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Quantifying the anisotropy and 
tortuosity of permeable pathways 
in clay-rich mudstones using 
models based on X-ray tomography
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The permeability of shales is important, because it controls where oil and gas resources can migrate 

to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic 

directional permeability that is inherited from the depositional layering of sedimentary laminations, 

where the highest permeability is measured parallel to laminations and the lowest permeability 

is perpendicular to laminations. We combine state of the art laboratory permeability experiments 

with high-resolution X-ray computed tomography and for the first time can quantify the three-
dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. 
Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- 

and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate 

the interconnected pathways through the porous/permeable phases in shales. The tortuosity factor 

quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths 
through porous media and predicts that the directional anisotropy is fundamentally controlled by the 

bulk rock mineral geometry. Understanding the mineral-scale control on permeability will allow for 

better estimations of the extent of recoverable reserves in shale gas plays globally.

Shale gas has received much attention in recent years due to the accessible energy reserves stored in 
low-permeability organic-rich mudstones and shales. In contrast to conventional oil and gas reservoirs, where the 
�uids have migrated away from their source rock into structural and lithological traps, the hydrocarbons in uncon-
ventional shale gas plays remain trapped within their source rock. Intervals of mudstones and shales with organic 
matter contents of over 2% matured to the gas pressure-temperature window have the potential for economic shale 
gas production1. Resource estimates of shale gas reservoirs are di�cult to predict and the technically recoverable 
gas is highly dependent on the rock mechanical and �uid properties at depth2,3. Shale gas can be extracted by 
hydraulic-fracturing of the source rock with over-pressured �uids and proppants, which induce an open fracture 
network around the borehole to stimulate �ow of the trapped gas by increasing permeability4–7. During stimulation 
of the reservoir, the interconnected induced and natural fracture network captures the directly accessible gas from 
the distributed pore network8. �us far, the available production data of stimulated wells show decline curves with 
low-rates of recoveries a�er peak production that span up to a decade9–11, and possibly beyond. �e decline curve 
has predominantly been studied from the perspective of fracture interconnectivity and fracture closure with time12. 
However, research has already provided much insight into the hierarchical permeability structure related to pore 
sizes, which can shed further light onto extraction potential of shale gas plays.

Gas is stored as compressed free gas in physical micro- and nano-pores, adsorbed to clays and kerogen, and 
can be dissolved in kerogen13–16, all of which provide the permeable phases through or along which gas can 
migrate11,17–19. �e e�ective permeability through shale gas plays can be de�ned by the combination of hydraulic 
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and di�usive �ow mechanisms through the combined porous and permeable phases18,20–22. Due to the tightly 
packed nature and low permeability of unconventional gas plays, the permeable pathways for stored gas are 
de�ned by a complex network of micro- and nano-pores in the organic and inorganic matrix23–25. Gas �ows 
through shales by a combination of convection (Darcy �ow) and Knudsen di�usion through open pore space, 
and adsorption, desorption and surface di�usion along the pore walls11. �e contribution of each mechanism will 
vary based on the relative size contribution of pore spaces and interconnectivity through the shale. Flow through 
the pore network is further complicated by the possible presence of �uid mixtures with di�erent viscosities, which 
can decrease the e�ective permeability of each �uid based on the �uid’s volume proportion26–28.

Open fractures provide an order of magnitude higher permeability and the e�ective permeability of stimu-
lated shales at reservoir conditions is, at �rst, dominated by Darcy �ow19. Darcy �ow fails in smaller pore spaces as 
the di�usion �ow mechanisms associated with pore-wall interactions become dominant29. �e recorded decline 
curve is probably only best de�ned by the fracture permeability during the early stages of production as the 
immediately accessible fracture-captured gas escapes. �is is followed by a chemical dis-equilibrium and pres-
sure gradients on the mineral scale that drive di�usion and nano-darcy permeability through the matrix14,29. 
�erefore, we believe that the longevity of the decline curve records the inter-fracture matrix permeability and 
connectivity to the fracture network within the stimulated area.

�e geometry of matrix permeable pathways in a rock is a function of the mineralogy and rock texture. �e 
term shale refers to laminated mudstones with variable mineral proportions of clays, quartz, feldspar and car-
bonates with diverse minor and trace minerals. Clay-rich “shales” (here de�ned by ≥60% clay volume) show 
permeability values in the range of 10−22 and 10−19 m2 (0.1 and 100 nano-darcy, respectively), where the range 
represents an inherited anisotropy in directional permeability along (higher �ow) or across (lower �ow) the sed-
imentary laminations30,31. In a di�erent setting, clay-rich fault gouges have a well-developed foliation de�ned by 
the parallel alignment of clay minerals. Experiments show a two to three order of magnitude di�erence in direc-
tional permeability across and along the structural clay foliation32,33 within the same nano-darcy range reported 
for shales. �is link between structural and sedimentary fabrics suggests that the details of the mineral-scale clay 
geometry is a key controlling factor in predicting the directional permeability of gas through the rock matrix34.

