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Local epidemic curves during the 1918–1919 influenza pandemic were often characterized by
multiple epidemic waves. Identifying the underlying cause(s) of such waves may help manage
future pandemics. We investigate the hypothesis that these waves were caused by people
avoiding potentially infectious contacts—a behaviour termed ‘social distancing’. We
estimate the effective disease reproduction number and from it infer the maximum degree
of social distancing that occurred during the course of the multiple-wave epidemic in Sydney,
Australia. We estimate that, on average across the city, people reduced their infectious
contact rate by as much as 38%, and that this was sufficient to explain the multiple waves of
this epidemic. The basic reproduction number,R0, was estimated to be in the range of 1.6–2.0
with a preferred estimate of 1.8, in line with other recent estimates for the 1918–1919
influenza pandemic. The data are also consistent with a high proportion (more than 90%) of
the population being initially susceptible to clinical infection, and the proportion of infections
that were asymptomatic (if this occurs) being no higher than approximately 9%. The
observed clinical attack rate of 36.6% was substantially lower than the 59% expected based
on the estimated value ofR0, implying that approximately 22% of the population were spared
from clinical infection. This reduction in the clinical attack rate translates to an estimated
260 per 100 000 lives having been saved, and suggests that social distancing interventions
could play a major role in mitigating the public health impact of future influenza pandemics.

Keywords: disease reproduction number; R0; pandemic influenza; social distancing;
epidemic attack rate; prior immunity
1. INTRODUCTION

Infectious diseases are commonly controlled by mini-
mizing contact between infectious and susceptible
individuals. Personal measures to reduce potentially
infectious contacts are sometimes referred to as ‘social
distancing’. It has been suggested that policies encoura-
ging social distancing may be effective against pan-
demic influenza (Bell et al. 2006; Glass et al. 2006). It is
unclear, however, whether individuals can reduce their
infectious contact rate to a level low enough to return a
worthwhile public health outcome. An examination of
levels of social distancing actually achieved during
previous epidemics can provide useful guidance as to
the effectiveness of social distancing interventions
during future influenza pandemics.

The infectiousness of a disease is characterized by
the basic reproduction number (R0), which for our
purposes is the expected number of infectious contacts
per infective when there are no pharmaceutical or
behavioural interventions in place and every individual
is equally susceptible. More sophisticated definitions
are required where individuals have substantially
orrespondence (peter.caley@anu.edu.au).
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different risks of infection; the methods described by
Diekmann & Heesterbeek (2000) are useful in defining
and calculating R0 when contact structures and other
kinds of heterogeneity are important. In practice, when
an epidemic occurs, the effective reproduction number
(R) differs from R0 due to the deployment of inter-
ventions, the build-up of herd immunity and possibly
pre-existing immunity.

The benefit arising from interventions that addition-
ally decrease R beyond that expected based on herd
immunity alone may differ depending on the magnitude
of the decrease and its timing (Bootsma & Ferguson
2007; Hatchett et al. 2007). If a reduction in the
infectious contact rate can be introduced early and
sustained, the overall attack rate can be reduced. For a
given decrease in the contact rate, the relative
reduction in the attack rate is smaller for larger R0

(figure 1). For example, halving the infectious contact
rate may lead to a major epidemic being averted (i.e. a
100% reduction in the attack rate) when R0Z2, but, at
most, approximately only a 20% reduction in the attack
rate if R0Z4 (figure 1).

It is more realistic to assume that interventions to
reduce R cannot be sustained indefinitely. If
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Figure 1. Maximum attainable percentage reduction in
the attack rate for epidemics in relation to the extent that
the infectious contact rate is reduced across the community.
If the intervention is not introduced immediately and
sustained indefinitely, a lower reduction will be achieved.
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interventions are introduced, and subsequently
removed before herd immunity has increased suf-
ficiently to reduce R to approximately 1, this will
postpone and diminish the peak incidence of the
epidemic (though not necessarily the eventual attack
rate), thus reducing the peak load on health services.
Finally, we will argue that if the introduction of time-
limited interventions (e.g. social distancing) is timed in
such a way as to minimize the number of active
infective cases as R approaches unity, then the
minimum achievable attack rate can be obtained.

