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ABSTRACT

The technique known as ACE Analysis allows researchers
to quantify a hardware structure’s Architectural Vulnerabil-
ity Factor (AVF) using simulation. This allows researchers
to understand a hardware structure’s vulnerability to soft
errors and consider design tradeoffs when running specific
workloads. AVF is only applicable to hardware, however,
and no corresponding concept has yet been introduced for
software. Quantifying vulnerability to hardware faults at a
software, or program, level would allow researchers to gain
a better understanding of the reliability of a program as run
on a particular architecture (e.g., X86, PowerPC), indepen-
dent of the micro-architecture on which it is executed. This
ability can provide a basis for future research into reliability
techniques at a software level.

In this work, we adapt the techniques of ACE Analysis
to develop a new software-level vulnerability metric called
the Program Vulnerability Factor (PVF). This metric allows
insight into the vulnerability of a software resource to hard-
ware faults in a micro-architecture independent way, and
can be used to make judgments about the relative reliability
of different programs. We describe in detail how to calcu-
late the PVF of a software resource, and show that the PVF
of the architectural register file closely correlates with the
AVF of the underlying physical register file and can serve as
a good predictor of relative AVF when comparing the AVF
of two different programs.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: [Reliability, Test-
ing, and Fault-Tolerance

General Terms

Reliability
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1. INTRODUCTION
Reliability is now a first-class design constraint for most

systems from high-end mainframes to commodity PCs, pri-
marily due to the effects of soft errors from cosmic particles.
The rate of soft errors in a system can be higher than that
of all other errors combined, making soft errors one of the
primary concerns for system reliability [1]. Microprocessor
vendors typically set a soft-error rate (SER) target for each
design and perform significant pre-silicon analysis to ensure
a design adheres to this target. Therefore, accurately esti-
mating the SER of a particular design early in the design
cycle is crucial to measuring a design’s performance against
its SER target.

This type of early-design SER analysis has been greatly
aided by the concept of Architectural Vulnerability Factor
(AVF) and the introduction of ACE Analysis as a method
to estimate a structure’s AVF [6]. The AVF of a processor
structure is defined as the probability that a fault in that
structure will result in a visible error in the final output of
a program. This is a well-defined, measurable quantity that
both yields insight into the behavior of a structure and al-
lows a simple calculation to determine its failure rate. ACE
Analysis estimates a structure’s AVF by determining, dur-
ing each cycle, whether a fault in a bit will propagate to
the program’s output. This allows a designer to estimate a
structure’s AVF in a single, fault-free, simulation run, sig-
nificantly faster than prior techniques such as software fault-
injection which require hundreds of runs to achieve statis-
tical significance [4]. As a consequence, ACE Analysis has
enabled much research into the behavior of processor struc-
tures and reliability improvement techniques [9] [8] [3].

Although AVF analysis can yield an understanding of the
reliability behavior of a hardware structure, no correspond-
ing method has yet been developed to quantify the vulner-
ability of a program. to hardware faults. Such a method
would allow researchers to better understand the link be-
tween program code and reliability, and could enable the
development of reliability techniques at a compiler or even
programming language level. For example, the following
questions are currently not answerable independent of hard-
ware: “Is mcf or equake more susceptible to faults?”, or
“What is the reliability impact of this compiler optimiza-
tion?”. A metric to quantify software vulnerability would
yield answers to those questions about the relative vulner-



ability of two programs independent of a particular micro-
architecture. Furthermore, a well-defined metric might also
allow prediction of the absolute vulnerability of a single pro-
gram when run on a system. Our work examines both of
these questions and lays the foundation for such a software
vulnerability metric.

The rest of this paper is organized as follows. Section 2
sets out the characteristics that a software vulnerability met-
ric should possess. Section 3 reviews the application of ACE
Analysis to measure the AVF of hardware structures. Sec-
tion 4 then applies this methodology to software, introducing
a metric we call the Program Vulnerability Factor. Section 5
discusses the relationship between PVF and AVF, and Sec-
tion 6 presents a preliminary evaluation of PVF.

2. PROPERTIES OF A SOFTWARE

VULNERABILITY METRIC
In this section, we discuss several attributes that a soft-

ware vulnerability metric should possess. These attributes
allow a metric to be both general-purpose in its ability to
provide insight, but also of practical use in drawing conclu-
sions about program reliability. First, in order to be general-
purpose, any vulnerability metric must be micro-architecture
independent. Therefore, a software vulnerability metric must
be a function of only architectural (software-visible) param-
eters, since these are the only features guaranteed not to
change across different implementations of a given architec-
ture. This requirement precludes a crucial feature of ACE
Analysis: the use of clock cycles as a measure of time. We
discuss a solution to this issue in Section 4. This requirement
also implies that the vulnerability metric can be modeled in
such a way that its calculation does not require detailed
micro-architectural simulation of the program; vulnerabil-
ity estimates should be derivable through program analysis
techniques such as offline examination of an instruction trace
or architectural simulation of the program.

