and Engel (1993) pp. 829-33; Census of the Russian Empire, 1897.  
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TABLES 
 
 
Table 1. Probabilities of ranking errors, adjacent degrees of mixed heaping 
 Sample size 250  Sample size 1000 
Index D1 D2 D3 D4  D1 D2 D3 D4 
ABC .37 .27 .18 .20  .11 .04 .03 .04 
Lambda .36 .27 .22 .24  .11 .06 .04 .04 
Bachi .37 .24 .22 .22  .08 .05 .03 .03 
Myers .37 .31 .24 .24  .14 .10 .05 .07 
M. of 5 .23 .24 .24 .30  .05 .09 .09 .12 
Whipple .16 .16 .17 .19  .02 .02 .02 .04 
Estimated probabilities that D1 etc. < 0; D1= H 05−05 − H 00−00, D2 = H 05−10 − H 05−05 etc.  
 
Table 2. Probabilities of ranking errors, two degrees of mixed heaping apart  
 Sample size 250  Sample size 1000 
Index  D20 D31 D42   D20 D31 D42 
ABC  .17 .06 .04   .00 .00 .00 
Lambda  .17 .08 .05   .00 .00 .00 
Bachi  .15 .08 .04   .00 .00 .00 
Myers  .20 .10 .07   .00 .00 .00 
M. of 5  .09 .08 .10   .00 .01 .01 
Whipple  .03 .02 .03   .00 .00 .00 
Estimated probabilities that D20 etc. < 0; D20 = H 05−10 − H 00−00, D31= H 05−15 − H 05−05 etc.  
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Table 3. Regressions of (ln) age heaping on illiteracy 
 National data Regional data Country fixed-effects 
 Bachi Whipple Bachi Whipple Bachi Whipple 

Regional 0.0082 0.0061 0.0071 0.0055 0.0075 0.0044 
    illiteracy (0.002) (0.001) (0.001) (0.000) (0.001) (0.001) 
Constant -2.731 4.499 -2.681 4.515 -2.700 4.568 
 (0.068) (0.026) (0.025) (0.013) (0.042) (0.024) 
N 52 52 415 415 415 415 
R2 0.35 0.49 0.31 0.44 0.74 0.79 
R2 “within”      0.19 0.19 
Notes: Robust standard errors in parentheses (ordinary s.e.’s in fixed-effects model); estimation by OLS; 
dependent variable is logarithm of age heaping; USAID/DHS national and regional data for women aged 
23-49. 
 
 
 
Table 4. Marginal effects on the probability of reporting a heaped age 
   Illiterates Literates  
Personal  0.0572 0.0271   0.0208 
   illiteracy (0.005) (0.006)   (0.001) 
Regional   0.0011 0.0016 0.0006 0.0012 
   illiteracy  (0.000) (0.000) (0.000) (0.000) 
Age <30     -0.0253 
     (0.001) 
Age >= 40     0.0139 
     (0.001) 
      
mean dep. var. 0.257 0.257 0.286 0.230 0.257 
N 701,104 701,104 352,854 348,250 701,104 
χ2  2980.6 5404.0 2592.7 316.2 6240.7 
Notes: marginal effects of coefficient estimates from logistic regression, evaluated at 
means of all variables; robust standard errors; χ2 statistic refers to Wald test of model 
significance with degrees of freedom equal to the number of explanatory variables (p-
values are 0.000 in all cases); USAID/DHS individual data on adult (20-49) women.  
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Table 5. Regressions of (ln) age heaping on illiteracy 
 1850   1870   1900   
 native 

white 
for. native 

black 
native 
white 

for. native 
black 

native 
white 

for. native 
black 

Regional   
  illiteracy 

.0089   
(.001) 

.0085   
(.001) 

.0081 
(.003) 

.0083  
(.001) 

.0082   
(.001) 

.0043 
(.001) 

.0052 
(.002) 

.0078    
(.001) 

.0083 
(.002) 

Constant 4.867   
(.014) 

5.061   
(.027) 

5.058 
(.124) 

4.882   
(.016) 

4.934   
(.019) 

5.105 
(.035) 

4.735   
(.015) 

4.704   
(.024) 

4.726 
(.068) 

N 25 9 7 34 30 20 42 29 17 
R2 0.867 0.741 .682 0.650 0.458 .726 0.253 0.638 .804 
OLS regression of ln(age heaping) on illiteracy for birthplaces with samples of at least 100; robust standard 
errors in parentheses; IPUMS data, ages 20-69.  
 
 
Table 6.  Marginal effects on the probability of reporting a heaped age 
 1850   1870   1900   
 Native 

white 
For. Native 

black 
Native 
white 

For. Native 
black 

Native 
white 

For. Native 
black 

Personal  
  illiteracy 

.0081  
(.006)   

.0584      
(.013) 

.0070       
(.024) 

.0368      
(.005) 

.0573      
(.008) 

.0272      
(.007) 

.0321      
(.006) 

.0285      
(.008) 

.0624    
(.007) 

Regional  
  illiteracy 

.0021     
(.000) 

.0019      
(.001) 

.0020      
(.001) 

.0021      
(.000) 

.0021      
(.000) 

.0024      
(.000) 

.0010      
(.000) 

.0021      
(.000) 

.0015      
(.000) 

Female  .0088   
(.003) 

-.0134       
(.008) 

-.0130      
(.023) 

.0153      
(.003) 

-.0051      
(.005) 

.0627      
(.005) 

.0023      
(.002) 

.0026      
(.004) 

.0150     
(.007) 

Age < 30 -.0631    
(.004) 

-.1655      
(.009) 

-.1782      
(.027) 

-.0653      
(.003) 

-.1388      
(.006) 

-.2108      
(.006) 

-.0165      
(.003) 

-.0573      
(.006) 

-.0860       
(.008) 

Age ≥ 40 .0315 
(.004) 

.0732      
(.010) 

.0982      
(.028) 

.0073      
(.003) 

.0727       
(.005) 

.1048      
(.006) 

.0174      
(.003) 

.0287      
(.005) 

.0739      
(.009) 

Irish 
 

.1132      
(.012)   

.1231      
(.007)   

.0617       
(.006)  

          
Mean dpvr. .282 .369 .431 .271 .341 .473 .231 .247 .329 
N 73,381 15,485 2,076 124,304 45,172 43,145 136,341 42,241 20,623 
Pseudo-R2 0.009 0.048 0.047 0.007 0.046 0.061 0.002 0.011 0.027 

χ 2 LR 768.1 987.6 134.7 1059.1 2717.6 3632.3 252.6 535.3 701.0 
Marginal effects of estimated coefficients of logistic regression, evaluated at means of all variables; IPUMS 
data on adults aged 20-69; degrees of freedom for the chi-squared likelihood ratio test are 5 or 6 depending 
on the model, but in all cases the p-value is zero to three decimal places. 


