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Quantifying Registration Uncertainty

with Sparse Bayesian Modelling
Loı̈c Le Folgoc, Hervé Delingette, Antonio Criminisi, Nicholas Ayache

Abstract—We investigate uncertainty quantification under a
sparse Bayesian model of medical image registration. Bayesian
modelling has proven powerful to automate the tuning of reg-
istration hyperparameters, such as the trade-off between the
data and regularization functionals. Sparsity-inducing priors
have recently been used to render the parametrization itself
adaptive and data-driven. The sparse prior on transformation
parameters effectively favors the use of coarse basis functions to
capture the global trends in the visible motion while finer, highly
localized bases are introduced only in the presence of coherent
image information and motion. In earlier work, approximate
inference under the sparse Bayesian model was tackled in an
efficient Variational Bayes (VB) framework. In this paper we are
interested in the theoretical and empirical quality of uncertainty
estimates derived under this approximate scheme vs. under the
exact model. We implement an (asymptotically) exact inference
scheme based on reversible jump Markov Chain Monte Carlo
(MCMC) sampling to characterize the posterior distribution of
the transformation and compare the predictions of the VB and
MCMC based methods. The true posterior distribution under
the sparse Bayesian model is found to be meaningful: orders
of magnitude for the estimated uncertainty are quantitatively
reasonable, the uncertainty is higher in textureless regions and
lower in the direction of strong intensity gradients.

Index Terms—Registration, Sparse Bayesian Learning, Un-
certainty Quantification, MCMC, Reversible Jump, Automatic
Relevance Determination.

I. INTRODUCTION

Non-rigid image registration is an ill-posed task that sup-

plements limited, noisy data with ‘inexact but useful’ prior

knowledge to infer an optimal deformation between images of

interest [1]. As a standard processing step in many pipelines

for medical imaging, for computational anatomy & physi-

ology, registration would benefit from the development of

principled strategies to analyze its output and subsequently

re-evaluate model assumptions. Bayesian modelling provides

a framework to explicitly incorporate prior assumptions and re-

assess their relevance in retrospect. We focus here on another

expected benefit of Bayesian approaches that is, the possibility

to quantify uncertainty in the optimal solution.

Probabilistic approaches to registration and uncertainty

quantification are not yet widespread in the literature. Gee

and Bajcsy [2] laid the groundwork for a Bayesian inter-

pretation of registration, extending the mechanical formula-

tion of Broit [3]. Exploiting the Gaussian Markov random
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Fig. 1. Graphical model of registration. The generative model of data
D involves a transformation Ψ of space, and noise governed by a set of
underlying parameters P . Hyperpriors (with hyperparameters HP ) are in
turn imposed over the noise parameters. The transformation is parametrized
as a linear combination of predefined basis functions {φk, k = 1 · · ·M}
with associated weights wk . Priors on the transformation smoothness and
on the relevance of individual bases introduce additional parameters (λ
and zk′ respectively). Random variables are circled, hyperparameters are
squared. Arrows capture conditional dependencies. Shaded nodes are observed
variables or fixed hyperparameters. The transformation Ψ is fully determined
by its parent nodes (the φk and wk), hence the doubly circled node. The
content of plates is replicated (M times).

field structure inherited from a finite-element discretization

of the domain, they characterize the posterior distribution of

displacements by Gibbs sampling. Risholm et al [4] extend

the approach to the case of unknown confidence on the

observed data and on model priors respectively, aiming to

address the critical issue of finding an objective trade-off

between data fit and regularity-inducing priors. The so-called

temperature hyperparameters are treated as latent variables

and approximately marginalized over, while a Markov chain

with full dimensional Metropolis-Hastings transitions traverses

the space of transformation parameters. The aforementioned

authors proceed in the framework of Markov Chain Monte

Carlo (MCMC) sampling to explore the posterior distribution

of model parameters. MCMC sampling yields an arbitrarily

good characterization of the posterior provided that enough

samples can be drawn within the available computational bud-

get – inference becomes exact in non finite time. In practice,

the computational burden and the technicality of the Markov

chain implementation quickly become limiting factors. As an

alternative, Variational Bayes (VB) inference provides tools

to efficiently approximate the (true) posterior distribution on

a chosen family of variational (approximate) posteriors. The

choice of variational posterior realizes a trade-off between the

computational burden and the quality of the estimates. Using
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a parametric (FFD) representation of the displacement field,

Simpson et al [5], [6] approximate the posterior distribution

within a ‘convenient’ family for which transformation param-

eters and model hyperparameters factorize. The variational

factorization renders the approach applicable to real scale

registration tasks. As a drawback estimates of uncertainty

quantify variability in the displacement field conditionally

to the inferred hyperparameters, but disregard uncertainty

induced by hyperparameter variability. Although uncertainty

quantification is peripheral to their work, Richard et al [7]

develop for the related task of atlas building a mixed SAEM

and MCMC approach where nodes of the finite-element mesh

are updated via Metropolis-Hastings-Within-Gibbs transitions;

Zhang et al [8] implement a mixed SAEM and Hybrid Monte

Carlo approach for a Bayesian MAP estimation of the template

and of temperature hyperparameters in a diffeomorphic setting.

In this paper, we compare the approximate posterior re-

turned by a Variational Bayes method with an MCMC method

based on the same underlying model. We focus on the

Bayesian model of registration developed in earlier work

[9]. The main goal of this model is to allow not only for

the automatic determination of registration parameters (such

as the trade-off between image similarity and regularization

functionals), but also for a data-driven, multiscale, spatially

adaptive parametrization of deformations via the recourse to a

sparsity-inducing prior on transformation parameters.

Our contribution is twofold. Firstly, the complexity of the

model renders inference non trivial. While in our previous

work approximate inference was conducted on the grounds of

Variational Bayes, we adopt here an exact MCMC-based ap-

proach. At a high level, the space of transformation parameters

is explored by a reversible jump Markov chain [10]. It provides

a principled mechanism to elegantly jump between competing

parametrizations of the displacement field, regardless of their

dimensionalities, without the prohibitely expensive compu-

tation of so-called Bayes factors. This allows to seamlessly

refine the parametrization of the transformation, adapting the

granularity of the parametrization to the granularity of the

underlying motion and the local informativeness of the image,

all the while exploring the most likely deformations. At a

lower level, we capitalize on closed form marginalization of

most nuisance variables, and integrate second-order knowledge

of the posterior distribution in proposal kernels. This yields an

algorithm that reliably and consistently traverses the parameter

space towards the most likely deformations in spite of the

model intricacies.