Through a combination of geographical isolation and
public health measures, the city of Sydney, Australia,
delayed the introduction of the Spanish flu by several
months until early 1919, at which point public health
officials responded almost immediately (McCracken &
Curson 2003). As with many populations affected during
the 1918–1919 pandemic (e.g. Geneva, Switzerland;
Chowell et al. 2006), Sydney experienced multiple
epidemic waves. There are several theories explaining
the multiple waves, including transient post-infection
immunity, viral antigenic drift and the involvement of
multiple viral strains; substantial counterarguments
exist for all these theories and the issue remains
unresolved (Taubenberger & Morens 2006). In the case
of Sydney, the beginning of a second wave coincided with
the lifting of public infection control measures,
suggesting that transient adoption of social distancing
measures could underlie the observed dynamics
(McCracken & Curson 2003). More broadly, Hatchett
et al. (2007) observed that the quality and timing of
non-pharmaceutical public health interventions aimed
at decreasing disease transmission by reducing social
contact rates appeared to influence the course of
influenza epidemics in 17 large US cities during 1918,
with second waves occurring only after the relaxation
of interventions. We hypothesize that the public of
Sydney in 1919 initially responded to the public health
measures and subsequently rising and/or high incidence
of cases and, particularly, case fatalities by
reducing their exposure to potentially infectious con-
tacts. Bootsma & Ferguson (2007) have documented a
similar reactive reduction in contact rates in response to
J. R. Soc. Interface (2008)
high mortality rates arising from pandemic influenza. As
the perceived risk decreased, the public subsequently
relaxed, returning to normal behaviour. There is a
delayed negative feedback between the contact rate and
the incidence, and, as withmany dynamical systems that
experience time lags, oscillations develop. We assume
that R0 is constant over the duration of the epidemic.
This is in contrast to Chowell et al. (2006) for example,
who assumed that R0 differed between waves—we
consider this to be a phenomenological rather than
explanatory assumption.

In this paper, we seek to estimate the degree of social
distancing that occurred in Sydney in 1919. To do this,
we use the epidemic curve and other historical data to
estimate (i) the disease reproduction number over the
course of the 1919 Sydney influenza epidemic, (ii)
bounds on the fraction of people who were asympto-
matic seroconverters (whether infectious or not) in that
epidemic and (iii) bounds on the fraction of people who
were resistant before the epidemic began (e.g. owing to
heterotypic immunity).

The methods used in this paper are described in three
sections. Section 2 establishes the relevant aspects of the
historical background, including why we argue for
attributing the epidemic waves to the effect of social
distancing. Section 3 measures the reproduction number
on each day of the Sydney epidemic by applying the
method of Wallinga & Teunis (2004). Section 4 presents
methods for using the observed reproduction numbers
and the cumulative number of cases to derive relation-
ships between the serological attack rate and the initial
fraction of the population that are susceptible. Each of
these quantities has direct policy implications for an
epidemic. They are often incorporated into models (e.g.
Ferguson et al. 2005; Longini et al. 2005), despite
considerable uncertainty about which values are appro-
priate for pandemic influenza.
2. SOCIAL DISTANCING, INTERVENTIONS AND
EPIDEMIC WAVES

In this section, we describe the history of the epidemic
in Sydney and what is known about the population’s
behaviour at each stage. The method we subsequently
present in §5 relies on using the historical record to
identify periods during the epidemic when the popu-
lation behaved normally with regard to the trans-
mission of disease. We assume that the public’s
willingness to reduce transmission relies on their
perception of the risk associated with the epidemic.

We argue that the historical record, as described by
McCracken & Curson (2003), shows periods during
which the perceived risk would be high (owing to high
infection incidence or the imposition of control
measures), and periods when the risk would be
perceived as low. Three periods (labelled A, C and E)
are associated with a high perceived risk and three
others (B, D and F) are associated with a low perceived
risk, and consequently normal transmission. Figure 2a
shows a summary of these periods and a detailed
explanation follows.
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Figure 2. (a) Epidemic curve for Sydney 1919 showing daily
hospitalizations h(t) (black bars) and deaths d(t) (grey bars).
Data on hospitalizations were not readily available after day
224. Periods A–F are labelled and characterized as follows: A,
first cases, infection control measures; B, threat considered
passed, lifting of control measures; C, reimposition of control
measures, first wave; D, epidemic considered passed, lifting of
control measures; E, second wave; F, epidemic passed. (b)
Daily effective reproduction numbers estimated from hospi-
talizations (black circles and black line) and deaths (grey
circles and grey line) with a smoothed cubic spline curve. Day
tZ25 is 25 January 1919.
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2.1. Public health interventions and social
distancing during the epidemic

We define period A as beginning from the time when the
first cases were identified (27 January 1919). During this
period, extensive infection control measures were
imposed, including: closing theatres and public places of
entertainment; compulsorywearingofmasks onall public
transport and in public places; closure of schools;
prohibition of race meetings and church services; and
removal of patients to hospital and strict quarantine of
contact (see McCracken & Curson (2003) for a complete
list). As the incidence remained low in comparison with
severe epidemics reported from elsewhere around the
world, authorities deemed that the threat had passed and
most measures were lifted on 1 March.