Permeability through shales can been measured in laboratory experiments, but because of the low signal 
to noise ratio in ultra-low permeability systems it is inherently di�cult to accomplish. Accordingly, research 
has focussed on reconstructing three-dimensional volumes to map the pore space distribution and simu-
late permeability using computational �uid dynamics, such as the Lattice Boltzmann Method11,35,36. Accurate 
three-dimensional representations of shales require high-resolution imaging capable of characterising the nano- 
and micro-pore space distributions. Focused ion beam scanning electron microscopy (FIB-SEM) has been used 
to image nano-scale pores in kerogen at a 12 nm resolution37. �is method sections the sample and sequential 
SEM images are stacked together to build a three-dimensional reconstruction, typically applied to very small sam-
ple volumes below 20 µm3. X-ray computed tomography (X-ray CT) has been successfully used on samples with a 
resolution of 7 µm to 7 nm, with larger sample sizes coming at a cost of resolution24. One of the key advantages of 
X-ray CT is a non-destructive three-dimensional investigation of samples that captures the real nature without a 
simulation process, which at a scale below the sectioning in FIB-SEM is somewhat arti�cial. A detailed review on 
shale gas advances and challenges emphasised the importance of bridging �uid dynamic scales from nanometer 
pores in kerogen to entire shale gas reservoirs to allow for representative simulations to be developed38. In order 
to further advance representative models of gas �ow through shales, it is necessary to build a better understanding 
of the mineral phase distribution, associated pore volumes and their interconnectivity in natural systems.

In this study, we characterise the geometry of available permeable pathways as the three-dimensional porous 
phase (pores + organic matter) volume distribution using high-resolution X-ray CT and SEM imaging techniques 
and model the relative directional �ow using “tortuosity factor”. �e tortuosity factor and tortuosity are two 
di�erent parameters, both characterising the geometry and length of interconnected phases. In porous media, 
tortuosity (τ, as used here) is de�ned as the ratio of the actual length of the �ow-path divided by a straight line 
length in the direction of �ow, which has been used to quantify �ow along convoluted pathways39–41. �e same 
word is used with di�erent de�nitions by di�erent authors42, for example Costa uses τ2 for tortuosity43; Bear & 
Bachmat and Berg use τ−1 for tortuosity44,45. It is important to check the de�nitions when comparing di�erent 
works, especially as some conceptual confusions have arisen46.

Tortuosity factor (τ*, as used here) quanti�es the apparent decrease in di�usive transport resulting from con-
volutions of the �ow paths through porous media46–48. Tortuosity factor includes changes in the cross-sectional 
area over the �nite length of the interconnected �ow paths and is better suited for modelling more complex pore 
networks46. Tortuosity factor and tortuosity both scale up proportionally with more tortuous pathways. In a sys-
tem where the cross-sectional area of the �ow path remains constant, tortuosity factor is equal to the square of 
tortuosity47. Both tortuosity and tortuosity factor tend to 1 as the �ow pathways become more direct across the 
volume48.

We combine the modelled results with experimental permeability tests to account for the anisotropic perme-
ability behaviour of a clay-rich shale gas play. Samples were prepared from a set of four shale cores collected at 
~3700 metres depth within a prospective shale gas interval from two boreholes within the same anonymous basin 
in Europe (Table 1). Due to the anonymity of the sample location, this contribution focusses on the characterisa-
tion of the shale samples with respect to the geometric control of mineralogy on permeability.

Methods
QEMSCAN. Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN) is a 
Scanning Electron Microscope (SEM) technique that combines Back-Scattered Electron (BSE) information with 
Energy-Dispersive X-Ray Spectroscopy (EDS)49. �e samples are polished and carbon-coated and BSE inten-
sity and EDS spectra are acquired at a �xed spacing of 1 µm or greater. �e e�ective excitation volume for each 
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measurement depends on acceleration voltage and mineral phases, but is typically in the range of few 100 nm 
wide and deep into the material. �e BSE signals and EDS spectra are matched against a �ne-tuned reference 
mineral database for each acquired pixel, resulting in mineral phase maps of the sample surface. In this study, 
whole samples were scanned at 10 µm spacing, with smaller detail scans at 1 µm resolution. �e scanning reso-
lution limits the minimal size of recognised phases, shapes and connectivity information. Porosity is determined 
from “background” scanning results, which combine organic matter and physical pore spaces.

X-ray Computed Tomography. Cylindrical pillars were prepared from the samples using an A Series/
Compact Laser Micromachining System (Oxford Laser)50. The three-dimensional microstructure of shale 
samples were investigated using two X-ray microscopes (Carl Zeiss X-ray Microscopy Inc., Pleasanton, CA): 
micron-scale Zeiss Xradia 520 Versa and nano-scale Zeiss Xradia 810 Ultra 810.

Micro-CT was performed using the Versa 520 platform, which utilises an optically coupled two-stage mag-
ni�cation system. During imaging, a total of 2801 radiographs were acquired over a 360° sample rotation range 
with an exposure time of 18 seconds per radiograph. �e shale sample was placed between the X-ray source and 
a 2k × 2k detector with a source-to-detector distance of 39.9 mm providing a voxel resolution of ~880 nm using 
the 4x objective magni�cation in binning 2 mode. �e instrument was operated at 50 kV and 80 µA, employing a 
low energy �lter to optimise transmission and contrast to noise ratio.