Secondly, we compare the expectation and uncertainty

predicted by both the fast (approximate) Variational Bayes

inference and the (asymptotically) exact MCMC inference

scheme both on empirical and theoretical grounds. We found

that the expectation is typically well approximated by the VB

inference, but that the uncertainty is underestimated. We ex-

hibit two mechanisms that explain this behaviour. Furthermore

we show that uncertainties predicted by the exact model are

consistent with intuition: the orders of magnitude are sound,

the uncertainty is higher in textureless regions and lower in

the direction of strong intensity gradients.

The article unfolds as follows. In part II we describe the

sparse Bayesian model of registration and devise a principled

strategy for exact inference. The proposed design of the

Markov chain exploits insight gained about the model to

bypass standard impediments of MCMC schemes. Hyperpa-

rameter uncertainty is fully accounted for by marginalization

of the nuisance variables. In part III we review breakdown sce-

narii in which the approximate posterior significantly departs

from the true posterior, leading to poor approximate predictive

uncertainty. In part IV we conduct preliminary experiments to

assess the validity of MCMC uncertainty estimates.

II. STATISTICAL MODEL AND INFERENCE

Registration infers, from prior knowledge and limited data

D, a transformation of space Ψ that pairs homologous features

in objects of interests (e.g. organs or vessels, in a medical

setting). The section starts with a succinct description of the

registration model, and offers insight into its mechanisms.

Fig. 1 provides a graphical representation thereof. An MCMC

approach for systematic characterization of the posterior dis-

tribution is then devised.

A. Bayesian Model of Registration

1) Likelihood model: The generative model of data makes

explicit the relationship between the data D and the spatial

mapping Ψ. It is specified by a likelihood model p(D|Ψ;P )
(often conditioned on a set of hyperparameters P ) that

typically assumes the form of a Boltzmann distribution

p(D|Ψ;P ) ∝ exp−ED(D,Ψ;P ). For landmark registration,

a transformation that approximately maps corresponding key

points {ti} and {Ti}, i = 1 · · ·N , between a template object

and a target object is sought. A standard choice of energy

is the sum of squared distances between pairings, up to

multiplicative factor:

ED(D,Ψ;β) =
β

2

N
∑

i=1

‖Ti −Ψ(ti)‖
2 . (1)

Fig. 2. Graphical representation of the generative data model (using the same
graphical symbols as in Fig. 1). Residuals between the fixed image J and the
warped image I ◦Ψ−1 are assumed to be distributed according to a mixture
of L Gaussian components whose parameters ρl (probability of falling in the
lth component) and βl (inverse variance a.k.a. precision parameter for the
lth Gaussian component) are regarded as latent variables. cn′ ∈ {1 · · ·L}
assigns the corresponding voxel to one of the L mixture components.
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Fig. 3. Energies corresponding to example GMM (black) and SSD (dotted)
models. The voxelwise penalty is shown as a function of the intensity residual.
The effective soft threshold on the penalty incurred for large intensity residuals
results in increased robustness of the GMM.

For pairwise registration of a fixed image J and a moving

image I , a mixture-of-Gaussians model (GMM) of intensity

residuals is adopted here as a flexible and robust variant of

the widespread sum of squared differences (SSD). Fig. 2 sum-

marizes this model of data in graphical form, making explicit

the nodes P,HP ,D of Fig. 1. The multiple components of the

GMM naturally cope with the fact that intensity residuals may

rightfully take high outlier values for an undeterminate fraction

of voxels, because of acquisition artefacts, heteroscedastic

noise and model inaccuracies. At voxel center vi, the intensity

residual ri = J(vi) − I[Ψ−1(vi)] is assigned to the lth
component of the mixture, 1 ≤ l ≤ L, if the L-way categorical

variable ci ∈ {1 · · ·L} takes value l. If so the residual

ri follows a normal distribution N (0, β−1
l ). The component

assignment ci follows a categorical distribution and takes value

l with probability ρl, normalized such that
∑L

l=1 ρl = 1. For

distinct voxels vi and vj , residuals ri and rj (resp. component

assignments ci and cj) are assumed to be independent. The

corresponding GMM energy ED(D,Ψ;β,ρ) is given by Eq.

(2), with Zl =
√

2π/βl a normalizing constant:

−
N
∑

i=1

log

L
∑

l=1

ρl
Zl

exp−
βl

2

(

J [vi]− I[Ψ−1(vi)]
)2

(2)

Fig. 3 shows the typical profile of the GMM energy com-

paratively with the SSD. The assumption of independence of

voxelwise residuals is known not to hold (see e.g. [5], [9])

and to affect the outcome of the probabilistic registration.

Since a proper probabilistic account of correlations in intensity

residuals is both beyond the scope of this work and irrelevant

to the ensuing developments, the Virtual Decimation scheme

of [5] is reproduced instead for simplicity.

2) Transformation parametrization: A small deformation

standpoint is adopted for convenience. The displacement field

u: x ∈ Ω ⊂ R
d 7→ u(x) = Ψ−1(x)− x ∈ R

d is parametrized

by a linear combination of M basis functions φk(.) with

associated weight wk ∈ R
d:

u(x) =
∑

1≤k≤M

φk(x)wk = φ(x)⊺w . (3)

φ(x) =
(

φ1(x) · · · φM (x)
)⊺

and w⊺ =
(

w⊺

1 · · · w⊺

M

)

are

respectively the concatenation, for k = 1 · · ·M , of φk(x)
and wk. Arbitrary choices of basis functions φk are possible.

B-splines (e.g. [11]) present desirable properties in terms of

smoothness and interpolation. Here the φk’s instead consist

of multiscale Gaussian radial basis functions (RBFs) whose

centers lie on a regular grid of points (typically, decimated

voxel centers). Multiscale Gaussian RBFs possess attractive

analytical and computational properties.

3) Transformation priors: The weights w are endowed with

a generalized Spike-&-Slab prior that favours both smooth-

ness of the resulting displacement field and sparsity in its

parametrization. The properties of this prior are central to

the proposed ‘sparse Bayesian’ modelling and to our analysis

thereof. Each basis φk is assigned a distinct activation variable

zk that controls its inclusion in the active parametrization

(or exclusion therefrom). If zk = 0 the basis φk is pruned

out of the active parametrization. We do so by designing

p(wk|zk = 0) as a Dirac distribution centered at 0. If zk = 1
the basis φk is included in the parametrization. The prior

on such bases is designed as a joint, structured Gaussian

distribution that penalizes lack of smoothness in the induced

displacement field [12]. Let us denote by S the set of such

indices k for which zk = 1 and by wS the concatenation of the

corresponding subset of weights {wk, k ∈ S}. For an arbitrary

linear differential operator D, we wish to penalize high values

of the quadratic energy ‖Du‖2 = w
⊺

SRSwS , where RS is

the |S| × |S| matrix whose k, l-th coefficient is 〈Dφk|Dφl〉.
The Gaussian distribution N (wS