From 1 March until the reimposition of control
measures on 24 March (period B), the incidence rose
exponentially. Even so, the daily death rate was low in
absolute terms (figure 2a) because initial incidence was
low, and the mean delay between symptom onset and
death was 8.5 days (Armstrong 1920). During this
period, we assume that the population approached
normal behaviour.

Things changed on the weekend of 22–23March, when
20 people died of influenza; infection control measures
were reimposed around the end of March. We assume
that, from 25March, the perceived severity of the disease
was high enough to reduce transmission. These measures
were continued throughout the first wave (period C).

We assume that the decreasing incidence led to a
decreased perceived risk and that the public started to
resume normal behaviour as the authorities lifted
J. R. Soc. Interface (2008)
infection control measures in the middle of May. We
assume that behaviour approached normal during the
period D, 25 March to mid-June.

A second wave began shortly after the infection
control measures were lifted (i.e. during period D), and
was clearly apparent by mid-June. Even though
infection control measures were not reimposed, we
assume that the high incidence was a sufficient threat to
alter people’s behaviour. We define this period of
altered behaviour (period E) as running from mid-June
to 12 August.

We assume that people resumed normal behaviour
by 12 August (thereafter period F), as by then the
incidence of hospitalizations and deaths had dropped
substantially, and the number of hospitalizations
ceased to be reported in daily papers.
2.2. Why social distancing?

We argue that social distancing is an appropriate
explanation for the waves for several reasons. Seasonal
changes in virus transmissibility, while possible, cannot
be of sufficient size to cause multiple waves—particu-
larly over such a short time period. Indeed, seasonal
influenza epidemics on an annual basis cannot occur if
the difference attributable to seasons is more than
approximately 10% of R. Multiple circulating viruses
may have contributed to the waves in Europe, where
repeat infection was documented (Ministry of Health
1920). However, this could not have occurred in
Sydney, where reinfection was extremely rare, and
when it did occur the symptoms were mild (Armstrong
1920). Armstrong reports that 814 out of 1488 (55%)
health care workers were attacked once, yet only four of
these (0.5%) were recorded as being attacked twice.

It might be argued that the first and second waves in
Sydney were caused by different strains which provided
cross-protection. For this to produce two comparable
waves would require that the second strain be
substantially more infectious (higher R0) than the
first to overcome the effects of herd immunity. We will
show that the reproduction numbers during both waves
in Sydney were remarkably similar. Finally, if applied
in a transient manner (i.e. applied then lifted too early),
there is an underlying mechanistic explanation of
resulting waves (Bootsma & Ferguson 2007).
3. ESTIMATION OF REPRODUCTION NUMBER

3.1. Data collection

Daily hospital admissions attributable to influenza
were collated from the Sydney Morning Herald, which
published a daily report except that data for weekends
were not broken into separate days. Daily data on
deaths attributable to influenza came from the New
SouthWales Statistical Register 1919–1920 (table 105).
These data have already been given in figure 2. Land
and sea border control/quarantine surrounding Sydney
meant that the overwhelming majority of cases were
not imported.

At the height of the epidemic, the Sydney hospitals
were overloaded and turned away patients who would
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have otherwise been admitted (McCracken & Curson
2003). During the period where the hospitals were not
overloaded, the epidemic curve and time-dependent
effective reproduction number (see §3.2) can be inferred
from either the hospitalization or death data.
3.2. Estimation of effective reproduction
number R

We estimated the effective reproduction number R(t)
for each day of the epidemic using the method of
Wallinga & Teunis (2004). The method assumes that
the infectiousness function, which describes the rate at
which an infected individual transmits infection over
the course of their infection (Becker 1989), is known.
We derived an average infectivity profile from Ferguson
et al. (2005) and defined b(a) to be the average relative
infectivity of a person on day a of their infection;
transmission was assumed not to occur after 10 days.
The mean serial interval arising from the resulting
infectivity profile was 2.6 days. The method was applied
separately to both the death and hospitalization data.
Strictly speaking, the method of Wallinga & Teunis
(2004) should be applied to incident infections. As
infectious events are rarely observed, we (and previous
authors) must use symptom onset, death or some other
measure as a surrogate marker for infection. Two issues
arise, which are as follows. First, notifications of
markers (e.g. deaths) may be substantially thinned
versions of incident cases. Second, there is a delay, most
likely of variable duration, between the infection and
the chosen marker. Wallinga & Teunis (2004) showed
that a small degree of thinning (e.g. resulting from
under-reporting of cases) would not bias estimates of
R(t), but did not investigate the effect of using only a
small fraction of cases (as when using deaths as a
surrogate when the case-fatality rate is low) to estimate
R(t). In the Sydney 1919 epidemic, the probability of
hospitalization and death for a given clinical infection
was 4.8 and 1.2%, respectively. We used repeated
stochastic simulations of an epidemic with R0 in the
range of 1.5–2.5 in a population of 800 000, with the
number of daily cases thinned to 5 and 1% to confirm
that thinning per se results in no discernible bias in the
resulting estimates of R over the course of an epidemic.

