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ABSTRACT

We present a model constructed for a large consumer products company to assess their vulnerability to disruption risk and
quantify its impact on customer service. Risk profiles for the locations and connections in the supply chain are developed
using Monte Carlo simulation, and the flow of material and network interactions are modeled using discrete-event simulation.
Capturing both the risk profiles and material flow with simulation allows for a clear view of the impact of disruptions on
the system. We also model various strategies for coping with the risk in the system in order to maintain product availability
to the customer. We discuss the dynamic nature of risk in the network and the importance of proactive planning to mitigate
and recover from disruptions.

1 INTRODUCTION

As supply chains expand globally, their risk of disruption also grows. Catastrophic events, such as Hurricane Katrina, have
brought focus to the analysis of disruption risk and development of mitigation plans to cope with that risk. In this paper,
we model a complex supply chain using simulation software and analyze the impact of disruptions within the network. We
use both discrete-event simulation (Arena) and Monte Carlo simulation (@Risk) to capture the behavior of the system and
model the disruption risk. Combining these approaches allows us to evaluate the disruption risk in the entire network. The
model presented was developed for a large consumer-products company to assess their level of risk in terms of the impact
disruptions could have on product availability. We discuss the insights gained in developing the model and analyzing the
system.

While having a large, complex supply chain may make a company more susceptible to disruptions, it can also act as
an advantage if the network is utilized to mitigate those disruptions. It can mean the supply chain has more ability to adapt
when a disruption occurs. A small supply chain with a single manufacturing plant may have no recourse if that plant is shut
down. However, in a large supply chain, if a firm has invested in back-up capabilities or redundancy across its network,
then one location may have the ability to back another up if the first is disrupted.

In this project, we consider a multi-echelon supply chain where disruptions may occur at any stage. Due to the complexity
of the interactions in a such a system, especially when multiple mitigation tactics are considered, simulation was deemed
the best modeling approach for this project. Jain and Leong (2005) discuss the advantages of constructing supply chain
simulations to “stress test” a system to see how it performs under extreme conditions. Since disruptions can certainly be
classified as potential extreme conditions, this aligns with our intent of testing the system when they occur to see what the
impact is to the customer.

The sponsoring company (hereafter referred to as company ABC) is concerned with maintaining very high levels of
customer service, or case fill rate, even if a disruption occurs. They are a consumer packaged goods (CPG) company that
considers brand loyalty its key success factor. As a result, maintaining product availability is critical which in turn drives
higher inventory levels. At the same time, being a CPG company, product margins are small and inventory costs must be
minimized. Thus the company is torn between these conflicting objectives. Additionally, the customers of ABC inject another
layer of complexity into the model, since their behavior in the face of a stock-out is not known with certainty. Based on
past experience, the customer response in case of a stock-out can range anywhere from total lost-sales to total back-ordering

1237978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Schmitt and Singh

of demand. A simulation model allows us to effectively test these various customer behaviors while evaluating the trade-off
between service level and inventory investment. To this end, we designed and tested a model that incorporated multiple
complex issues in ABCs supply chain and provided meaningful results. Specifically, the project was designed to address the
following objectives:

1. Assess the current level of supply chain disruption risk in the system
2. Test different mitigation strategies
3. Provide a tool that can be used in the case of a disruption to validate recovery steps before putting them into action
4. Identify redundancy in the system that can be removed without affecting the risk level

While the output of the first objective will be focused on operations-level performance, the remaining objectives focus on
strategic-level decision making to mitigate disruptions. Tomlin (2006) discusses various strategies for coping with disruptions
at a single facility: inventory control (proactive ordering and stocking to cover a potential shortage), sourcing (contingency
strategies for backing up specific suppliers or links in the supply chain), and acceptance (doing nothing because the cost
of mitigation outweighs the benefits). We designed the simulation to test each of these strategies and view the impact on
customer service.