∣

∣0, {λ d|S|}−1
R

−1
S ) is a

natural choice of prior for p(wS |S), that we adopt hence-

forth. Note that the covariance normalization by d|S|, where

d is the image dimension, departs from that of [9]. Un-

der this prior λ d|S| · w⊺

SRSwS is χ2(d|S|) distributed so

that λ immediately relates to the expectation of the energy:

Ep(wS |S)(‖Du‖2) = λ−1 and Ep(w)(‖Du‖2) = λ−1. The

prior over all weights w conditioned on the state of the gate

variables z =
(

z1 · · · zM
)⊺

is best summarized in the form of

Eq. (4), where −S is the complement of S:

p(w|z, λ) = N (wS

∣

∣0,
1

λ d|S|
R

−1
S ) · N (w−S

∣

∣0,0) . (4)

4) Hyperpriors: Parameters introduced in the specification

of priors are in turn treated as latent variables. λ is endowed

with a Gamma prior Γ(λ|a0, b0) that is conjugate to p(w|z, λ).
The parameters βl (resp. β) involved in the likelihood model

for image (resp. landmark) registration are endowed with

independent Gamma priors Γ(βl|γ0, δ0). The noise mixture

proportions ρ = {ρ1 · · · ρL} are assigned a Dirichlet prior

Dir(ρ|κ), with κ = (κ1 · · ·κL).
Independent Bernoulli priors B(zk|πk) on each zk constitute

a natural, conjugate hyperprior specification for the activation

variables z. The positive mass 1−πk concentrated at wk = 0
as a result explicitly encodes sparsity. Assuming all πk = π0

to be equal, all parametrizations using the same number of
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active bases |S| are a priori equally probable. In addition the

cost of including a new basis in the active parametrization is

independent of the current number of active bases. However,

we opt instead for a stronger prior, p(z) ∝ Γ(d|S|
2 )−1. The

Gamma function Γ(·) is a natural extension of the (integer)

factorial to real values, yielding a prior that increasingly

penalizes each new inclusion. This prior was found to perform

better w.r.t. sparsity, as can be theoretically argued from the

analysis of the marginal prior p(w|z).

B. Model analysis

1) Marginal prior and marginal likelihood: Critical insight

into the statistical model can be gained by considering the

prior p(w|z,H) and likelihood p(D|w, c,H) with so called

temperature parameters λ and β marginalized over, e.g.:

p(w|z,H) =

∫

R+

p(w|z, λ,H)p(λ|H)dλ . (5)

The multivariate Student distribution tν(·|µ,Λ) with location

parameter µ, inverse scale matrix Λ and ν degrees of freedom

naturally appears in analytic derivations, yielding the following

expressions for the prior and likelihood:

p(w|z,H) = N
(

w−S

∣

∣0,0
)

tνλ

(

wS

∣

∣

∣
0,

a0
b0

d|S|RS

)

(6)

p(D|w, c,H) =

L
∏

l=1

tνl

(

Il ◦Ψ
−1
w

∣

∣

∣
Jl,

γ0
δ0

I

)

(7)

where νλ = 2a0, νl = 2γ0, S is the set of active bases and

|S| =
∑

k zk its cardinal. Jl =
(

· · · J [vi] · · ·
)⊺

i|ci=l
is the

vector of voxel values in image J , for those voxels assigned

to component l, and Il ◦ Ψ−1
w =

(

· · · I[Ψ−1
w (vi)] · · ·

)⊺

i|ci=l

is similarly defined for the warped image I ◦ Ψ−1
w . For a

fixed choice of active bases z, the posterior distribution of

the weights p(w|z, c,D,H) is proportional to the product

of the prior Eq. (6) and likelihood Eq. (7). In the limit

of uninformative hyperpriors a0, γ0 → 0, β0, δ0 → 0 and

assuming L = 1 for the sake of illustration,

p(w|z, c,D,H) ∝ N
(

w−S

∣

∣0,0
) 1

χlik[w]N
1

χpr[w]d|S|
. (8)

where χlik[w]2 is the data error and χpr[w]2 = ‖Duw‖2 the

regularizing energy. In particular the posterior distribution is

invariant to rescaling of the data error, and hence to rescaling

of the intensity profile, after marginalizing over temperature

parameters. Note also that, for a fixed parametrization z, the

ratio of posterior probabilities of two distinct parameter sets

w1 and w2 may become arbitrarily overwhelmed by the prior

as the number of bases in the parametrization grows (|S| ≫
N ). If not for sparsity, this might render MCMC characteriza-

tion of the posterior unreliable (using e.g. Metropolis Hastings

transitions), potentially making its outcome dependent on the

size of the parametrization. Fortunately the proposed sparse

model has a clear mechanism to prevent overparametrization

and render overlapping bases largely mutually exclusive, as

discussed next.

2) Prior probability of basis inclusion: Interactions be-

tween overlapping bases can be better understood by looking

at the probability p(zk|w−k, z−k,H) of inclusion of a new

basis zk given a known configuration z−k for the other

bases and their associated weights w−k. The state w−k of

other bases informs us about the expected regularity of the

signal uw, introducing dependencies between zk and z−k

conditionally to w−k. Denoting by z̃ (resp. z) the state with

zk = 1 (resp. zk = 0), we see from Bayes’ rule that:

p(zk = 1|w−k, z−k)

p(zk = 0|w−k, z−k)
=

p(w−k|z̃)

p(w−k|z)

p(z̃)

p(z)
(9)

where the dependence on hyperparameters is made implicit for

convenience of notations. Leaving details of derivations aside,

we note that in the limit of uninformative values, the ratio of

Eq. (9) takes the form of

p(z̃)

p(z)

(

|κk|

|Rk,k|

)1/2
(

1−
µk⊺

pr Rk,kµ
k
pr

w
⊺

−kRSw−k

)−
d|S|
2

(10)

where S is the set of active bases (excluding k), µk
pr =

−R−1
k,kR

⊺

kw−k and κk = Rk,k − R
⊺

kR
−1
S Rk. The middle

factor penalizes the inclusion of basis k if it overlaps with

bases in the active set S , in the sense of the metric induced

by R. κk is a measure of overlap of basis k with all bases in

the active set S and is null if basis k is perfectly collinear to

S . The rightmost factor favors the inclusion of basis k if it is

a priori expected to yield a significant increase in regularity.