If the delay from the infection to the chosen marker
(e.g. death) is fixed, there is no bias in the resulting
estimates of R(t). Conversely, if there is variability in
the delay, then there is a potential for bias, particularly
if the distribution of the delay is right-skewed. The
effect of the time-to-marker delay distribution is to
widen the epidemic curve of the marker, relative to the
true incidence curve. The wider the distribution from
the infection time to the marker, the greater the
potential bias. On theoretical grounds, it is easy to
show that during the early and late exponential phases
of an epidemic (i.e. its leading or trailing edge), every
marker gives an unbiased estimate of R, provided that
the exponential phase is itself long in duration
compared with the width of the distribution for the
marked event. During the peaks of the epidemic, the
epidemic curve is not exponential and the above result
does not apply. In our case, Armstrong (1920) provided
J. R. Soc. Interface (2008)
data on the distribution of time from the onset of
influenza symptoms to death (mean 8.86 days,
s.d. 6.0 days), which is well described by a gamma
(kZ2.74, qZ3.23) distribution. We repeated our
epidemic simulations; this time, modelling the time
from infection to death using this gamma distribution
shifted 1.5 days to the right to account for the disease
incubation period (assumed fixed). Applying the
method of Wallinga & Teunis (2004) to the death
data confirmed that the resulting daily estimate of R
has little discernible bias during the early exponential
growth period and again during the final days of the
epidemic. Our application of the method to death data
does underestimate R during the middle of the
epidemic, and overestimate it at the start of the
declining phase; the extent of the bias increases with
increasing R0, though it is less than 10% for a freely
evolving epidemic with R0Z1.5. During periods when
R is close to 1, the bias is also small—this is reflected in
the similarity of the hospitalization and death results.

Given that we are predominantly interested in the
reproduction numbers during the periods of early
exponential growth and during the final cases of the
epidemic (§4.5), we consider that the method of
Wallinga & Teunis (2004) produces estimates of R
that are adequate for our purposes. To remove day-
to-day variation in estimates of R(t) for the purpose of
making inference, we fitted a smooth curve to the daily
estimates of R(t) using cubic splines with knots every
7 days.
3.3. Results for reproduction number R

Figure 2b shows the daily estimates of the effective
reproduction number R(t) based on both the hospital-
ization and death data. The estimates are noisier during
the periods when case numbers are small (e.g. before day
75 and after day 200). As expected, R̂ðtÞ begins above 1
and drops below 1 as the first wave peaks, though not by
much ðR̂minðCÞZ0:85G0:01ðGs:e:ÞÞ. It returns to
greater than 1 at approximately day 130 (figure 2b),
which is approximately when the second wave of the
epidemic began to grow, and remained above 1 until
day 165, the peak of the second wave. It is apparent that
R̂ðtÞ based on the hospital admissions underestimates
R(t) during both waves due to hospitals being over-
loaded (figure 2b). At times other than early in the
epidemic when the number of deaths is very small, the
estimates of R(t) based on either hospitalizations or
deaths are very similar (allowing for deaths to lag
hospitalized cases; figure 2b). We henceforth use deaths
only to make inference on R(t). Indeed, we expect there
to be less bias in the estimates of R(t) arising from
deaths compared with hospitalizations. This is because
being admitted to hospital is dependent onmany factors
unrelated to the epidemiology of disease that may vary
over time (e.g. perceived need for hospital care based on
the case-fatality rate). The maximum value of the
smoothed curve during period B gave an estimate
of R̂ðBÞZ1:59G0:02ðGs:e:Þ (figure 2b). The mean of
the daily reproduction number in period F was
R̂ðFÞZ0:95G0:04ðGs:e:Þ.