Second, a software vulnerability metric should be able to
predict the failure rate of a system upon which the program
is executing. For instance, if system X consists of program
S executing on hardware H, the failure rate of the system
(FITX) should be expressable as a function of the vulnera-
bility factor of program S (V FS):

FITX = fX(V FS) (1)

The function fX applies V FS to a set of system-specific
parameters (e.g., the raw failure rate per bit) to compute an
overall failure rate. Similarly, the failure rate of a system is
also expressable as a function of the hardware’s AVF:

FITX = gX(AV FH) (2)

This implies that a software vulnerability factor will have
a well-defined relationship with AVF:

AV FH = g−1

X (fX(V FS)) (3)

Therefore, knowledge of both V FS and certain parameters
of system X can allow us to predict the AVF of hardware H
when running this program. We discuss this relationship in
Section 5.

This also implies that knowledge of the vulnerability of
two programs A and B (for example, V FA > V FB), will

enable a meaningful statement about the failure rate of pro-
gram A relative to the failure rate of program B when run
on the same hardware. This is an important consideration
when discussing the utility of a vulnerability metric.

3. BACKGROUND ON AVF AND

ACE ANALYSIS
To develop a software vulnerability metric, we first review

the concept of AVF. The Architectural Vulnerability Factor
of a processor structure is defined as the probability that a
fault in that structure will result in a visible error in the final
output of a program [6]. A bit in which a fault will result in
incorrect execution is said to be necessary for architecturally
correct execution; these bits are termed ACE bits. All other
bits are un-ACE bits. An individual bit may may be ACE
for a fraction of the overall execution cycles and un-ACE for
the rest. Therefore, the AVF of a single bit can be defined
as the fraction of cycles that the bit is ACE.

We refer to a cycle in which a bit is ACE as an ACE bit-
cycle. One can then define the AVF of a hardware structure
as the fraction of bit-cycles in the structure that are ACE.
For hardware structure H with size BH (in bits), its AVF
over a period of N cycles can be expressed as follows [6]:

AV FH =

P

N
ACE bits in H

BH × N

AV FH =
ACE bit–cycles in H

BH × N
(4)

The average AVF of an entire processor can be computed
as the weighted average of the AVFs of each structure for
systems of reasonable size [5].

4. PROGRAM VULNERABILITY FACTOR
Using the methodology presented in the previous section,

we now develop a definition for a program’s vulnerability.
We term our vulnerability metric the Program Vulnerability
Factor, or PVF. First, however, we must define the quan-
tities that we can use in computing PVF; as stated earlier,
these are limited to architecturally-visible quantities to pre-
serve micro-architecture independence.

An AVF value can be computed precisely for each micro-
architectural bit, or m-bit, in a hardware structure. These
values are then summed across all bits in the structure to
yield the AVF of that structure, and across all structures
in a processor to yield an average AVF for that processor.
In this way, AVF calculations treat a processor as a collec-
tion of hardware structures. Similarly, a program can be
viewed as a collection of software resources. We define a
software resource as an independently-addressable architec-
tural structure. For example, an architectural register (or a
byte within the register, if each byte is addressable) is a soft-
ware resource; the architectural register file is a collection of
individual software resources. Each software resource has
an architecturally-defined size in bits; to avoid confusion,
we refer to these as architectural bits, or a-bits. Therefore,
we can precisely compute a vulnerability value for each a-bit
within a software resource, and these values can be summed
across all a-bits in the resource to yield the vulnerability
of the entire resource. As with hardware structures, the
value of a software resource (or of a subset of a-bits within
the resource) may or may not be required for architecturally



correct execution at a given point in time. We refer to a-bits
that are needed for correct operation as ACE a-bits; other
bits are un-ACE a-bits.

To complete the definition of PVF, we require an archi-
tectural definition of time. AVF typically measures time
quanta in clock cycles; events that occur within a single
clock cycle are usually not separable. Clock cycles are not
an architectural concept, however, and cannot be used when
computing PVF. PVF calculations require some other mea-
surement of the relative ordering and temporal distance be-
tween events. In a sequential programming model, an archi-
tecturally visible quantity that allows these measurements is
the instruction flow. Instructions are ordered with respect to
each other, and the distance between operations can also be
given as the number of intervening instructions. Therefore,
our definition of PVF uses a (dynamic) instruction as a sin-
gle time quantum. This choice will vary by architecture. For
example, some architectures such as Itanium execute several
instructions (instruction bundles) at the same “time”. For
these architectures, the time quantum used for PVF calcu-
lations should be an instruction bundle. In addition, certain
operations within an instruction (or bundle) are also often
ordered with respect to one another; for instance, one in-
struction can read and write the same register. Although
these events occur at the same “time”, the event ordering
defined by the architecture must be preserved.