C. Posterior Exploration by MCMC Sampling

For any set of points X = {x1 · · ·xn} in the admissi-

ble domain Ω, consider the vector of displacements u
⊺

X =
(

u(x1)
⊺ · · · u(xn)

⊺
)

. We wish to characterize the joint poste-

rior distribution p(uX |D,H) of any such vector of displace-

ments for any discrete set X . To that aim we merely need

to characterize the posterior distribution p(w|D,H) of the

weights w involved in the parametrization of the transforma-

tion Ψ−1 sufficiently well.

1) Related work: MCMC methods are tools of predilection

to explore arbitrarily complex distributions in a principled

manner. Gibbs sampling [13] cycles between latent variables,

sampling from their conditional distributions in turn while

other model variables remain fixed. It is attractive when

conditional distributions are known in closed form whereas

the joint distribution is untractable or computationally costly

to sample. When the conditional cannot be sampled directly,

a component-wise proposal may be used instead within a

Metropolis-Hastings (MH) step (Metropolis-Within-Gibbs).

Unfortunately, Gibbs sampling of temperature parameters is

prone to failure, with the chain drifting away from regions

of high probability for the duration of any finite MCMC

run. Collapsing temperature parameters λ, β when sampling

regressor variables w is highly opportune. In the context

of registration, Risholm et al. [4] propose a MH scheme

where marginalizing over temperature parameters induces the

expensive computation of partition functions, for which an

intricate procedure based on Laplace approximations is de-

signed. In the proposed model, the computation of partition
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functions (specifically, marginal likelihoods, a.k.a. evidences)

may arise as well when sampling gate variables zk. Selecting a

specific configuration z can be interpreted as a choice between

competing models of varying complexity and dimensionality.

The problem of estimating the evidence for a model is well

studied in the statistical literature. A variety of methods exist,

ranging from the straightforward Laplace approximation to

more principled approaches typically exploiting samples from

the (possibly augmented) posterior, including Chib’s method

[14], importance sampling, bridge sampling, path sampling

(see e.g. [15]) and reversible jump MCMC [10]. The latter

approach is in fact primarily concerned with sampling from

a posterior distribution involving competing models (freely

jumping between models in the process) and merely obtains

evidence ratios as a byproduct. Reversible jump MCMC

is appealing in our setting where competing models z are

organized in series of nested models of increasing complexity,

rendering its machinery mostly invisible. Reversible jump

MCMC proceeds in the general framework of Metropolis-

Hastings, hence a sound proposal must be crafted. We derive

a sensible family of proposals from a modal analysis of the

posterior distribution.

2) Modal analysis of the posterior & proposal: For the

model described in II-A, the Laplace approximation of the

(conditional) posterior p(w|D, z, c,H) around its mode w∗ =
argmaxw p(w|D, z, c,H) takes the following form:

− log p(w|D, z, c,H) ≈

1

2

γ0 +N/2

δ0 + χ2
lik/2

(T∗ −Φw)⊺H∗(T∗ −Φw)+

1

2

a0 + |S|/2

b0 + χ2
pr|S|/2

d|S|w⊺
RSw + const . (11)

where for the sake of illustration we take a single component

mixture (L = 1, ci = 1 for all i, β = β). χ2
pr = w

⊺

∗RSw∗

is the energy in the displacement field, χ2
lik is the data error

χ2
lik =

∑N
i=1(J [vi]−I[Ψ−1

∗ (vi)])
2 and we discard higher order

terms in b0, δ0. T
⊺

∗ =
(

T ⊺

1∗ · · ·T ⊺

N∗

)

is a set of virtual pairings

whose value does not depend on β, λ. H∗ is a block diagonal

matrix whose ith diagonal block H
∗
i is the d × d precision

matrix associated to the ith virtual pairing Ti∗. The factors

stemming from the marginalization:

β∗ =
γ0 +N/2

δ0 + χ2
lik/2

, λ∗ =
a0 + |S|/2

b0 + χ2
pr|S|/2

(12)

are commensurable to temperature parameters. The approx-

imation of the conditional posterior is Gaussian (Eq. (11)

is quadratic) and admits the more obvious canonical form

N (µ,Σ), with µ = ΣΦ
⊺(β∗H∗)T∗ and Σ = (Φ⊺β∗H∗Φ+

λ∗|S|RS)
−1. The Laplace approximation provides a reason-

able approximation of the posterior and a judicious starting

point to design proposals. Component-wise proposals that

leave most of the activation variables zl and the corresponding

weights wl unchanged will be of particular interest to us

(cf. section II-C3). A natural idea is to use the conditionals

w̃k ∼ N (µk
pos,Σk) of the Laplace approximation N (µ,Σ)

as proposal distributions. Because they neither require the

actual computation of µ and Σ nor involve inner products

φ⊺

k(β∗H∗)φl, these ‘Gibbs-like’ proposals are computationally

appealing. As a final tweak to alleviate modal assumptions, we

reintroduce dependency on the current value of wk, yielding

the following component-wise proposal instead, with 0 ≤
rHMALA ≤ 1 and s ≥ 1:

qk(wk → w̃k) = N (w̃k |mk(wk), sΣk) (13)

mk(wk) = (1− rHMALA)wk + rHMALA µk
pos (14)

If not set to 1, the factor s accounts for potentially fatter

tails of the true conditional posterior in the proposal. µk
pos and

Σk depend on H∗ and T∗, which in the formal reasoning

based on the Laplace approximation are computed around

Ψ−1
∗ (·) = Id+φ(·)⊺w∗. In fact T∗ and H∗ can be replaced by

Tw and Hw computed from a (local) quadratic approximation

of p(w|D, z, c, λ∗, β∗) around the current Ψ−1(·) = Id +
φ(·)⊺w. In that case Eq. (13), (14) exactly coincide with a

component-wise Hessian preconditioned Metropolis Adjusted

Langevin Algorithm (HMALA) [16]–[18], which exploits first

and second order local information about the target distribution

for increased efficiency. However the local approximation

generates additional computations at each step and offers little

gain if we expect the posterior to be unimodal. Given our

experimental settings, we use the global approximation with

adaptation during the burn-in phase (at that stage λ∗, β∗, T∗

and H∗ are recomputed every few iterations from statistics |S|,
χ2

pr, χ
2
lik averaged with decaying weights over past samples).