Table 1. Summary of epidemic incidence, policy and individual’s perceived risk factors influencing the degree of social distancing
(s(t)) during different periods of the influenza epidemic in Sydney 1919. (Day 1 is 1 January 1919. The question mark assigned to
s(t) during period D reflects our uncertainty surrounding whether people fully resumed normal contact behaviour at some stage
during this period.)

period day, 1919 incidence drivers of perceptions perceived risk s(t)

A 32–59 very low high publicity and policy high waning !1
B 60–84 low threat evidently passed low 1
C 85–134 high high incidence and policy high !1
D 135–165 moderate decreased incidence moderate 1(?)
E 166–223 high high incidence high !1
F 224 onwards low threat passed low 1
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4. ESTIMATION OF SOCIAL DISTANCING AND
EPIDEMIC SIZE

In this section, we present a method for inferring the
degree of social distancing during different periods of
the epidemic. Our method relies on knowing the
reproduction number operating at each time (estab-
lished in §3). We attribute part of the variation in this
reproduction number to herd immunity and the
remainder to social distancing.
4.1. Available data

The total population size of Sydney was NZ810 700, of
which at least 14 130 (1.74%) were admitted to hospital
and approximately 3500 (0.43%) died as a result of
influenza infection (McCracken & Curson 2003). Based
on a survey of 600 establishments covering 106 923
employees, the proportion of workers that were absent
from duty as a result of influenza was 36.6% (Armstrong
1920, p. 144). This was considered as an unbiased
estimate of the clinical attack rate, although we argue
that the serological attack rate (proportion of workers
who developed resistance) may have differed.
4.2. Model for R in terms of immunity and degree of
social distancing

We denote the proportion of the population that were
recorded as being hospitalized or as having died on day t
as h(t) and d(t), respectively; these are known from the
data. We denote the proportion susceptible as s(t), and
the per capita incidence on day t as i(t). We do not
assume that infectives were necessarily symptomatic,
but they are all assumed to have become immune.

Our model assumes that mixing within the popu-
lation can be approximated as homogeneous. We
assume a form for the effective reproduction number
that incorporates the build-up of immunity in the
population and social distancing,

RðtÞZR0sðtÞsðtÞ; ð4:1Þ

where s(t) is a scalar, which describes the extent to
which behaviours resulting in disease transmission are
maintained. A reduction in s(t) indicates that disease
transmission has decreased for some reason other than
the depletion of susceptibles. For example, when the
population is behaving normally (i.e. no social distan-
cing), s(t)Z1, and when potentially infectious contacts
J. R. Soc. Interface (2008)
are reduced by half, s(t)Z0.5. We consider that the
population closely approached normal behaviour
during periods B and F, and possibly during period D,
i.e. s(B)Zs(D)Zs(F)Z1 (table 1).

Our aim is to use this model to estimate s(t)
by estimating R(t) and s(t). More specifically, we seek
to estimate

RAðtÞZR0sðtÞZ
RðtÞ
sðtÞ ; ð4:2Þ

whichwe refer to as the ‘adjusted reproductionnumber’—
the adjustment referring to the correction of the effective
reproduction number for the proportion of the population
that are susceptible. When there is no social distancing,
RAðtÞZR0. Our goal is to estimate how much of the
variation in the reproduction number exceeds that which
can be attributed to the build-up of immunity, and to
attribute that to social distancing.Wedefinesmin tobe the
lowest value of s(t) obtained from the analysis, corre-
sponding to the point of greatest social distancing.
4.3. Estimation of susceptible fraction s(t)

The serological attack rate (final proportion infected
and developing solid immunity) is aZs(0)Ks(N). The
fraction of the population remaining susceptible at time
t is equal to the initial proportion susceptibleKthe
cumulative proportion infected by t,

sðtÞZ sð0ÞK
ðt
0
iðt 0Þdt 0: ð4:3Þ

We do not observe i(t) and must infer it from the daily
death and/or hospitalization data. In the case of deaths
(which in §3.3 we show yields the best estimate ofR(t)),
we must account for the time delay (t) between
infection and death. The time from symptom onset to
death was remarkably similar across all age groups with
a mode of 7 days (Armstrong 1920; figure 3). We add
1.5 days for the incubation period (Ferguson et al.
2005) and round to the nearest integer, so that tZ9.
Hence, re-expressing equation (4.3) in terms of daily
deaths gives

sðtÞZ sð0ÞK a

p

Xt 0Ct

t 0Z0

dðt 0Þ; ð4:4Þ

where p equals the proportion of the population that
died as a result of influenza infection. Our main interest
in equation (4.4) is to estimate values of s(0) and a that
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are compatible with the observed reproduction number
over the course of the epidemic.
4.4. Effect of social distancing on the attack rate

In this section, we discuss the possible range of values of
the serological attack rate. During the preparation of this
paper, a similar theory has been presented (Bootsma &
Ferguson 2007), whichwe present inmore detail. If social
distancing is sufficiently effective (s!1/R0) and can be
maintained, then an epidemic will go extinct by the
epidemic threshold theorem (Becker 1989). In a large
population, the fraction who become infected in this case
is negligible. Thismay have contributed to the extinction
of SARS virus (Riley et al. 2003).