Literature on supply chain disruptions is growing, but applications in multi-echelon supply chains are scarce due to the
complexity of those systems. Snyder and Shen (2006) develop simulation models for several networks comparing stochastic
demand and supply disruptions. They conclude that the two different sources of stochasticity have very different impacts
on optimal supply chain design. Schmitt et al. (2008) expand on this, developing an analytical model comparing inventory
placement policies in a distribution system. They show that while stochastic demand provides risk pooling benefits (allowing
for lower costs in a centralized inventory setting), risk diversification provides lower cost variance in a decentralized setting
and generally protects better against disruptions. Hopp and Yin (2006) examine an assembly system with the potential
for disruptions in capacity, and discuss capacity protection and inventory as mitigation methods. Their numerical studies
show that increasing disruption occurrence or variability upstream tends to shift the location of protection upstream. Our
model incorporates the systems considered in most of these models; we have individual locations that can use inventory for
mitigation, as well as back-up location options. The system itself consists of both an assembly and a distribution system,
with inventory held throughout the network.

Classification of risks in a supply chain and development of risk profiles is also a growing research trend. For example,
Deleris and Erhun (2005) present a Monte Carlo simulation that they use to evaluate risk levels in the supply chain. Genentech,
a global biopharmaceutical company, also uses Monte Carlo simulation to assess their network risk. Steckel (2008) discusses
work performed at Genentech to quantify their disruption risk and make inventory-stocking decisions. They used insurance
data and peer inputs to estimate the frequency and duration of disruptions, and developed a Monte Carlo simulation to
estimate the total number of weeks out of a year that they could potentially be disrupted. They then set inventory levels
accordingly so that they can maintain material flow using inventory even if disruptions occur. Part of our project also entails
a Monte Carlo simulation to quantify the risk in the supply chain that we study, with the objective of developing distributions
for input to a large-scale discrete-event simulation that captures the entire network flow.

The steps for this modeling project were broken out as follows:

1. Background Analysis
2. Base Model Development (Arena)
3. Risk Profile Model Development (@Risk and Arena)
4. Risk Simulation Model Development (Arena)
5. Risk Quantification Testing

Step 1 is discussed in Section 2 below. Steps 2 and 3 were performed concurrently and are discussed in Sections 3
and 4. The results of the Base Model and Risk Profile Model are combined in Step 4, which we discuss in Section 5. We
present results achieved for Step 5 in Section 6 and summarize our observations in Section 7.

2 BACKGROUND ANALYSIS

2.1 Project Scope

The scope of the project was clearly defined with company ABC prior to initiating the project. The company team members
chose a product family that they felt was representative, since it has a supply chain that captures the complexity of their
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Figure 1: Supply Chain Flowchart. Circles represent processes, and triangles represent inventory locations.

network but is not too large in size. One deliverable of the project is the actual final simulation model, so that ABC can
extend this analysis to other product lines if they see fit. Within the product family, two separate products were to be modeled,
each with their own inventories and demand streams. We will refer to these as the high-volume and low-volume products in
the future, since the low-volume product’s sales are approximately 12% of the high-volume product’s sales. Additionally,
the scope was restricted to North America’s market only, though the product is sold worldwide; this limited the supply chain
scope mostly to US manufacturing and distribution sites, but one off-shore contract manufacturer is still part of the supply
chain.

To evaluate system performance, ABC decided to focus on customer service levels (i.e., case fill rate and/or missed cases).
While costs are considered relevant and can be discussed generally when comparing different mitigation strategies, they are
not specifically within the scope of the supply chain model. Ultimately, ABC wants to assess the impact of disruptions on
their customer service.

2.2 Product Supply Chain

Once conversations were begun with ABC experts on the product family, the supply chain flow took shape. Figure 1 presents
the flow of the system to be modeled. The figure uses circles and triangles to represent operations and inventory locations,
respectively.