3) Reversible jump MCMC scheme: The groundwork for

this scheme was laid in sections II-B1, II-B2, II-C2. The

reversible jump procedure itself lets us generate samples of

the joint posterior p(w, z, c|D,H) with temperature parame-

ters marginalized over. Dropping irrelevant variables in the

generated samples, we obtain samples of the marginals of

interest, e.g. p(w|D,H). The reversible jump scheme simply

proposes to move from a current state w, z, c to a new state

w̃, z̃, c̃ and computes a Metropolis-Hastings acceptance ratio

for the proposal, leading to acceptance or rejection of the new

state. For the sake of simplicity, proposals for a new state

of w, z may be made separately from those of c. For the

latter, the most natural proposal exactly results in collapsed

Gibbs sampling of each ci, see e.g. [19]1. For w, z we design

basic moves that – when combined – allow to add, remove

or switch active bases as well as update several components

of w. These basic moves are combined to craft proposal

distributions Q(w, z → w̃, z̃) for which the probability of

a move w, z → w̃, z̃ has direct symmetries with that of the

reverse move w̃, z̃ → w, z, so that the acceptance ratio

min

(

1,
p(w̃, z̃, c|D,H)

p(w, z, c|D,H)

Q(w̃, z̃, c → w, z, c)

Q(w, z, c → w̃, z̃, c)

)

(15)

becomes particularly straightforward to compute. The basic

moves are:

a) Basis removal. For a basis k such that zk = 1, set z̃k = 0
and w̃k = 0. The symmetric move is the basis addition.

b) Component-wise update. For a basis k such that zk = 1,

propose a new w̃k ∼ qk(wk → w̃k) according to Eq. (13),

1A complete and concise summary of the relevant derivations and schemes
is given in http://www.kamperh.com/notes/kamper bayesgmm13.pdf
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Algorithm 1: Proposal Qk(w, z, reverse traversal → w̃, z̃, reverse traversal∗).

nneighb is an integer fixed in advance.
Set w̃ = w, z̃ = z.

Draw one of 3 competing events: on-off , exchange, update.

if φk inactive and update then
Exit. No action to implement (as w̃k = 0).

if exchange and φk active then
Draw an inactive basis φk∗ to replace φk. A proposal that
favours well-aligned bases is designed.

else if exchange and φk inactive then
Draw an active basis φk∗ to replace φk. A proposal that
favours well-aligned bases is designed.

if φk active and on-off or exchange then
Set z̃k = 0 and w̃k = 0.

if on-off or update then

• For update: set I = {k}.
• For on-off : Set I ⊂ S\{k} to a list of nneighb active bases,

favouring bases well-aligned with φk.
• If reverse traversal = 1, reverse the ordering of I.

for l ∈ I do
w̃new

l ∼ ql(w̃ → w̃
new) and w̃l = w̃new

l

if φk inactive and on-off then
Set z̃k = 1 and w̃k ∼ qk(wk → ·), using rHMALA = 1.

else if φk inactive and exchange then
Set z̃k∗ = 1 and w̃k∗ ∼ qk∗(wk∗ → w̃k∗) (rHMALA = 1).

if on-off or exchange then
Switch the state of the binary variable reverse traversal.

(14) with a fixed 0 ≤ rHMALA ≤ 1. This move is its own

symmetric (using the reverse update).

c) Basis addition. For a basis k such that zk = 0, set z̃k =
1 and propose a new w̃k according to Eq. (13), (14) with

rHMALA = 1. The symmetric move is the basis removal.

The family of proposals Qk(·) that we design combines

these basic moves in such a way that when reversed, the

sequence of moves induced by the proposal Qk(w, z, c →
w̃, z̃, c) coincides exactly with the sequence of moves induced

by Qk(w̃, z̃, c → w, z, c). The proposal and reverse proposal

travel along the same path in opposite directions, drastically re-

ducing the computational load when evaluating Eq. (15). Each

proposal Qk revolves primarily around the corresponding basis

φk and is defined as per Algorithm 1 (where we introduced

a binary variable reverse traversal to address technicalities).

Using Qk, we define a transition kernel Pk conventionally:

given the current state wt, zt, ct, we propose a new state

c̃ = ct, w̃, z̃ ∼ Qk(wt, zt → ·). The state is accepted

with probability given by Eq. (15), in which case we set

(wt+1, zt+1, ct+1) = (w̃, z̃, c̃); otherwise we stay at the

current state and (wt+1, zt+1, ct+1) = (wt, zt, ct). Compu-

tation of the acceptance ratio is relatively straightforward by

construction, since the ratio of posterior probabilities involved

in Eq. (15) can be rewritten as:

p(D|w̃, z̃, c,H)

p(D|w, z, c,H)
·
p(w̃|z̃, c,H)p(z̃|H)

p(w|z, c,H)p(z|H)
(16)

The leftmost factor is a ratio of likelihoods and need only be

evaluated once for a proposed transition. As the denominator is

known from the previous iteration, only the numerator need be

evaluated. In the context of registration, this part corresponds

to the image term and would involve costly computations

if evaluated repeatedly. Note also that for basis functions

with compact support (or approximately so), only part of

the image term need be updated to evaluate the ratio. The

ratio on the right-hand side and the ratio of proposals are

simply decomposed over the sequence of previously defined

basic moves, then efficiently evaluated using Eq. (6), (13),

(14) and expressions similar to Eq. (9), (10). For the latter,

statistics κk are kept up to date (for all bases) using efficient

rank one updates derived in [9]. Alternatively, the necessary

statistic κk can be recomputed from scratch only for the bases

under consideration. This is usually much more efficient (cf.

algorithmic complexity in II-C5).

Each transition kernel Pk satisfies a detailed balance con-

dition. In terms of these transition kernels, the MCMC chain

proceeds as follows. Random variables k1, k2, . . . taking val-

ues in {1, 2, . . . ,M} are chosen according to some scheme

and the corresponding transition kernel Pkt
is used at time

t. Conventional schemes include the random-scan, where the

{kt} are i.i.d uniform, and the deterministic scan that cycles

through {1, 2, . . . ,M} in natural order (see e.g. [20]). For the

random scan, the global transition kernel also satisfies detailed

balance conditions. For both schemes, the MCMC chain has

stationary distribution p(w, z, c|D,H) after incorporating col-

lapsed Gibbs updates of c. Highlights of the MCMC scheme

main constituents are summarized in Fig. 10.

4) Markov chain mixing improvement: Similarly to Gibbs

sampling of temperature parameters, Gibbs sampling of voxel

GMM assignments c within updates separated from those of

w, z potentially hampers the mixing of the Markov chain for

any finite, practical duration of the MCMC run. If at any point

in time, a data point that should be regarded as an outlier

(e.g. an image artifact), or a group of such points, is assigned

to a ‘non-outlier’ mixture component, the disjoint sampling

generally causes the chain to remain stuck in the vicinity of

the corresponding local mode of the posterior p(w, z, c|D,H):
the desired reverse assignment move virtually occurs with

probability zero after readjustment of w, z. This defect is

critical as such failure scenarii happen with overwhelming

probability. Fortunately, joint proposals for w, z, c can be

designed at little cost, even more so after noting that the

component-wise proposals for wk (Eq. (13), (14)) and zk only

indirectly depend on c. The transition Qk(w, z, c → w̃, z̃, c̃)
proceeds in two steps. First, w̃, z̃ is proposed as per Algorithm

1. Then, c̃ is sampled by component-wise collapsed Gibbs

sampling of each c̃i ∼ p(c̃i | c̃j<i, cj>i, w̃,D,H) in turn.