Nano-CT was conducted using the Ultra 810 instrument, which employs post-transmission Fresnel zone 
plates to achieve resolution in the sub 100 nm range. �e microscope can operated in high-res and large �eld of 
view mode with achievable voxel resolution of 16 and 64 nm respectively. �e system also allows absorption and 
Zernike phase contrast capabilities to leverage non-invasive imaging of a variety of materials at the nano-scale. 
�e use of these systems in tandem enables multi-scale insight into the microstructure of shale samples. For 
the nano-CT experiments, both absorption-contrast and phase-contrast images of the shale micro-pillar were 
acquired in the “large �eld-of-view” (LFOV) mode. A total of 901 projections were collected per 180° sample rota-
tion with an exposure time of 15 seconds for absorption and 30 seconds for phase contrast imaging. �is yielded 
two sets of raw image data, both with an isotropic voxel resolution of 126 nm using a detector pixel binning of 2. 
�e two datasets were then merged at 50% proportions to maximise the signal to noise ratio and to leverage the 
edge enhancement of the phase contrast image with the density information of the absorption contrast scan51.

�e raw transmission images from both micro-and nano-scale CT imaging experiments were reconstructed 
using a commercial image reconstruction so�ware package (Zeiss XMReconstructor, Carl Zeiss X-ray Microscopy 
Inc., Pleasanton, CA), which employs a �ltered back-projection algorithm. �e reconstructed grayscale 3D image 
volumes were subsequently segmented using the Avizo so�ware package (Avizo 9.0, FEI Visualization Sciences 
Group, Mérignac Cedex, France).

Rock mechanics. �e four shale gas play samples were prepared for porosity and permeability analyses in 
the Rock and Ice Physics Laboratory at University College London. We prepared a sample of a known volume 
for porosity measurements using He-injection (AccuPyc II 1340 Pycnometer, Micromeritics Instrument Corp.). 
Drill cores of 20 mm diameter by 20 mm length were prepared from the four core samples for permeability 

Shale sample #1 #2 #3 #4

Borehole A A B B

Depth (m) 3721 3731 3690 3703

Density (g/cm3) 2.41 2.52 2.52 2.60

Mineralogy (volume %)

Clays 62.2 61.3

Quartz 11.2 9.6

Plagioclase 2.9 3.6

Dolomite 2.9 9.6

Calcite 0.6 1.3

Muscovite 6.3 5.6

Pyrite 1.3 1.6

Trace minerals 11 4

Porosity + OC QEMSCAN 1.5 3.4

Rock physics tests

Porosity (%) He–injection 5.6 4.9 2.2 2.7

E�ective pressure (MPa) 5 5 5 5

kv–water (m2) 3.2 × 10−22 3.5 × 10−22 2.5 × 10−22 4.0 × 10−22

kv–argon (m2) — — 1.9 × 10−22 2.8 × 10−22

kh–water (m2) — — 1.6 × 10−21 6.3 × 10−20

kh–argon (m2) — — 9.1 × 10−22 2.0 × 10−20

Table 1. QEMSCAN mineralogy and rock physics results for sample suite. QEMSCAN porosity results includes 
organic carbon (OC). Permeability reported for lamination-perpendicular (kv) and lamination-parallel (kh) 
�ow.
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experiments. For samples 1 and 2, only cores drilled perpendicular to lamination were successfully prepared, 
whereas both lamination-parallel and perpendicular cores were prepared from samples 3 and 4. �e prepared 
cores were either saturated in deionised and distilled water under vacuum for three days before tested for water 
permeability (samples 1 through 4), or dried at 60 °C at a minimum of three days until tested for argon permeabil-
ity (samples 3 and 4). �e samples were placed into a PVC jacket in between porous alumina spacers before being 
loaded into the permeameter, following the analytical set-up for permeability measurements outlined in Mitchell 
and Faulkner52. Permeability was measured at a low e�ective pressure of 5 MPa, with the con�ning pressure of 
10 MPa and the pore pressure of 5 MPa. We used the pore-pressure oscillation technique to measure permea-
bility, where the sinusoidal pore pressure signal of the upstream side of the sample is compared to the response 
signal on the sealed downstream side53,54. �e response signal is reduced in amplitude and o�set in phase. �e 
attenuation and phase lag are calculated from the upstream and downstream signals. From these two numbers 
we calculate the two dimensionless parameters of Fischer and Paterson55. For precision and computational e�-
ciency we reduce their two simultaneous equations to one and then solve that numerically. Permeability is then 
calculated from these dimensionless parameters. Oscillations were set at 1 MPa amplitudes over 4 hour periods 
and the experiments ran for over 4 days per sample to allow for further saturation. Permeability was continu-
ously measured throughout the experiment and we report the average permeability calculated a�er saturation. 
One lamination-parallel core from sample 4 split along lamination and we analysed this sample to simulate the 
(un-propped) fracture permeability. During the fracture permeability experiments we increased the con�ning 
pressure incrementally at 10 MPa ramps up to an e�ective pressure of 45 MPa, which corresponds to a typical 
reservoir pressure condition of shale gas plays.

Results
�e samples analysed in this study are very thin laminated mudstones, or clay-rich shales. QEMSCAN analyses of 
samples 2 and 4 show ~60 volume % clay minerals (Fig. 1) with a clay composition of 80% of illite, 14% kaolinite 
and minor smectite. �e silt fraction is predominantly composed of quartz, plagioclase and dolomite with trace 
calcite, pyrite and accessory minerals (Table 1). Muscovite, which is chemically nearly identical to illite, is also 
reported in the QEMSCAN results, where the grain size of an homogenous cluster of data points was larger than 
clay minerals. Macroscopic laminations are de�ned by a combination of silt-rich and clay-rich layers (Fig. 1).