Most raw materials are single-sourced. Each product consists primarily of two parts that are assembled and packaged at
an outsourced packaging plant. For the high-volume product, both of those parts are manufactured at the primary plant; for
the low-volume product, one of the parts is manufactured at the primary plant, and the other is manufactured at the off-shore
contract manufacturer and then shipped to the U.S. Both products are distributed through all three DCs (distribution centers).

Large quantities of inventory are held at each of the locations labeled in Figure 1. According to ABC production
planners, the target on-hand WIP (work in process) inventory levels at the packaging plant are approximately 2 weeks’ worth
of demand, and at the DCs are 4 weeks’ worth of demand. The off-shore manufacturer carries an additional 6 weeks’ worth
of demand in post-processed WIP. ABC justifies carrying so much inventory because they absolutely prioritize fill rate to
the customer and will not risk running out of material. However, they indicate that these levels may vary throughout the
year; for example, they could be increased if launch of another product is planned which would constrain manufacturing
capability, or could be lowered if lean initiatives or accounting concerns drive inventory-reduction incentives.

3 BASE MODEL

The base model was developed to capture the existing flow (without disruptions) as depicted in Figure 1. The intent was to
successfully model the system as it currently functions and validate the simulation model using actual data. Once the current
network was successfully simulated and validated, potential disruptions and proposed mitigation tactics can be added to the
model; we present that extended model in Section 5.
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As the model was constructed, constant communication was maintained with ABC team members in order to check
the validity of assumptions and make the best decisions for the project. We focused on capturing the level of detail needed
to make strategic decisions in the system, without overloading the model with operational factors. For example, the model
was built so that demand and production occur on a weekly basis; the team agreed that time increments smaller than weeks
were not necessary and would not add value to the output.

3.1 Demand Fitting and Structure

We received 8 months’ worth of demand data for the two products at each of the DCs, and discussed using empirical
distribution or fitting theoretical distributions to the demand with the ABC team. We decided that theoretical distributions
would allow more flexibility with changing the mean or other parameters to see their impact, so we fit the demand using
Arena’s Input Analyzer program. The majority of the demand is reasonably fit using a normal distribution, though some was
extremely variable; for example, demand for the low-volume product out of one of the DCs was best fit by an exponential
distribution.

For the purposes of the model, we also needed to know how to handle demand that could not be satisfied from stock.
Since the actual case fill rate is normally very high, ABC did not have a clear answer for how missed cases are handled.
Based on discussion with operations and supply chain personnel, the team generally felt that most demand would be lost
if it could not be satisfied from stock, but that some customers might have a tolerance period that they would wait before
canceling an order. Thus we decided to build flexibility of customer behavior into the model, including the options for partial
lost sales and partial back-ordering in the following manner: When demand arrives at a DC, any quantity that can be filled
from stock is immediately filled. For the remaining amount that cannot be filled, a certain percentage (call this X1%) is
lost immediately. The rest is back-ordered for up to a fixed number of weeks (call this T ), after which a second percentage
(X2%) is lost. The remainder is back-ordered indefinitely. These three variables (X1, X2, and T ) are inputs to the model that
can be varied and tested for sensitivity. This modeling approach gives ABC the flexibility to test the impact of customer
behavior on case fill rate.

3.2 Model Structure

Several inputs are required to run the model, and we constructed an Excel spreadsheet to read them into Arena so that
someone who is not very familiar with Arena can still easily modify and test input sensitivity. The inputs for the base model
are listed in Table 1.

Table 1: Base Model User Inputs

Category Input
Distribution Centers Demand distribution information

Number of weeks’ worth of finished goods inventory held
Customers Immediate and secondary lost sales percentages (X1 and X2)

Waiting time tolerance before secondary loss (T )
Plants Production time per product

Maximum capacity for production
Number of weeks’ worth of pre-processed material inventory held
Number of weeks’ worth of post-processed inventory held

Transportation Time to ship between plants or DCs
Maximum capacity for shipments

Figure 2 presents the Arena base model that captures the flow presented in Figure 1. The figure is too small to read the
labels, but it conveys the size of the model and illustrates the flow. We color-coded the segments to make explanation of the
overall structure easier. The colors also correspond to the colors of the locations in Figure 1. We assume some familiarity
with Arena on the reader’s part in the following explanation of the flow of the simulation.