For efficiency, only the subset of voxels in the support of

updated basis functions is sampled, and voxel assignments are

updated only once in case of overlapping supports. The two-

step move is accepted or rejected based on the acceptance ratio

(15), replacing c by c̃ where necessary. The order of voxel
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traversal is reversed according to the state of reverse traversal.

Sampling c̃ and computing its contribution to the acceptance

ratio exclusively involves the residuals ri and r̃i of updated

voxels prior and after the update w, z → w̃, z̃, which were

already required to compute the likelihood change in Eq. (16).

5) Algorithmic complexity: The algorithmic complexity as-

sociated to a transition kernel Pk (proposal and acceptance-

reject) is O(|S| · |I+| +
∑

l∈I+
Vl + LC), noting I+ the set

of updated bases, Vl the number of voxels in the support of

basis φl and C the number of voxels whose assignments c̃i
are resampled. The first term includes part of the cost of the

proposal w, z → w̃, z̃ and its impact on the ratio of prior

probabilities. The second term is replicated three times and

can be heavily parallelized in each case: once to compute

µl
pos,Σl in Eq. (13), (14) for l ∈ I+, twice to evaluate and store

differences in the displacement fields (resp. residual images)

over the support of basis functions in I+ following their

update. The last term accounts for all computations related

to resampled voxel GMM assignments c̃. When a move that

involves the inclusion or removal of a basis function from

the active set is accepted, an additional O(|S|2 + M · |S|)
cost is involved to maintain statistics κk over all bases in

the dictionary, with the right-hand term being parallelizable

into M disjoint O(|S|) operations. The O(M · |S|) cost upon

inclusion or deletion of a basis can be replaced by a O(|S|2)
cost per proposed move, which is usually more efficient.

6) Initialization: The chain is initialized from the output of

the deterministic algorithm presented in [9] which progresses

greedily in the space of parameters {z, λ, P} towards a local

maximum of their joint posterior. We comment, however,

that any registration algorithm could reasonably be used to

initialize the chain.

III. PREDICTIVE UNCERTAINTIES: MARGINAL

LIKELIHOOD MAXIMIZATION VS. EXACT INFERENCE

The ‘sparse Bayesian’ model presented in Fig. 1 is inspired

by the Spike-&-Slab model of Mitchell and Beauchamp [21]

and the Relevance Vector Machine (RVM) proposed by Tip-

ping [22] for tasks of regression and classification. In the

latter work, the author approaches the problem of inferring

an optimal sparse regression function from the standpoint of

Automatic Relevance Determination (ARD). Point estimates of

the hyperparameters that govern basis selection (and in fact of

all hyperparameters) are sought in a first step by maximizing

the marginal likelihood or evidence as per Eq. (17):

θ∗ = argmaxθ p(D|θ,H)

= argmaxθ

∫

w

p(D|w,θ,H)p(w|θ,H)dw
(17)

where θ = {z, P, λ} using our notations. If non-uniform,

proper hyperpriors on θ are assumed, θ∗ maximizes the poste-

rior p(θ|D,H) ∝ p(D|θ,H)p(θ|H) instead. In a second step,

the distribution of weights wk is characterized conditionally

to the selected model,

p(w|D,H) ≈ p(w|θ∗,D,H) . (18)

This strategy is typically successful in reaching strongly sparse

solutions with good predictive power but, above all else, is

Fig. 4. Comparison of approximate evidence-based inference and faithful
MCMC inference for the sparse Bayesian model, on a 1D regression task.
Data points (black dots) are sampled with additive i.i.d. Gaussian noise
from the true signal (dashed green line). The consistence of the fast and
faithful estimates of the regressor function (black lines) is satisfactory (w.r.t.
uncertainty levels), even more so in the presence of data. Esimates of
uncertainty (grey ribbon), however, can be inconsistent.

motivated by its computational efficiency. Dedicated schemes

relying on linear algebra and rank one updates make it possible

to efficiently, iteratively build the set |S| of relevant basis

functions φk from scratch. See for instance [23], and [9] for an

extension to the wider family of priors required for registration

tasks. The approximation of Eq. (18) is justified by observing

that the full posterior p(w|D,H) is obtained by summing over

all conditional posteriors p(w|θ,D,H), conditioned on the

value θ, weighted by the posterior probability p(θ|D,H) for

this value:

p(w|D,H) =

∫

θ

p(w|θ,D,H)p(θ|D,H)dθ . (19)

Now if the available data D is informative enough, p(θ|D,H)
will be sharply peaked around its mode(s). In the limit case

where p(θ|D,H) is a Dirac centered at its single mode θ∗,

Eq. 18 is retrieved exactly, and the two-step scheme outlined

in Eq. (17), (18) is justified. Moreover in the case of sparsity

governing parameters z =
(

z1 · · · zM
)⊺

, Tipping [22] argues

that, even if several combinations of parameters are highly

probable due to the presence of redundant functions φk in

the dictionary of bases, they should roughly lead to the

same optimal solution u∗ and an approximate mode (or the

expectation) of p(u|D,H) should still be correctly evaluated.

Regardless, we now demonstrate why this evidence-based ap-

proximation will typically fail to properly approximate higher

order moments of the full posterior, resulting for instance in

poor approximation of the real predictive uncertainty. There

are two main breakdown situations for the evidence-based

approximation of the full posterior assumed in Eq. 18.

Firstly in absence of data, the assumption that the posterior

distribution p(θ|D,H) of hyperparameters is well approxi-

mated by a Dirac collapses. Indeed the posterior then resem-

bles the prior distribution p(θ|H), which is typically flat. This

scenario is relevant in the case of basis selection parameters

zk, since associated basis functions φk have a local support

over which reliable data may be missing. Away from data and

without strong incentive to include the basis to increase the

deformation regularity, the probability of basis inclusion (resp.

exclusion) is πk (resp. 1− πk), and for neutral values of πk,

the choice of excluding the basis is arbitrary.
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Fig. 5. Registration setting: (left) fixed image, and (right) moving image, at
resolution 1.25mm × 1.25mm.

Secondly and even in the presence of data, many combi-

nations of active bases could have quasi-identical probability.

When using radial basis functions for instance, the location

of basis centers can be slightly perturbed without significantly

affecting the posterior probability of the new configuration.

The optimal value of basis weights w under two such pertur-

bations will slightly differ however, as well as the resulting

transformation Ψ. The evidence-based approximation of Eq.