�e porosity measured by helium-injection ranges from 2.2% to 5.6%, whereas pore volumes from QEMSCAN 
analyses are 1.5% for sample 2 and 3.5% for sample 4 (Table 1). Although QEMSCAN likely underestimates the 
porosity of the samples, the di�erence between QEMSCAN and He-injection may also be due to sample hetero-
geneity and varying fracture densities. On each chemical map the distribution of pores is relatively homogenous, 
di�use and predominantly disconnected with interconnected pores aligned along fractures and micro-fractures 
(Fig. 1). �e observed fractures are all parallel to laminations, mostly discontinuous and spaced at 0.1 to 2 mm. 
�e large continuous fracture in sample 4 is spatially associated with a thin silt-rich layer (Fig. 1b).

A 2 mm tall by 2 mm diameter pillar of sample 4 was scanned using the Versa micro-CT at a voxel resolution 
of 800 nm (Fig. 2a–c). Four di�erent phases are clearly segmented by their grayscale thresholds (Fig. 2c). �e 
segmented phases include clastic grains (23%: quartz, carbonates and feldspars), clays (63%), pyrite (4%) and a 
low density porous phase (10%). �e porous phase includes both physical pores and kerogen, which are di�cult 
to distinguish from one another at this resolution. Compositional layering de�ned by clay-rich (top) and silt-rich 

Figure 1. QEMSCAN chemical maps of sample 4 analysed at 10 micron spacing resolution scan of entire thin 
section (a) and 1 micron spacing detailed map (b). On the right half of each image we show only pore space 
distribution on white background. Lamination-parallel fractures visible at both scales. Mineral proportions are 
reported in Table 1.
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(bottom) laminations is observed within the 2 mm tall pillar (Fig. 2b), with clay modal proportions of 70% and 
52%, respectively. �e modal proportions of the porous phase are 13% in the clay-rich layer and 7% in the silty 
layer. In the clay-rich layer the porous volume forms discontinuous, closely spaced wavy surfaces subparallel 
to the lamination. In contrast, the porous phase in the silty layer is less dispersed and concentrates as isolated 
lenses and pockets subparallel to lamination. �e lower pore volume fraction is likely augmented by cementation 
around the silty grains, which do not show distinct grain boundaries (Fig. 2c) or expected inter-grain pores asso-
ciated with coarser sediments56,57. A larger lamination-parallel fracture across the sample is associated with the 
silty layer (Fig. 2c). �e micro-fracture spacing evident from the micro-CT is 50 to 400 µm. We exported binary 
porous phase and bulk rock 3D sub-volumes of each layer for modelling of the pore phase interconnectivity.

A 64 µm tall by 64 µm diameter pillar of sample 2 was scanned twice using the Ultra nano-CT at a voxel res-
olution of 64 and 126 nm. �e nano-CT scan illuminates the scaly fabric of the clay minerals wrapping around 
the clastic mineral grains (Fig. 2d–f). �e compositional grayscale thresholds are more di�cult to segment in 
the nano-CT results compared to the micro-CT, which stems from the lower energy used for nano-CT imaging 
and lower signal to noise ratio. However, we can use the porous phase volume percent from the micro-CT scan 
to segment a similar volume proportion in the nano-CT results (~10%, Fig. 2f). �e high-resolution scan shows 
the sample preparation damage from the laser at the edge of the sample (right edge in Fig. 2e). We segmented 
the porous phase in a sub-volume from within the 3D data (~25 µm3: dashed box in Fig. 2d,e) to avoid the laser 
damage. �e sub-volume also excludes the base and circumference edge of the sample, which returned darker 
grayscales. �is is due to both the source of Ultra showing a Gaussian beam pro�le distribution on the detector 
and the maximum intensity of X-rays is registered in the centre of the �eld of view, decreasing radially towards the 
edges/corners. Due to the less precise grayscale representation of porous phase volume in the nano-CT data, we 
segmented a range of pore phase volumes of 3, 5, 10 and 20% to compare changes in pore phase interconnectivity. 
�is range represents the prospective range of pores and kerogen in shale gas plays1 and allows us to analyse the 
e�ect of changing the porous phase volume on permeability.

Permeability was measured at low e�ective pressures of 5 MPa to maximise the downstream pressure oscilla-
tion signal during experiments and to compare the relative directional permeability. �e low e�ective pressure 
used in experiments allows us to better measure the very low matrix permeabilities, but these will scale to even 
lower permeabilities for deeper reservoir conditions27. However, it is easier to quantify the relative directional 
permeability at low e�ective pressures. �e results are summarised in Table 1. For both water and argon experi-
ments, the lamination-parallel permeability (kv) ranges from 1 × 10−19 to 1 × 10−21 m2 (Fig. 3, squares), whereas 
lamination-perpendicular permeability (kh) ranges between 1 × 10−21 and 1 × 10−22 m2 (Fig. 3, triangles). For 
each sample the permeability of argon is systematically lower than the permeability of water, but showing the 
same one to two orders of magnitude di�erence in directional permeability. �e relative permeability of argon 
and water, may be a�ected by �uid mixtures present within the sample during the experiment, which can lower 
the e�ective permeability26,27.