We now have all the concepts needed to precisely calculate
a Program Vulnerability Factor. The PVF of an a-bit is the
fraction of time (in instructions) that the bit is ACE; we
refer to an instruction during which an a-bit is ACE as an
ACE bit-instruction. The PVF of an entire software resource
is then the fraction of bit-instructions in the resource that
are ACE. For a particular software resource R with size BR,
its PVF over I instructions can then be expressed as follows:

PV FR =

P

I
ACE a–bits in R

BR × I

PV FR =
ACE bit–instructions in R

BR × I
(5)

The average PVF of an entire program can then be com-
puted as the weighted average of the PVFs of each software
resource within the program.

4.1 Example Calculation
To demonstrate a practical example of calculating PVF

using Equation 5, we calculate the PVF of register r1 in the
following assembly code:

1: ld r1 = [r2]

2: ld r3 = [r2]

3: ld r4 = [r2]

loop:

4: add r3 = r3, r4

5: sub r1 = r1, 1

6: br loop, r1 > 0

7: st [r2] = r3

8: ret

This assembly code initializes the values of registers r1,
r3, and r4, executes a loop with exit condition r1 ≤ 0, saves
the final value of r3, and returns. There are eight static
instructions in this code; the number of dynamic instruc-
tions is determined by the initial value of r1. To calculate

the PVF of r1, we must identify the operations that occur
to register r1 and the dynamic instruction at which these
operations occur. At the beginning of code execution, the
load instruction on line 1 causes a write to register r1. Dur-
ing every iteration of the loop, the subtract on line 5 causes
both a read from r1 and a write to r1. Although they occur
at the same dynamic instruction, the semantics of the archi-
tecture define the read as occurring “before” the write, since
the read result is the value of r1 prior to the write. Lastly,
the branch on line 6 causes a final read to r1.

If the initial value of r1 is 1, then the loop executes exactly
once. In this case, r1 is written at instruction 1, read at in-
struction 5, written at instruction 5, and read at instruction
6. Therefore, r1 is vulnerable between instructions 1 and 5
and between instructions 5 and 6. Since a total of 8 dynamic
instructions are executed, the PVF of r1 for this section of
code can be calculated as:

PV Fr1 =
(5 − 1) + (6 − 5)

8

PV Fr1 = 62.5%

If we assume the loop executes 100 times, r1 is continu-
ally written and read by the subtract on line 5 and read by
the branch on line 6. Each instance of the branch occurs 1
dynamic instruction after the subtract, and the subsequent
subtraction occurs 2 dynamic instructions after the branch.
Therefore, the PVF calculation for r1 becomes:

PV Fr1 =
(5 − 1) + (6 − 5) + (99 ∗ 1) + (99 ∗ 2)

305

PV Fr1 =
302

305

PV Fr1 = 99%

Calculating the PVF for a set of software resources over
this section of code requires computing a weighted average
of the PVF of each software resource. For example, if this
architecture has eight available logical registers of 32 bits
each, the PVF of the architectural register file can be given
as:

PV FARF =

P

8

i=1
32 × PV Fri

8 × 32

PV FARF =
ACE bit–instructions in ARF

8 × 32 × I

In this way, an approximation of the PVF of the entire
program can be constructed from its constituent parts.

For clarity, there are many effects that we do not include
in the previous discussion, such as masking of values (when
only a subset of bits in the software resource affect the out-
come) and the effect of dynamically-dead instructions (in-
structions whose results are unused). These effects can easily
be incorporated in a detailed PVF calculation.

5. PREDICTING AVF FROM PVF
With our PVF model, it is possible to derive an equa-

tion to compute a hardware structure’s AVF given the PVF
behavior of the software resources that use the hardware
structure and knowledge of the micro-architectural param-
eters of the structure. This requires unique attribution of



every ACE bit-cycle in a hardware structure to an ACE bit-
instruction in a software resource. Every ACE bit-cycle in
a hardware structure must be attributable to at most one
ACE bit-instruction. The converse is not true: an ACE bit-
instruction may have many ACE bit-cycles attributed to it.

To do this attribution, we need to determine, for each
ACE bit-instruction: (1) the number of m-bits per a-bit;
and (2) the number of cycles per instruction. The number of
m-bits per a-bit for bit-instruction i can be expressed as mi.
The number of cycles per instruction for each bit-instruction
i can be expressed as ni. For a set of instructions I, these
values can be expressed as MI and NI , respectively. Given
these values, we can then construct an equation to calculate
AV FH :

AV FH =

P

ACE a–bits in R × mi × ni

BR × MH × I × NI

(6)

For many structures, mi = 1. For example, architectural
register values for a given instruction are typically present in
only one location in a physical register file. MH is typically
also constant for a given structure. For instance, a register
file that uses 128 physical 64-bit registers to implement 32
architectural 64-bit registers will have MH = 128/32 = 4.