(18) relies on a single – perhaps only marginally superior –

configuration, whereas the true posterior sums over all such

configurations, as seen from Eq. (19). As it turns out, ‘basis

wiggling’ accounts for a significant part of the uncertainty.

IV. EXPERIMENTS AND RESULTS

The following experiments aim to qualitatively evaluate the

consistency of posterior distributions inferred by the Varia-

tional Bayes approximate inference scheme and the MCMC

asymptotically exact inference scheme.

A. Material & Experimental Setting

We focus on the 2D registration example of Fig. 5. For

the approximate-based inference, the methodology of [9] is

used without change. The multiscale dictionary hence uses

Gaussian RBFs at three different scales (isotropic, σ = 6mm,

12mm and 24mm), for a total of approximately 7 · 104 basis

functions, of which no more than 50 − 100 are typically

active at a time (both with VB and MCMC approaches).

We set the differential operator D to the Laplacian of the

displacement field. The Gaussian Mixture model of intensity

residuals has L = 5 components: hyperparameter values β∗

for the proposal distribution learned during the burn-in phase

(sec. II-C2) indicate that 2 or 3 components would suffice. No

strong dependence of the results on the number of components

was observed. All hyperpriors use small uninformative values

a0 = b0 = γ0 = δ0 = 10−10, and κ0 = 0.5 for a non-

informative (Jeffreys) Dirichlet prior. The MCMC chain was

run for roughly 7 · 105 transitions and 500 samples were

regularly extracted. Approximately 7 · 104 additional samples

were discarded as part of the burn-in phase, during which the

parameters of the proposal distribution were fine-tuned (cf.

section II-C2). The tuning relies on a set of sufficient statistics,

such as the average energy and the average voxelwise square

intensity residuals per sample. The averages are computed

using a scheme that downweights the early samples: a fixed

learning rate is initially applied before reverting to a classical

(inverse linear) weighting, drawing inspiration from the SAEM

scheme of e.g. [7]. The free parameter s controlling the spread

of proposals compared to the second-order approximation of

the posterior (section II-C2) was set to 1 (spread unchanged).

The observed acceptance rate varied between 20–45% under

sensible variations of the experimental setting, and between

27–34% during the run of interest with the settings described

above. Examples of samples are reported in Fig. 6. As an order

of magnitude, the run takes 10 minutes on a standard laptop

with a naive implementation.

Finally to gain more insight into the behaviour of VB and

MCMC approaches, we also experiment with an MCMC chain

that proceeds as described above except for the choice of active

basis functions which, instead of exploring various configura-

tions, is fixed to that of the Variational Bayes approach. We

refer to this experiment as Fixed Basis MCMC (FBMCMC).

The setting is entirely identical to that of the full MCMC, but

the only transitions proposed are component-wise updates as

opposed to exchange, addition or removal of basis functions.

B. Results

1) Naive alternated sampling vs. joint sampling: Fig. 7

demonstrates the benefit of a careful design of the Markov

chain. The left-most figure displays the estimated mean

displacement, under the aforementioned experimental setting,

if moves in the space of transformation parameters are done

separately from the resampling of voxelwise assignments to

components of the noise mixture instead of jointly (right-most

figure). In this example, a local discrepancy in the intensity

profiles of the fixed and moving images induces a spurious

maximum in the joint posterior distribution of transformation

parameters and voxel labels (cf. section II-C4). A systematic

drift towards this mode was observed in all runs where the

sampling was performed in an alternated manner, for the

whole duration of the run, whereas systematic recovery was

observed under the improved scheme. Similar observations

were made in experiments where temperature parameters

were treated by Gibbs sampling instead of analytically

marginalized over.

2) VB vs. MCMC – estimated displacement: Fig. 8 reports

the mean displacement reported respectively by the evidence-

based inference scheme and by the MCMC inference scheme.

As anticipated from the discussion of section III, very good

agreement between the evidence-based and MCMC-based esti-

mates of the displacement is observed. Upon close inspection,

Fig. 6. Three example samples returned by the MCMC run.
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Fig. 7. Comparison of estimates of the posterior mean returned by MCMC
characterization. (Left) Sampling activation variables z and corresponding
weights w, alternatively with voxel mixture assignments c. (Right) Joint
sampling, as per the approach proposed in section II-C4.

minor differences are noted in some areas with flat intensity

profiles or otherwise low confidence (such as that resulting

from artefacts, or disagreeing intensities in the fixed and

moving image). Their magnitude is lower than the level of

uncertainty in the output of registration, as estimated from the

MCMC scheme.

3) VB vs. MCMC – uncertainty estimates: Fig. 9 compares

the estimates of uncertainty obtained from the MCMC char-

acterization of the posterior and those obtained from the Vari-

ational Bayes inference. For the MCMC inference, relevant

statistics are estimated from the set of samples returned by

the run. To study the spatial localization of uncertainty, we

visualize at each voxel center xi the 2×2 covariance matrix of

the posterior distribution p(u(xi)|I, J,H) of the corresponding

displacement vector u(xi). This is reasonable under the as-

sumption that the posterior on displacements is approximately

mono-modal and Gaussian. The voxelwise covariance matrix,

or its square root (homogeneous to a standard deviation), can

be visualized as a 2D tensor that encodes uncertainty at this

point along any direction. Fig. 9 displays the resulting tensor

map (bottom row) and a scalar summary (upper row).

On the one hand, the order of magnitude of uncertainties

Fig. 8. (Top Row) Comparison of the posterior mean displacement returned
by VB (left) vs. MCMC (right), and difference between the two (middle).
(Bottom Row) Mean displacement returned by Fixed Basis MCMC (middle)
and the difference with the VB (resp. MCMC) estimate (left, resp. right).

Fig. 9. Estimates of uncertainty obtained by characterizing the posterior
distribution of the sparse Bayesian model by (Left column) Variational Bayes
(Right column) MCMC sampling (Middle column) Fixed Basis MCMC
sampling. (Second row) Tensor visualization of the displacement uncertainty:
each tensor encodes the square root of the 2 × 2 covariance displacement
matrix at this location. Tensor elongation along a direction indicates higher
uncertainty along that direction. The color scheme encodes the direction of
the first eigenvector. (First row) Trace of the square root covariance.

under the true posterior (typically ∼ 1mm for a 95% confi-

dence interval), as estimated by MCMC sampling, is consistent

with both the magnitude of the underlying motion (no more

than 5mm, see fig. 8) and the resolution (voxel dimensions:

1.25mm × 1.25mm). As expected, uncertainty is higher in

regions with little structured content (no intensity gradients)

and in the direction of contours. On the other hand, the VB

scheme does not appear to reliably approximate the true un-

certainty. Its order of magnitude is generally underestimated.