One core plug from sample 4 that split along lamination was tested for argon permeability at varying con-
fining pressure conditions and the results are summarised in Table 2. The permeability through this sam-
ple is 1 × 10−18 m2 at 5 MPa e�ective pressure and the permeability decreases by two orders of magnitude to 
1 × 10−20 m2 with increasing e�ective pressure to 45 MPa (Fig. 3 circles, test 1–3). A�er reloading the sample with 
the lamination-parallel fracture for a 4th test, the permeability results were lower, but with the same 2 order of 

Figure 2. X-ray computed tomography data. (a–c) Zeiss Xradia 520 Versa micro X-ray computed tomography 
with voxel size of 0.8 microns. (a) Lamination-parallel view of sample. (b) Vertical section view through sample 
showing silty (7% porous phase) and clay-rich (13% porous phase) compositional laminations of approximately 
0.5 mm thickness. (c) Segmentation of grayscale into 4 distinguishable phases. (d–f) Zeiss Xradia 810 Ultra 
nano X-ray computed tomography with voxel size of 0.126 microns. (d) Lamination-parallel view of sample. (e) 
Vertical section view through sample. (f) Porous volume rendering (dashed volume outline in (e)) of grayscale 
threshold segmentation representing 11 volume % (red).
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magnitude change with increasing e�ective pressure (Fig. 3, test 4). �is di�erence may result from a tighter �t of 
the two halves during the re-assembled of the sample for test 4.

Interconnectivity of porous phase. Anisotropic permeability behaviour of shales is well known and 
expected from the strong mineral alignment and the macro-scale bedding and lamination fabric. In this section 
we explore the available permeable pathways through the porous phase volume (kerogen and pores) at the micron 
scale. �e three-dimensional distribution of the porous phase is relatively homogenous across the millimetre scale 
in two dimensions (Fig. 1), but shows a textural and modal variation across compositional layering of clay-rich 
and silt-rich laminations (Fig. 2c). In the tests below we also look at the compositional and mineralogical e�ect 
on interconnectivity.

2D Image Analysis. �e FracPaQ58 fracture analysis tool for MATLAB is designed to characterise linear features, 
such as fractures. �is tool can be used on any two-dimensional data to quantify linear features. We used the 
FracPaQ script to analyse the two-dimensional interconnectivity and alignment of the porous phase in clay-rich 
shale samples. Binary images of the porous phase for the clay-rich and silt-rich layers are converted from the 
micro-CT data and imported into the script separately for each layer (Fig. 4a,b). �e alignment of the porous 
phase in the clay-rich layer is anastomosing subparallel to the laminations, forming a well de�ned scaly fabric 
(Fig. 4c). In contrast, the orientation of interconnected pathways in the silty layer are restricted to within ±30° 
around the lamination plane (Fig. 4d). �e interconnected trace lengths of the porous phase exhibits a weakly 
de�ned directional preference of longer trace segments parallel to the lamination (90°, Fig. 4e). In both layers the 
interconnected porous phase segments in two dimensions are up to 100 µm long with the majority shorter than 
40 µm (Fig. 4e). �e results discard disconnected/isolated segments of less than 5 microns in length (red base line 
in Fig. 4e).

3D Tortuosity Factor. We use TauFactor48 to model the three-dimensional interconnectivity of porous phase 
volumes segmented from micro- and nano-CT. �e full results are provided in the supplementary material 
(Table S1). TauFactor is a MatLab application for simply calculating the reduction in di�usive transport caused 
by convolution in the geometry of heterogeneous media. Tortuosity factor quanti�es the geometric interconnec-
tivity of pore space, taking into account the changing cross-sectional area of pores46,47. TauFactor calculates the 

Figure 3. Experimental argon (red) and water (blue) permeability results through 20 mm diameter by 20 mm 
length shale cores. Permeability was measured perpendicular to laminations (triangles), parallel to laminations 
(squares) and along a lamination-parallel fracture (circles).

E�ective 
pressure (MPa) 5 15 25 35 45

test 1 (m2) 1.4 × 10−18 7.8 × 10−19

test 2 (m2) 1.9 × 10−18 6.3 × 10−19 2.5 × 10−19

test 3 (m2) 4.7 × 10−19 2.2 × 10−19 7.4 × 10−20 1.6 × 10−20

test 4 (m2) 1.1 × 10−19 4.4 × 10−20 1.8 × 10−20 4.0 × 10−21

Table 2. Argon gas permeability was measured by the pore pressure oscillation technique through an open 
fracture parallel to lamination of sample 4. Measurements were taken continuously while the con�ning pressure 
was increased at 10 MPa increments from 10 MPa to 50 MPa. Pore pressure was set at 5 MPa with a 1 MPa 
oscillation amplitude at 1 hour wavelengths. �e sample was le� in the apparatus overnight at 5 MPa e�ective 
pressure between tests 1, 2 and 3. �e sample was extracted from the apparatus a�er test 3 and reloaded for a 4th 
test.
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directional tortuosity factor (τ) along three mutually perpendicular axes of interconnected “di�usive phases” (or 
porous phase) through a three-dimensional volume. �e minimum value of tortuosity factor for is 1, which would 
represent a perfectly straight pathway of equal cross-sectional area running parallel to the test axis. TauFactor also 
calculates the representative volume element (RVE) and computes each directional tortuosity factor at set pro-
portions of the volume, starting with 10% length of the volume, then 20% and so on (Fig. 5a). In a homogenous 
system the tortuosity factor value tends towards a maximum value with an increasing length unit of the test axis39, 
if the mineral fabric, size and distribution of the sample are representative of the system. We computed the tortu-
osity factor using the equal area method in TauFactor (A = “constant from top/bottom”), keeping the base area of 
the two axis perpendicular to the tested axis direction constant (Fig. 5a). If there are no interconnected pathways 
across the tested volume, the computation fails and TauFactor returns a value of in�nity. Due to the heterogeneity 

Figure 4. Two-dimensional fracture analyses using FracPaQ58. Clay-rich layer (a) and silt-rich layer (b) 
from sample 2 with X-ray CT image overlain with FracPaQ image analyses from binary porous phase image. 
Orientation rose diagram (c,d) and length versus angle (e) results for each layer (clay-rich layer = green; silt-rich 
layer = blue).