NI and ni both reflect a conversion from instructions to
cycles, and can be viewed as the throughput of this partic-
ular program. NI is the average CPI of the program, while
ni is the instantaneous CPI of a given instruction. While
there is significant variation in ni between instructions, we
leave this area of exploration to future work and assume that
ni ≈ NI for every bit-instruction. Therefore, Equation 6 can
be simplified to:

AV FH =
ACE bit–instructions in R

BR × MH × I

AV FH =
PV FR

MH

(7)

Equation 7 can be used to predict a hardware structure’s
AVF when running a program with a known PVF.

Our other goal was to compare the relative vulnerability
of two programs. We can do this by using Equation 7 to
predict the relative AVF of programs A and B as follows:

AV FA

AV FB

=
PV FA

PV FB

(8)

6. PRELIMINARY EVALUATION
For our evaluation, we used the M5 simulator [2] with the

parameters shown in Table 1. We ran the SPEC CPU2000
benchmarks using the single early simulation points given by
Simpoint analysis [7]. Our goals are to determine whether
PVF values are good predictors: first, of the relative vulner-
ability of two programs; and second, of the absolute vulner-
ability of a single program.

To determine whether PVF is a good predictor of relative
vulnerability, we measured the PVF of each program’s Ar-
chitectural Integer Register File (ARF) and compare these
values to the AVF of our processor’s implementation of this
resource, the Integer Physical Register File (PRF). For PVF
to serve as a good predictor, we must be able to determine
two programs’ relative AVF values based solely on their
PVF. Figure 1 shows the ARF PVF and the PRF AVF for

Parameter Value

Issue Width 8 instructions
Commit Width 8 instructions

Physical Registers 256 integer / 256 Floating Point
Issue Queue 64 entries

Re-Order Buffer 192 entries
Load-Store Queue 32 loads / 32 stores

Table 1: Simulated Machine Parameters

each benchmark. The AVF of the physical register file tracks
closely with the PVF of the architectural register file: the
PVF and AVF values have a correlation coefficient of 0.98.
This high correlation coefficient implies that our model is a
good predictor of relative AVF values from PVF values. For
example, PV Fapplu = 86.2% and PV Fapsi = 60.42%. From
this, we would expect AV Fapplu to be 143% of AV Fapsi,
which closely matches the actual value of 139%. There are a
few benchmark pairs for which this prediction would fail: for
example, since PV Fapsi = 60.4% and PV Fequake = 48.9%,
one would predict that AV Fequake would be roughly 80%
of AV Fapsi. However, AV Fequake is actually slightly larger
than AV Fapsi. This is due to the divergent performance of
the two benchmarks: equake has a CPI of 4, while apsi has
a CPI of less than 1. Since mi is constant for the register
file (each architectural register has only one currently live
counterpart in the physical register file), this implies that
equake has larger ni values on average, leading to a higher
AVF. A detailed analysis of the difference would enable an
even better correlation between PVF and AVF values; we
reserve this for future work.

We would also like to determine whether PVF is a good
predictor of absolute AVF for a single program. Figure 2
compares the actual AVF for the PRF and the absolute
AVF we would predict using the approximation in Equa-
tion 7. As can be seen, Equation 7 generates a consistent
under-prediction of the actual AVF values. This is due to our
assumption that ni ≈ NI for all ACE bit-instructions (i.e.,
that every instruction has the same instantaneous CPI). In
reality, instantaneous CPI values vary based on a number of
factors, such as the type of instruction and the program’s
control and data dependences. The under-prediction is rela-
tively consistent, however, leading us to believe that a better
estimate of the CPI parameters might allow us to refine this
prediction further.

7. CONCLUSION AND FUTURE WORK
This work has developed a starting point to quantify soft-

ware vulnerability. We have introduced the Program Vulner-
ability Factor as a method to yield insight into a program’s
micro-architecture-independent reliability behavior. A met-
ric such as PVF can open many avenues of future research:
for example, hardware techniques to exploit trends in soft-
ware vulnerability or compiler techniques to reduce program
vulnerability.

Overall, our data show that PVF may serve as a good pre-
dictor of the relative AVF of two programs, but more work is
needed to refine PVF as a predictor for absolute AVF. How-
ever, we must confirm that PVF is general-purpose enough
to serve as a good predictor across micro-architectural vari-
ation and for other types of software resources (such as func-
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Figure 1: PVF of the Architectural Integer Register File and AVF of the Physical Integer Register File
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tional units and memory) that we have not yet considered.
Despite these limitations, however, we believe this work to
be a strong starting point on the way to quantifying software
vulnerability.
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