• The purple block on the top of Figure 2 occurs at time zero. All inputs are read in from the Excel sheet, target
inventory levels are calculated appropriately, and the model begins.
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Figure 2: Arena Base Model Flow

• The logic that is uncolored, under the purple block, controls all other simulation functions. The order of logic is
very important in this system; for example, production quantities are decided upon before demand is realized in a
given week. Thus a single entity is created every week, and it branches and separates along the top of the Figure
to create the other entities that process the logic for the simulation.

• The blue, green, and red colored blocks in Figure 2 represent the primary plant production, off-shore production,
and off-shore shipment to the U.S., respectively. These occur independently and the quantity produced or shipped
is equal to the target inventory level at the packaging plant, minus WIP and on-hand inventory, plus back-orders.
The appropriate quantities are produced or shipped only if sufficient input inventory is available.

• The pink block represents the packaging plant; it checks whether it has sufficient inventory from three sources (the
two parts of each product, plus packaging materials) before it processes its production batch.

• The yellow block represents the demand for each product at each DC. Back-ordered or lost demand is monitored
as a simulation variable and statistics on those variables are generated in the output report.

3.3 Model Verification and Validation

We reviewed the structure, basic outputs, and animated flow of the simulation with ABC representatives multiple times.
This helps ensure its validity and establish the credibility of the model with the company (Law 2007). We also verified that
the outputs of the model made sense numerically by comparing them to their mathematical expectations. For example, the
following formulation gives the expected inventory level at a DC:

Expected Inventory Level = Target Inventory Level−Average Order Quantity−WIP+Back-orders. (1)

This formulation is straightforward, but the actual random values for inventory levels, order quantities, WIP, and Back-orders
are calculated in several separate locations throughout the model, so verifying their accuracy was important. We evaluated
this for multiple components at multiple locations and found that with some stochastic error, the relationship is valid. For
example, for the high-volume product at the highest-volume DC, the percent error comparing the output of (1) to the average
inventory level output from the simulation was 0.09%.

Additionally, since the amount of inventory on hand will have a direct impact on customer service in the case of a
disruption, we validated those numbers as best as possible. We wanted to ensure that the actual inventory levels observed in
the simulation matched the values observed in reality, so we requested data on historic inventory levels at the DCs. While
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we had been told the target inventory levels should be 4 weeks’ worth of demand, when we compared the historic values for
inventory to the mean weekly demand, we found that the actual number of weeks on hand varied from 2.5 to 17.5 weeks’
worth. Nonetheless, we used these actual weeks’ worth of inventory as inputs in Excel for target inventory levels and then
compared the on-hand inventory in the simulation to the actual historic values. We did this for all DCs and for the packaging
plant, and Table 2 compares the actual versus observed results. Overall, the average of the absolute value of the percent
error is 0.31%, which we felt was sufficiently accurate.

Table 2: Inventory Level Evaluation

Product Location Avg. % error Avg. abs. value % error Min. % error Max. % error
High-Volume Pkg Plant 0.13 % 0.29 % -0.17 % 0.42 %

DC 1 0.15 % 0.28 % -0.21 % 0.60 %
DC 2 -0.09 % 0.44 % -1.48 % 0.81 %
DC 3 0.03 % 0.53 % -0.75 % 1.62 %

Low-Volume Pkg Plant -0.01 % 0.05 % -0.06 % 0.04 %
DC 1 -0.19 % 0.30 % -0.48 % 0.45 %
DC 2 -0.13 % 0.27 % -0.51 % 0.30 %
DC 3 -0.27 % 0.32 % -0.79 % 0.19 %

All All -0.05 % 0.31 % -1.48 % 1.62 %

Having discussed these values as a team and walked through the simulation flow with ABC representatives, the base
model was considered valid and ready for the inclusion of disruptions.