Figure 5. TauFactor48 three-dimensional tortuosity factor analyses. Detailed results are provided in the 
supplementary material (Table S1). (a) Section of binary volume (black = porous volume; white = non-porous 
volume) in a schematic of tortuosity factor analysis with constant base axes and increasing the unit length of the 
test axis at 10% proportions. (b) Plot of average tortuosity factors for nano- and micro-CT volumes. (c) Porous 
phase volume percent comparison from 3 to 20% using the nano-CT volume along the bedding-parallel axes. 
Red star at the end of 3 and 5% tests is the point at which the computation failed. (d–g) Stacked 3D image of 
modelled interconnected pathways through clay-rich layer at micro- and nano-scale.
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of mineral distributions in natural shales, the tortuosity factor will vary from sample to sample. However, the 
small mineral grain sizes of our shale samples (<25 micron, Fig. 1) allow for meaningful tests of mineralogical 
control on �ow paths to be examined by high-resolution X-ray CT (Fig. 2).

In each model, the tortuosity factor increases as the test axis length increases (Fig. 5b). �e micro-CT vol-
ume was modelled for each compositional layer representing 13% porous phase in the clay-rich layer and 7% 
porous phase in the silt-rich layer (Fig. 2b). �e upper clay-rich volume has a tortuosity factor of ~25 in both 
lamination-parallel orientations over an axis-length of 400 microns. Interconnected pathways along laminations 
in the silty layer are predominantly in and around the fractures and organic matter lenses resulting in a lower 
tortuosity factor below 10, representing shorter pathways across the test-axis. Nano-CT results are computed for 
a 3, 5, 10 and 20% porous phase volume. Lamination parallel tortuosity factor for all measurements fall within the 
same order of magnitude as the micro-CT results, although there are small variations between the two mutually 
perpendicular directions parallel to the lamination (see supplementary Table S1 for details). �e low tortuosity 
factor values for short test axis lengths below 5 µm correlate to short, straight segments below the mineral-scale 
(Fig. 2e). For both the nano- and micro-CT volumes, the tortuosity factor computed perpendicular to lamina-
tions is an order of magnitude higher in the clay-rich layer (dotted lines, Fig. 5b). No vertical interconnectivity is 
computed for the silty layer with the lower porous phase volume (tortuosity factor of in�nity).

We compared tortuosity factor results for di�erent volume percentages of the porous phase from 3 to 20% for 
the same nano-CT volume by manually changing the grayscale threshold (Fig. 5c). �e interconnectivity of 3% 
porous phase volume failed at less than 9 µm unit length and below ~14 µm for 5% in both lamination-parallel 
directions (stars in Fig. 5c). At 10% and above there is generally continuous interconnectivity across the whole 
sample in the lamination-parallel direction (Fig. 5c). No lamination-perpendicular interconnectivity longer than 
4 µm unit length is computed at the mineral scale for the low porous phase volume of 3 and 5%. At 10% porous 
phase volume, the interconnected pathways reached up to 13 µm unit length across laminations for Ultra CT 
scans with a resolution of 126 nm. �e higher resolution scan of 63 nm computed an interconnectivity at 10% 
porous phase volume through the sample to over 20 µm (see supplementary Table S1 for details). In our simula-
tions, the most consistent lamination-perpendicular interconnectivity across the whole sample (20 µm) occurs 
for porous phase volumes of more than 20%. Increasing the porous phase volume has two e�ects on the inter-
connected pathways through the sample: (1) �e tortuosity factor decreases and (2) the interconnected length 
increases (Fig. 5c).

In both lamination-parallel and lamination-perpendicular models, the tortuosity factor is higher through 
20 microns of the nano-CT sample than through 40 microns of the micro-CT sample (Fig. 5b). Scaling of statis-
tically self-similar objects, in this case the interconnectivity of the porous volume, is well know. For example, the 
length of Britain’s coast is inversely proportional to the length of the yardstick used to measure it59. Similarly, tor-
tuosity factor also scales inversely with voxel size. However, the higher resolution of the nano-CT is expected to 
reveal more pores compared to the micro-CT and consequently the tortuosity factor should be reduced. �e tor-
tuosity factor at the nano-scale will be highly dependant on the mineral geometry of the scanned volume, such as 
the distribution and modal proportion of clay- and silt-sized grains. We can explain decrease in tortuosity factor 
with the step up in scale into the micro-CT experiment by the amount of available nodes that connected di�erent 
segments in the volume across the set base area of the volume. �e volume we imaged with nano-CT only had one 
node that interconnected the porous phase in the lamination-perpendicular direction (Fig. 5g). Increasing the 
base area perpendicular to the directional test-axis increases the available nodes that interconnect adjacent path-
way segments (Fig. 5f). �is scaling leads to a decrease of the tortuosity factor, as more direct pathways parallel to 
the test axis become available as more nodes are introduced to the tested volumes.