If an epidemic cannot be contained by social
distancing, and goes on to infect a sizeable fraction,
the serological attack rate a must lie between a
minimum value amin and a maximum value amax.
Consider two hypothetical major epidemics, the first
without social distancing and the second with what we
will argue is optimum effective social distancing. For an
epidemic in a reasonably well-mixed population, unim-
peded by social distancing, amax is obtained from R0

and s(0) by the final size equation (Diekmann &
Heesterbeek 2000)

amax Z sð0Þð1KeKamaxR 0Þ: ð4:5Þ
Given estimates of R0 and s(0), we use equation (4.5) to
obtain an estimate of this maximum serological attack
rate ðâmaxÞ, noting that this estimate is quite robust to a
range of underlying spatial contact structures and
variation in infective potential among individuals
(Ma & Earn 2006).

In the second scenario, we assume that the eventual
extinctionof the epidemic is a result of thedevelopmentof
resistance in the wider community. The optimum attack
rate is obtained by applying social distancing such that as
the proportion of susceptibles in the community falls
below 1/R0, the number of infectives is so small that the
epidemic fades outwithout infecting a significant fraction
of the remaining susceptible population. Here, the
ultimate proportion of the population remaining suscep-
tible is s(N)Z1/R0 (if s(N)O1/R0, reintroduction of
J. R. Soc. Interface (2008)
the infection could lead to another epidemic wave). This
condition allowsus todefineaminZs(0)K1/R0 and, given
estimates ofR0 and s(0),we can obtain an estimate of this
minimum attack rate ðâminÞ. One would think that
achieving this limit in practice should be rather difficult
due to its extreme nature.

The difference between the scenarios arises due to
the following reasons. Once the proportion of suscep-
tibles in the community falls below 1/R0, the effective
reproduction number drops below unity regardless of
the degree of social distancing, and the epidemic is
doomed to extinction. A freely flowing epidemic,
however, overshoots amin because at this stage the
largest number of infectives is active. In the optimal
case, social distancing is used to minimize the number
of infectives at this stage, so that there is no overshoot.
The ultimate attack rate therefore depends on how
many individuals are infected as R(t) crosses 1.

In Sydney 1919, the attack rate must have lain
between these extremes: amin%a%amax. Based on the
difference between our estimates of a and amax, we scale
up the number of lives actually lost to estimate how
many lives might have been lost if the epidemic had
been entirely unimpeded by social distancing. By this
measure, the number of deaths per 100 000 of the
population that were prevented by social distancing (D)
was DZðamax=aK1Þp!105.

Whether or not social distancing has occurred during
an epidemic, if it is relaxed (i.e. s(N)Z1) during the
final cases, it follows from equation (4.1) that

RðNÞZR0ð1KaÞ: ð4:6Þ

Under optimal social distancingwith aminimumpossible
attack rate ðaZsð0ÞK1=R0Þ, we expect R(N) to be
unity. In epidemics where transmission is unimpeded
(s(t)Z1 throughout), epidemic decline is much more
rapid. During the final phase, there are sufficient
infectious cases in that many susceptibles are infected,
even though the reproduction number is well below 1.
4.5. Relationship between parameter estimates

To estimate the reproduction number during periods B
and D (R̂ðBÞ and R̂ðDÞ, respectively), we took the
maximum of the smoothed estimate of R(t). Our
estimate of the final reproduction number (R̂ðFÞ) was
the mean of the daily estimates during period F,
weighted by the number of deaths on that day.

By substituting equation (4.4) into equation (4.1)
and solving for s(0) after setting s(B)Zs(F)Z1, we
obtain a relationship between s(0) and a along with the
reproduction numbers during periods B and F and the
associated cumulative number of per capita deaths,

ŝð0ÞZ a

pðR̂ðBÞKR̂ðFÞÞ
R̂ðBÞ

XtFCt

t 0Z0

dðt 0ÞKR̂ðFÞ
XtBCt

t 0Z0

dðt 0Þ
( )

:

ð4:7Þ
Here, tB refers to the time until the peak in the effective
reproduction number during period B, and tF is the
time to the middle of period F. We could have
additionally used R̂ðDÞ; however, a priori we were less



Table 2. Values of the attack rate a and the corresponding values of the initial susceptible proportion (s(0)), the basic
reproduction number (R0), the minimum and maximum fractions that could have been infected (amin, amax), the adjusted
reproduction numbers during periods when we expect that social distancing is at a minimum (RA(B), RA(D) and RA(F)), the
social distancing coefficient when social distancing was at its greatest (smin), and the estimated number of deaths avoided per
100 000 (D). (Values in the first row are computed by assuming that a was 10% less than the reported clinical attack rate with
s(0) allowed to vary freely. The second row is computed using the clinical attack rate as an estimator for a. The third row is
computed by adjusting a to obtain s(0)Z1.0.)