4 RISK PROFILE MODEL

At the same time as the base model was being constructed, we started collectin disruptions-related data and developing a
Monte Carlo simulation to create a risk profile for every node or arc in the supply chain. For a single node or arc of the
supply chain, the risk profile aggregates all the individual risks that that location may experience into one frequency and
one duration distribution. These parameters are then used as an input to the Arena risk model. We assume disruptions occur
independently at each arc or node (which is supported by the historic disruption information that we collected from ABC),
but that the performance of any downstream nodes may be impacted by upstream disruptions. In this way, we capture the
interaction of multiple locations in the supply chain, whereas Steckel (2008) focus on only a single node at a time. Yet we
avoid end-to-end flows in the whole supply chain which assume that a disruption at a single element will mean the entire
path cannot serve customers, as was the case in Deleris and Erhun (2005).

4.1 Data Collection

We developed a list of the relevant risks individually for each node and arc of the supply chain based on the records we
collected of historic disruptions observed by the company as well as potential future risk sources. These included natural
disasters (such as hurricanes or tornados), external disruptions (such as supplier bankruptcy), and internal disruptions (such as
information system failure or fire). Some data on the occurrence of risks was collected externally; for example, frequency of
natural disasters could be estimated using publically-available data on historic occurrences. Other inputs were estimated by
ABC personnel, such as the likelihood of supplier bankruptcy or duration of downtimes caused by a given disruption. (Ideally,
this information should come from insurance data, but it was not available for ABC.) Collection of the internally-estimated
data was performed by an ABC team member who is responsible for business continuity planning. He spoke to local experts
at each location, talking through each hypothetical risk on the list to get their estimate for frequency and duration. Frequency
was reported in terms of expected number of years between the particular risk event, and duration was reported using a
triangular distribution due to its intuitive nature (the experts estimated the minimum, most likely, and maximum time they
could imagine a disruption lasting at their facility). This data was then used as an input to the Monte Carlo simulation.

Since the input data for the Monte Carlo simulation is mostly estimates provided by local experts, we subjected it
to additional scrutiny. We validated the estimates by comparing similar locations in the network; for example, if one DC
expert estimated that flooding would have a certain duration impact, we verified that this was not drastically different
from estimates by experts at other DCs. Additionally, when input parameters are not known with certainty, Law (2007)
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Figure 3: Example Disruption Duration Histogram

recommends conducting sensitivity analysis around the input values. Since the Risk Profile parameters output by the Monte
Carlo simulation are inputs for the Arena Risk Simulation Model, we can easily vary them to test the sensitivity of the Risk
Model to those parameters.

4.2 Monte Carlo Simulation

The Monte Carlo simulation was originally built in Excel using @Risk. Each simulation run generates random numbers
that determine whether a particular risk occurs (using an exponential distribution for frequency calculated using the expert’s
estimate for interarrival time) and how long it lasts (using the triangular distribution provided). In order to develop a
disruption-duration distribution, the model then takes the maximum observed disruption length for each run and tallies that
value. We ran 10,000 replications for each location, had @Risk perform a distribution fit on the data (filtering out the cases
where no disruption occurred), and output the parameters for the best distribution fit that can be read into Arena.

An example of a duration histogram for one of the facilities in the supply chain is given in Figure 3. A LogNormal
distribution was the best fit for this histogram, with a shift of 0.14 days, mean of 3.19 days, and standard deviation
of 8.64 days. Thus in Arena, the random value for a disruption duration is calculated using the following expression:
duration = 0.14+LogN(3.19,8.64) days. Most disruption durations were best fit using a lognormal distribution. Distributions
for disruption inter-arrivals were fit using data generated in Arena. The results presented in Section 6 are based on this
Arena-generated Monte Carlo output.