Discussion
Ultimately, the rate of shale gas recovery during the production life of wells is determined by the permeable 
structure that exist at depth around the stimulated borehole (Fig. 6a). Over-pressured �uids with proppants are 
injected into the reservoir to open up natural fractures and induced hydro-fractures to increase the formation 
permeability and allow for trapped gas to escape through propped open pathways (Fig. 6b). �e longevity of shale 
gas recovery reported from operating wells, i.e. the decline curve9,10, records the interconnectivity of hierarchical 

Figure 6. Permeability hierarchy of shale gas wells from well to clay minerals. (a) Well access (k1) to shale 
gas reservoir with stimulated hydro-fracture network. (b) Propped (k2) and unpropped (k3) fracture network 
connected to well with mm-scale pore distribution background from QEMSCAN results. (c) Inter-fracture 
lamination and mineral-scale fabric-controlled permeability (k4&5) with micron-scale pore distribution 
background from QEMSCAN results and mineral distribution scans from micro-CT results.
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permeabilities through fractures with and without proppants, and the inter-fracture matrix within the stimulated 
area (Fig. 6c).

�e results presented in this study combine three-dimensional and two-dimensional geometric and inter-
connectivity analyses of porous phases with physical permeability measurements in the laboratory. �e meas-
urements and models characterise the relative fracture, lamination-parallel and lamination-perpendicular 
�ow through clay-rich shales. At low e�ective pressures of 5 MPa, we record directional permeabilities of 1000 
nano-darcy (nd) through fractures (k3), 10 to 100 nd parallel to laminations (k4) and 0.1–1 nd across clay-rich 
laminations (k5, Fig. 6b,c). �e anisotropic behaviour of directional matrix-permeability through the samples 
is recorded using both water and argon (Fig. 3), consistent with a fundamental geometric control under con-
trolled and constant e�ective pressures. Our results show the same one to two order of magnitude anisotropy 
in directional permeability relative to the sedimentary laminations that is commonly reported for shales31,60,61. 
Permeability along a fracture increases by another one to two orders of magnitude, relative to lamination-parallel 
matrix permeability. �e fracture permeability scales down by two orders of magnitude with increasing e�ective 
pressures to 45 MPa, simulating typical reservoir depth conditions (Fig. 3). �e same relative order of magni-
tude di�erences are computed at the micron scale by the directional tortuosity factor through three dimensional 
reconstructions of the same samples used in physical experiments (Fig. 5b).

�e e�ective permeability at which �uids are transported through tight shales is a combination of hydrau-
lic and di�usive �ow through porous media, made up of micro- and nano-pores within the kerogen and clay 
matrix18,21,22. Hydraulic permeability (k) is generally de�ned in terms of tortuosity (τ, equation 1):

k
c S

,
(1)

3

2 2

φ

τ
=

where k is permeability given by the porosity (φ), the Kozeny constant (c) that depends on the pore shape, and 
the speci�c surface area (S) around the pores39,62. E�ective di�usivity (De�) is given below in terms of tortuosity 
factor (τ*, equation 2):

ε

τ
=D D

*
,
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where D0 is the phase di�usivity and ε is the volume fraction of the porous media48,63. In equation 1, the permea-
bility is inversely proportional to tortuosity and the shape of the pores. Variations in pore shape, or cross-sectional 
area of �ow paths, are incorporated into the three-dimensional calculations of tortuosity factor. �erefore, 
hydraulic and di�usive �ow are both inversely proportional to the tortuosity factor (and tortuosity).

Collecting high resolution images that clearly di�erentiate kerogen and nano-pores is possible, but di�cult 
to achieve24. Our CT scans were unable to segment kerogen and pores and, therefore, we modelled the intercon-
nectivity of both as a single porous phase (ε, see Fig. 2d–g). �is simpli�cation means that our method misses 
the ultra-�ne nano-pores observed in kerogen37 and that ε (pores and kerogen, equation 2) is greater than φ 
(porosity only, equation 1). However, the nano-porous �ow is thought to have restricted di�usive �ow because of 
the tighter constrictions of the pore walls29 and will occurs within the kerogen proportion of the volume imaged 
by the X-ray CT. Although nano-porous transport will add signi�cant insight into modelling relative �ow mech-
anisms, estimating di�usive �ow across whole kerogen volumes allows us to integrate the nano- and micro-scale 
pore network and compare the directional interconnectivity of �ow pathways at a representative scale for shales. 
Our results allow for the �rst direct comparisons of three-dimensional pore space distributions with laboratory 
experiments of the same samples, where we measure permeability across a sample that combines both hydraulic 
permeability and di�usive �ow53, the proportion of each dependent on the distribution of the di�erent materials 
that control the �ow mechanisms.