a s(0) R0 amin amax RA(B) RA(D) RA(F) smin D

0.329 0.821 1.96 0.309 0.529 1.94 1.97 1.93 0.619 260
0.366 0.912 1.76 0.344 0.588 1.75 1.80 1.74 0.619 260
0.402 1.000 1.60 0.377 0.644 1.59 1.64 1.58 0.619 260

Social distancing during epidemics P. Caley et al. 637
confident that the population was behaving normally
during period D.

All analyses were undertaken using the computing
environment R v. 2.5.0 (R Development Core Team
2007).
5. RESULTS AND DISCUSSION

5.1. Estimating prior immunity, attack rate and
degree of social distancing

Having estimated the values of R̂ðBÞ and R̂ðFÞ,
equation (4.7) establishes a unique relationship
between a and s(0). The reported clinical attack rate
is the obvious first choice as an estimate of a, but may
be biased for several possible reasons: (i) it is
conceivable that clinical cases may not have conferred
solid immunity, (ii) cases that seroconvert may be
asymptomatic, and (iii) illness may have been mis-
takenly attributed to influenza when it was in fact
caused by another influenza-like illness (e.g. respiratory
syncytial virus). Hence, we explore the values of a to be
an arbitrary 10% below (0.329) and 10% above (0.403)
the reported clinical attack rate. The upper value turns
out to be just above the maximum possible under our
final approach to estimating a; that is, to use equation
(4.7) under the assumption that everyone was initially
susceptible to infection (i.e. s(0)Z1).

We therefore explore three estimates of a. For each
estimate, we compute the corresponding values of s(0),
amax, amin,RA(B),RA(D),RA(F) and smin. We estimate
R0 as the average of RA(B), RA(D) and RA(F).

Setting the serological attack rate to the observed
clinical attack rate of 0.366 estimates the initial
susceptible proportion to be s(0)Z0.912 and R̂0Z1:76
(table 2).

Setting the serological attack rate to aZ32.9% (i.e.
10% lower than the clinical attack rate) corresponds to
an initial susceptible proportion of s(0)Z0.821. This
scenario requires that 10% of those who developed
clinical symptoms were not solidly protected against
future severe attack, contradicting contemporary
observations of influenza-dedicated hospital staff
(Armstrong 1920).

If the population was initially fully susceptible
(s(0)Z1.0), a serological attack rate of aZ0.401 is
required to explain the epidemic dynamics. Again, if we
assume that 0.366 is an accurate measure of the clinical
attack rate, then it follows that 8.7% of those infected
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developed immunity without having developed clinical
symptoms to the extent that they did not attend work.
Although we do not give credence to a scenario that
assumes s(0)Z1.0, as it is probable that there was at
least some heterotypic immunity from seasonal influ-
enza, we note that it creates an upper bound of 8.7% for
the fraction of infectives who could have been asympto-
matic transmitters.

We suggest that, of these three estimates, the
survey-based estimate of the clinical attack rate
(0.366) is probably closest to the true value of the
serological attack rate (i.e. aZ0.366) and hence our
preferred estimate of R0 is 1.76 (table 2; figure 4).

Each of the three scenarios returns the same value of
smin (this is a mathematical consequence of our
methods), corresponding to a reduction in the infec-
tious contact rate of 38% during the first wave (table 2).
During the second wave, the maximum estimated
reduction in the infectious contact rate was less
(24%). Interestingly, the second wave was perceived
as being more severe than the first, so the difference
between these values may be attributable to the public
health policy of encouraging social distancing during
the first wave. Alternatively, the difference could be
explained by the exceptionally heavy rain that fell
nearly throughout the month of May (following the first
wave), thus discouraging people from getting out and
circulating in the wider population (McCracken &
Curson 2003).

Assuming homogeneous mixing, no social distan-
cing, s(0)Z31.2% and R0Z1.76, using equation (4.5),
we would expect an attack rate of 58.8%—much greater
than the 36.6% observed. Assuming that the number of
deaths is directly proportional to the attack rate, the
reduction indicates that DZ260 per 100 000 lives were
possibly saved as a result of social distancing.