5 RISK SIMULATION MODEL

In this section, we first present a small example of how disruptions can be modeled using Arena. We then discuss the
extension of the Base Model to include the risk profiles output from the Monte Carlo simulation and capture mitigation logic
in Section 5.2.

5.1 Small-Scale Example

In order to illustrate how we accomplished disruption logic using Arena, we discuss a small example with a single product,
single customer demand location, and single primary production plant. Additionally, there is a single source of disruptions,
and a single back-up production facility. Figure 4 presents the Arena flow for this example.

When a disruption is not present, then a production entity is created every period and begins processing a single batch
at Plant A. That batch finishes one period later, is added to inventory, and the production entity is disposed. Similarly, a
demand entity is created every period. If there is inventory on hand, it subtracts a batch and is then disposed. If inventory
is not available, it waits for material to be produced.
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Figure 4: Example of Disruption Mitigation Flow

Disruptions arrive randomly in the simulation using a “Create” block that schedules disruption-entities with an exponential
inter-arrival time. When a disruption arrives, it changes a global variable on Plant A’s status to indicate that Plant A is
disrupted, preempts any batch currently being processed at Plant A, and adds a stochastic delay. In the mean time, any
production orders that arrive discover that Plant A is disrupted and are diverted to the “ramp up” delay node on the top of
the figure. This ramp up period represents the time for Plant B to be able to produce material in Plant A’s place. After the
ramp up completes, Plant B continues to produce material for as long as the disruption lasts. When the disruption entity
reaches the end of its stochastic delay, it changes the global variable on Plant A’s status to indicate Plant A is no longer
disrupted, waits for Plant B to finish any back-up processing it is conducting, resets the system so that a ramp-up would
again be required for the next disruption, and is disposed.

This is a simple model, but is useful in demonstrating how disruptions work in the full model and the impact of input
parameters. For example, if disruptions are short in duration and the starting inventory level is set very high, then the output
statistics will show no impact to customer service. However, if inventory levels are low and disruptions are long, significant
deterioration of customer service can be observed by high numbers of demand customers waiting in queue for long periods
of time. In that sense, the risk profile of a supply network is dynamic in nature, changing every time the inventory levels
change in the system.

5.2 Arena Logic for the Full Model

For the full risk simulation model, additional inputs need to be read in from Excel. A list is given in Table 3 and explanations
are given below. The disruption parameters are the outputs of the Risk Profile Model, as discussed in Section 4. Other inputs
describe the logic for ABC’s recovery response plans for each node and arc in the supply chain.

The logic for these recovery response plans was estimated by ABC team members. While most personnel had an opinion
on how an emergency back-up would be handled, for most locations in the supply chain that policy was not officially
documented. We constructed back-up logic in Arena for every location that had at least a hypothetical mitigation plan.
For example, if one DC is disrupted, a second DC will begin to serve the first DC’s customers. Since the response would
probably not be immediate (especially for the locations that have no formal policy documented), we created a parameter for
a ramp-up time that is read into Arena, similar to the ramp-up discussed in Section 5.1.

Another input is the capacity of any back-up location, or the time until 100% back-up can be performed. For example,
one of the parts manufactured at the primary plant could potentially be supplied by a similar plant in ABC’s network in
another region of the world. However, since the back-up plant already has a high level of utilization, ABC personnel estimated
that only 10% of normal demand volumes could be supplied by this plant after an initial ramp-up of a few weeks. If needed,
after several months, the back-up plant’s capacity could be expanded so that it could provide 100% of the needed capacity.
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Table 3: Risk Model Additional User Inputs

Category Input (per location)
Disruptions Frequency

Duration distribution type
Duration distribution parameters

Recovery Ramp-up time for recovery
Capacity available after ramp-up
Time to 100% capacity
Duration threshold to initiate mitigation

The final back-up input parameter is the time-to-initiation. Not every disruption is long enough to warrant mitigating,
so we generated additional logic to see whether a back-up should be initiated or not.