Moreover, VB-based uncertainty may lack spatial coherence

in regions that are textureless, with a flat intensity profile (e.g.

in the right ventricle on Fig. 5). This hints at the fact that,

when relying on the evidence-based (VB) scheme, regions of

high uncertainty are localized nearby the inferred (unique) set

of active basis functions.

4) Fixed Basis MCMC: Fig. 8 (second row) and Fig.

9 (middle column) report the estimates of the mean and

uncertainty for the Fixed Basis MCMC scheme. The estimated

mean displacement is in good agreement with both approaches.

Moreover the magnitude of the difference between FBMCMC

and VB (resp. FBMCMC and MCMC) is generally below that

of the residual displacement between VB and MCMC. The

FBMCMC approach, similarly to the VB approach, underes-

timates uncertainty in regions of flat intensity (e.g. bottom

right of the image) and displays small localized uncertainty

peaks. The magnitude of the predicted uncertainty is globally

consistent with that of the VB scheme (Fig. 9, similar tensor

sizes in the first and second rows), albeit sometimes slightly

superior, typically nearby active basis functions (e.g. in the

anterior part of the right ventricle).

V. DISCUSSION

A. Markov Chain design for efficient and reliable inference

The proposed model of registration copes with various

unknowns in the image and transformation model: the noise
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Fig. 10. Main constituents of the MCMC scheme.

level and its spatial variability, the regularity of the hidden

motion, and the optimal parametrization of the displacement

field itself. This renders inference challenging and special care

has to be taken in the design of the Markov chain. Typically

several joint configurations of the regularization hyperparam-

eters, the noise levels (and voxelwise mixture assignments)

and the displacement field constitute local maxima in the joint

parameter space. To prevent the chain from remaining stuck

around poor local maxima, it proved useful to analytically

marginalize over nuisance variables (noise and regularization

levels, mixture proportions) as well as to jointly sample

transformation parameters and voxel assignments to mixture

components (as opposed to alternate between sampling one or

the other).

The reversible jump MCMC framework that we implement

has strong connection with the jump diffusion process of

Grenander and Miller [24] and the birth-and-death kernel

framework. It allows to move freely in the space of trans-

formation parameters but also and conccurently, in the space

of admissible parametrizations. By circumventing the costly

computation of Bayes factors (ratios of evidence for compet-

ing parametrizations), it effectively renders MCMC inference

tractable for the sparse Bayesian model of registration, even

with large dictionaries of basis functions (∼ 105 in our

experiments).

Full-dimensional moves over the space of transformation

parameters were not implemented, as calibrating such transi-

tions calls for the particularly expensive computation of large

(non-diagonal) Hessian matrices. This renders them inefficient

unless e.g., exploiting dedicated procedures inspired from

limited memory quasi-Newton methods [18]. Component-wise

transitions are also particularly suitable provided that the set

of active bases must be jointly explored.

B. Variational Bayes and MCMC inference

Experimental results point towards a good empirical cor-

respondence between the mean estimates of displacement

returned by the approximate VB inference and (asymptoti-

cally) exact MCMC inference, particularly in the presence of

informative data. Unfortunately they also evidence limitations

of the approximate VB scheme for purposes of uncertainty

quantification. This defect is offset by a significantly faster

running time for the VB scheme (one order of magnitude).

As shown in section III, VB inferences selects a single

parametrization by means of marginal likelihood maximiza-

tion, although this optimal parametrization will often be

only marginally so. Discarding all marginally sub-optimal

parametrizations results in generally unreliable estimates of

uncertainty. This is also evidenced by the lower magnitude

of uncertainty predicted by the fixed basis MCMC scheme.

Approximate schemes that circumvent this issue can likely

be devised, for instance by keeping track of several sets of

relevant explanatory variables [25]. The uncertainty on optimal

basis locations could be accounted for in the VB scheme,

either in an ad-hoc manner by local perturbations of the basis

centers when sampling a transformation from the variational

posterior, or in a more formal way by regarding basis centers

as random variables whose associated variational posteriors

are to be estimated.

The RVM∗ basis augmentation strategy of Rasmussen and

Candela [26] partially addresses the second issue of uncer-

tainty underestimation in absence of data. It is applicable

only when voxelwise estimates of uncertainty are expected,

as opposed to full transformation samples. Another strategy

would be to relax the form of the variational posterior family

so that it can better approximate the true posterior away from

data, with the constraint that the computational burden remain

suitably low under such a factorization. Alternatively we note

instead the high potential for parallelization of the proposed

MCMC approach, which could make it more amenable to

routine use on real data.

Finally VB makes parametric assumptions about the form

of the posterior distribution, and infers hyperparameter dis-

tributions whereas the proposed MCMC scheme generally

marginalizes over such hyperparameters. This is likely to

account for some of the minor differences observed between

the VB and Fixed Basis MCMC approaches (sec. IV-B4).

C. Underlying assumptions of the Sparse Bayesian registra-

tion model

The validity of model assumptions may affect the quality

of uncertainty estimates. Possible biases stem on the one

hand from the inexactness of the generative model of images

(modelling the intensity residual as a mixture of Gaussians,

discarding spatial correlations between residuals), on the

other hand from inexactness of the transformation model (the

parametrization of the transformation as well as the choice of

prior). Their impact was not thoroughly explored so far, but

this work provides the methodological framework to do so.

The assumption that source and target image intensities co-

incide up to spatially varying noise mostly holds in the context

of mono-modal registration. For multi-modal registration, a

mapping function between source and target image intensities

should be used (as in e.g. [27], [28]) and can be regressed

within a probabilistic framework [29].

VI. CONCLUSION

In this article we explored the properties of the proposed

sparse Bayesian model of registration for the purpose of uncer-

tainty quantification. We emphasize the distinction between the

Bayesian model itself and inference schemes used to estimate

posterior distributions under this model. In previous work [9]

an efficient but approximate inference scheme was developed,

based on Variational Bayesian arguments and the principle
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of marginal likelihood maximization. In the present work we

design a reversible jump Markov chain that characterizes the

exact posterior arbitrarily well (provided that enough samples

can be drawn) and answer the two following questions. Firstly,

does the fast approximate scheme provide faithful estimates of

expectation and uncertainty? Secondly, is the sparse Bayesian

model of registration useful for the purpose of uncertainty

quantification? We evidence limitations of the approximate

inference scheme for uncertainty quantification, but show that

the true posterior distribution itself is meaningful: orders of

magnitude for the true uncertainty (as characterized by MCMC

sampling) are quantitatively reasonable, the uncertainty is

higher in textureless regions and lower in the direction of

strong intensity gradients.
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