The estimated value of amin was approximately 6%
less than the modelled serological attack rate for the
three parameter combinations examined. This suggests
that few additional lives could have been saved by
increasing the degree of social distancing, unless it was
able to eliminate the epidemic. The observation that
R(t) reduces to near 1 for a prolonged period during the
last days of the epidemic further supports the con-
clusion that a was close to amin. Substituting aZ0.588
into equation (4.6), the expected reproduction number
during the final stages of the epidemic is 0.725—
substantially less than the 0.95 observed.
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Figure 5. The relationship between the reproduction number
adjusted for susceptible depletion (RA(t)) and the daily
number of deaths (D(t)) during the (a) first and (b) second
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The relationship between the adjusted reproduction
number and the number of daily deaths for the first and
secondwaves shows a negative trend—more deathsmean
greater social distancing (figure 5a,b). For figure 5c,d, we
wish to plot the reproduction number against the number
of infections on the same day. Since the number of
infections is unknown,weuse the number of deaths 9 days
later as a proxy. The clockwise cycles reveal the delay
between the infection and the subsequent decline in
RA(t)—and hence the degree of social distancing.

We have assumed an ‘all or nothing’ model of prior
immunity, meaning that a fraction of individuals were
totally protected from infection during the pandemic
period. The main alternative model of prior immunity
is that a fraction of the population is partially immune,
having a lower (but non-zero) risk of infection. Under
some circumstances, there will be material differences
between the behaviour of these prior immunity models:
if R0 is very large, all susceptibles, whether fully or
partially immune, will inevitably be infected; alterna-
tively, if there is assortative mixing between classes of
susceptibles, fully susceptibles will be overrepresented
during the early stages of the epidemic and under-
represented in later stages. These circumstances do not
apply to the Sydney 1919 epidemic—there was a
reasonably low attack rate (less than 50%) and little
evidence to support strongly assortative mixing. While
our model result is that 10% of the population were fully
immune, for these data we cannot easily distinguish this
from alternatives, such as where 20% of the population
had 50% of the normal risk of infection.

While the infectivity profile we use has empirical
support, it is interesting to consider the effect of
changing the infectivity profile. Had we used an
infectivity profile with a shorter mean serial interval,
we would have obtained reproduction numbers closer to
1, meaning that smaller changes in the degree of social
distancing would explain the epidemic waves. However,
the reproduction number cannot be reduced much
below 1.6 before it becomes impossible to achieve an
attack rate of 36.6%, in an epidemic with two waves of
similar magnitude. On the other hand, a longer serial
interval would have produced higher estimates ofR0. In
this case, we have underestimated the social distancing
achieved during the 1919 epidemic.
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It is possible that other interventions, such as closing
schools and quarantining infectives, played a role in
containing the epidemic. We argue that most of these
can be broadly categorized as social distancing.
Measures such as quarantine are likely to have been
practised more or less constantly throughout the
epidemic and probably did not contribute to the
changes in R(t).
6. CONCLUSIONS

We conclude that the variable application of social
distancing, whereby individuals reduced their infec-
tious contact rate in response to the perceived risk, is a
plausible explanation for the multiple waves of pan-
demic strain influenza seen during 1919 in Sydney,
Australia. Indeed, while the waxing and waning of the
multiple waves appears dramatic, the degree of social
distancing required to explain this (in this case, at
most, halving one’s infectious contact rate) seems quite
possible. More generally, Bootsma & Ferguson (2007)
and Hatchett et al. (2007) have demonstrated that
variation in the timing of introduction and lifting of
non-pharmaceutical interventions aimed at reducing
contact rates can explain why cities experienced
different inter-wave periods, ranging from being so
short as to be undetectable through to several months
(Taubenberger & Morens 2006). We note, however,
that transient social distancing certainly does not
explain why the case-fatality rate of the 1918–1919
pandemic typically was higher during the second wave,
as indeed was the case for Sydney (McCracken &
Curson 2003). However, note that the very similar



Social distancing during epidemics P. Caley et al. 639
reproduction numbers observed during both waves of
the epidemic support our initial assumption that R0 did
not differ over the course of the epidemic.

Subject to the assumption that infection at any time
conferred protection against a subsequent severe attack,
we conclude that approximately 9% of the population
were resistant to the epidemic strain prior to the
epidemic, and that, during the epidemic, not more
than approximately 9% of infections that conferred
resistance to the epidemic strain were subclinical to the
extent that people were able to continue working. Using
our best estimate that 91.2% of individuals were initially
susceptible, the R0 of the 1919 influenza epidemic in
Sydney was 1.8, consistent with recent estimates that
have used a similar mean serial interval (Ferguson et al.
2005; Sertsou et al. 2006). The observed attack rate,
however, was substantially less than would be expected
for this basic reproduction number, and we argue that
social distancing is a plausible reason for this. This result
underlines the effective role that social distancing could
possibly play in mitigating the effects of a future
pandemic of influenza.
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