Within Arena, the arrival of disruptions was constructed similarly to the small example discussed in Section 5.1, using
the parameters that were obtained from the Monte Carlo simulation. When disruptions arrive, they shut down a production
or transportation resource, or stop service from a DC. Several disruption creation blocks were added, with each generating
disruptions that have impacts to different locations in the models. Back-up mitigation techniques were also constructed in
the same manner as the small-scale example, with additional logic to check whether a disruption warrants mitigating based
on the initiation-time inputs.

6 RESULTS

Step 5 of the project, Risk Quantification Testing, involved testing both the steady-state performance of the system, as well
as specific mitigation strategies. The model proves to be a valuable tool for evaluating mitigation strategies and response
time, and quantifying the impact that disruptions have on the system based on its operational state. The primary performance
metric that ABC wanted to evaluate is case fill rate, or the percentage of new demand that is satisfied immediately from
stock.

6.1 Steady-state Analysis

The steady-state analysis of the system is run using very long replications (200 years, which graphical output showed was the
time for performance metrics to reach steady levels), without initializing the system between replications. This steady-state
evaluation addresses objective 1 introduced in Section 1, assessing the current level of risk in the system. It can also be used
to address objective 4, since we will test the sensitivity to input parameters and may be able to identify where unnecessary
redundancy exists.

We focused on the impact of the operational state of the system, specifically in terms of target inventory levels, on how
the system copes with disruptions. (Recall that ABC generally targets carrying 4 week’s worth of inventory at its distribution
centers.) We varied this target and compared the fill rates for the base model (with no disruptions) and the risk model (with
disruptions turned “on”). Table 4 presents numerical comparisons of the output, providing the average fill rate, halfwidth of
a 95% confidence interval on the fill rate, and minimum fill rate observed during the entire run.

Table 4: Model Output: Fill Rates

Inventory Target Model Average Fill Rate 95% C.I. halfwidth Minimum observed
6 weeks Base 99.99 % 0.00 % 94.16 %

Risk 96.62 % 0.24 % 0.00 %
4 weeks Base 99.93 % 0.00 % 89.95 %

Risk 95.16 % 0.37 % 0.00 %
2 weeks Base 87.68 % 0.09 % 32.92 %

Risk 78.00 % 0.42 % 0.00 %
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Figure 5: Percent of Observations Less Than a Given Service Level

The average performance with 4 week’s worth of inventory (95% fill rate for the risk model) may not seem that bad, but
it represents a significant drop in service for ABC (a drop of 4.77% represents thousands of sales units). Also, ABC’s target
service level is in the 98% range, so 95% is not satisfactory. The minimum is also clearly significantly different; regardless
of the starting inventory level, all runs of the risk model experienced at least one week where 0% of the incoming orders
were satisfied.

Interestingly, we observed a slight difference in performance between the two product types modeled in the simulation.
While the low-volume product had an inferior service level in the base model (due to its longer, less-responsive supply chain
and higher demand coefficient of variance), the high-volume product frequently had an inferior service level in the risk model.
This occured because the low-volume product has smaller batch sizes, which means that after a disruption, batches could
be completed and shipped more promptly. This implies that recovery from a disruption can be aided by flexible production
sizing and scheduling rules.

To further illustrate the at-risk performance of the system, we developed histograms of the risk model’s fill rates for
various target inventory levels. We used these to calculate what percentage of the observations were below a given service
level, and we present those results in Figure 5. For example, the top curve shows the 99% fill rate; when the inventory target
is 6 weeks, only 15% of the observations had a fill rate less than 99%. However, when the inventory target is 2 weeks,
then 93% of the observations had less than a 99% service level. Figure 5 highlights the dependence on inventory to protect
the system from disruption risk, and shows that decisions on target inventory levels should certainly take supply risk into
account. While lean initiatives are important, money-saving practices, a company whose inventory levels are too lean can
put itself at risk from upstream disruptions in the long run.

6.2 Stress-test Analysis

Objective 2, testing different mitigation strategies, was evaluated using what we call stress-testing; using scenario suggestions
from ABC, we tested individual disruptions of deterministic length at a given facility to measure their direct impact on
the system (with all other disruptions turned off), and graphed the fill rate over time following a disruption. We ran 30
replications for each scenario and tracked the average recovery time, time until the fill rate reaches a steady level, and impact
time, number of weeks that the fill rate was below 95% (where 95% was decided upon with ABC team members). Figure
6 presents one example, showing the fill rate over time for the first 5 replications (we limit ourselves to 5 since more than
that crowds the figure) where a disruption occurs at the primary plant at time zero in the graph. This graph demonstrates
that the recovery can be very different depending on the state of the system (while all replications have the same starting
target of 4 weeks, the stochastic demand is different across all replications). While the first replication, in navy blue, climbs
steadily from 0% fill rate to 100% between weeks 10 and 18, the second replication, in pink, is much less steady but actually
recovers faster, in about 16 weeks.
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Figure 6: Fill Rate Following a 6-week Disruption at the Primary Plant

Note that the recovery time for Figure 6 typically exceeded the 6-week disruption length. This result was surprising to
ABC and was consistently observed for long disruptions upstream in the network. When a long disruption occurs upstream,
the system is constrained by capacity at each of its downstream processing locations and takes significant time to fulfill
back-orders and replenish the inventory to normal levels. Disruptions in a multi-echelon network clearly have complicated
effects, which is why a simulation model is a valuable tool to capture the network interactions.

We ran multiple stress-tests to evaluate disruptions at different locations and with different back-up plans. The output
clearly showed that reducing response times or increasing capacity of back-up methods were able to reduce the impact of a
disruption and speed recovery. ABC can now use the model to test the efficacy of different back-up options and evaluate
whether the investments required are worth the reduced impacts of disruptions that could be achieved. They can also use it
in real-time if a disruption occurs to evaluate alternate recovery steps based on the current system status, satisfying objective
3.

7 CONCLUSIONS

This project was initiated to evaluate the level of supply chain disruption risk that company ABC currently faces and evaluate
mitigation strategies. We constructed a large simulation model in Arena which uses inputs generated by a Monte Carlo
simulation to accomplish that task. Through our analysis, we quantified the disruption threat at various locations in the
supply chain and developed risk profiles for each. We then developed the means to quantify the impact of disruptions at each
of those locations to customer service using our Arena model. We built flexibility into the model through variable inputs
that allow analysts or company members to test the impact of different parameters, such as customer behavior, disruption
probabilities, back-up response times, etc. Overall, construction of this model using simulation allows for flexible testing of
disruption risk in this supply chain, and quantification of the impact of that risk.

The process of the project itself resulted in many useful observations. For example, collecting the data for the Monte
Carlo simulation made ABC realize that they lack a database with historic distribution information. Such a database would
be useful both for risk quantification and for training purposes.

Another observation was ABC’s lack of formal strategic-level mitigation procedures. We can use the model to demonstrate
the importance of different response times to urge them to formalize those plans. Additionally, some of the informal back-up
plans, which provide a measure of confidence in continuity of the system, were determined to be operationally infeasible.
For example, we were initially told that the back-up plant could fully substitute for the primary plant. In reality, the back-up
plant lacks some specialized equipment, so it cannot produce all of the components of the product. The model’s output
shows the importance of documenting and ensuring the feasibility of this strategic-level recovery planning for the network.

Finally, the model output demonstrates the sensitivity of the system performance to the system state. The level of
customer service is entirely dependent on the inventory levels at the start of a disruption, and inventory levels change
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continually due to stochastic demand or variations in operations planning. Therefore a single label cannot accurately capture
the level of risk in the system; risk is dynamic in nature and must be continually evaluated based on operational changes in
the network.
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