Both X-ray CT and QEMSCAN imaging show a predominantly homogenous and di�use distribution of the 
porous phase throughout the sample. �is implies that ε (and φ) are relatively constant across each sample. We 
can assume that D0 is also constant for each sample, because the relative proportion of kerogen and pore space 
probably remain similar for the small sample sizes used in both experimental and imaging techniques. However, 
these parameters will vary with di�erent mineral compositions of shales and rocks in general, which a�ect the 
geometry and proportion of porous phase distributions. All the samples used in this study have the same modal 
proportion of clay (~60%), which de�nes the bulk of the rock volume and the rock texture. �e interconnectivity 
of porous media in both hydraulic and di�usive �ow is a function of the pore geometry64,65, which is inherited 
from the mineralogy. �erefore, our results show that the anisotropic permeability behaviour of ~60% clay-rich 
shales is fundamentally controlled by the tortuosity (or tortuosity factor) of interconnected porous phase volumes 
through a scaly clay fabric.

It is well known that tortuosity tends towards 1 as the porous phase volume increases towards 100 percent, 
although the tortuosity is only reported for porous phase volumes above 10%62,66. In two-dimensional image 
analyses the interconnection of pores in our shale samples is up to 100 µm in length and rarely extends above 
40 µm, even along fractures (Fig. 4e). �erefore, it is necessary to reconstruct the three-dimensional porous phase 
distribution to accurately simulate �ow. We tested the e�ect of varying the porous phase volume manually within 
the same bulk volume from 3 to 20% (Fig. 5c). Higher volumes resulted in longer interconnected pathways with 
a lower tortuosity factor, consistent with our understanding of the porosity-tortuosity relationship. Our results 
show that the critical porous phase volume required for any signi�cant lamination-parallel �ow interconnectiv-
ity through the clay-rich shale is between 5 and 10%. Continuous interconnectivity across laminations requires 
higher porous phase volumes (≥20%) than in the lamination-parallel direction to achieve interconnectivity. 
�ere is no systematic variation in the two mutually perpendicular directions within the plane parallel to lam-
inations, but this will be a�ected by local variations in kerogen and pore space distribution in a natural system.
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We compared the compositional e�ect of silt-rich (52% clays) and clay-rich (70% clays) layers using the 
micro-CT results with a porous phase volume of 7% and 13%, respectively. Due to the lower clay fraction in the 
silty layer there are predominantly planar interconnections in porous phase volumes along fractures and kerogen 
lenses (Fig. 4d). No vertical interconnectivity is computed across the silty layer. �e scaly geometry of the porous 
phase following the clay geometry in the clay-rich layer (Fig. 4c) leads to a higher potential of cross-lamination 
interconnected pathways through the clay network (Fig. 5f,g). In general, more the silt-rich rock compositions 
are more rigid have a higher fracturing potential, which is sought a�er during hydro-fracturing67,68, but at the 
scale of compositional laminations the silty layers form barriers to layer-perpendicular �ow, especially with lower 
porous phase volumes due to cementation (Fig. 6c). Ultra-low permeability measured in experiments on these 
same samples suggests that some interconnected pathways are available at the cm-scale (triangles, Fig. 3). �is 
is likely enhanced by decompression fractures that concentrate around silty layers (Fig. 1). �e quantity of the 
porous phase volume has a strong a�ect on interconnectivity (Fig. 5c). �erefore, small fractures or isolated per-
meable pockets, which increase the sub-mm porous phase volumes will enhance the ultra-low permeability at the 
cm-scale. As shown, the mineralogy of our sample set is dominated by clays. Our results show that the anisotropy 
of the directional permeability in clay-rich shales calculated from high-resolution imaging (µm-scale) is of the 
same order of magnitude to measurements in physical experiments (mm-scale). �erefore, the macro-scale per-
meability structure through shales is e�ectively determined by the geometry of rock forming minerals, in this case 
the alignment of clays in between and around silt-sized grains.

�e lowest tortuosity factor was calculated for lamination-parallel interconnectivity in the silty layer (<10, 
Fig. 5b). �is low tortuous geometry stems from the fracture that cuts across the entire silty layer (Fig. 2c) and 
is comparable to the experimental permeability measurements through a lamination-parallel fracture (sample 
4, Fig. 3). �e lamination-parallel fractures observed in the samples and imaged by QEMSCAN (Fig. 1) and 
micro-CT (Fig. 2) are uncemented fractures that probably formed by decompression during drilling and retrieval 
of the samples from depth. Decompression fractures are closed at depth and lead to overestimations of the nat-
ural fracture density68,69. Nevertheless, the permeability results for the fractured sample provide an estimate for 
permeability through unpropped fractures (k3, Fig. 6), relative to the matrix permeability. In addition to the lower 
tortuosity factor of fractures, the e�ective permeability through fractures will be higher compared to the matrix, 
because the interconnected porous phase volume has a lower speci�c surface area (S, equation 1) for larger pore 
dimensions (φ, equation 1), leading to a smaller overall component of slower di�usive �ow (De�, equation 2). 
Research has shown this relationship, where the �ow mechanism through open fractures is dominated by higher 
permeability hydraulic �ow19,70. During hydro-fracturing of shale gas plays, the immediately accessible gas will be 
extracted by higher �ow rates through stimulated fractures, followed by ultra-low permeability through the rock 
matrix that can access the fractures via a complex network of interconnected porous phases.

Conclusions
Combining high-resolution X-ray CT imaging with physical permeability experiments illustrate the micron-scale 
interplay between directional matrix and fracture permeability through shales (Fig. 6). �e homogenous and 
di�use distribution of pore space and kerogen at the inter-fracture scale suggests that the longevity of shale gas 
recovery recorded in production decline curves is governed by the accessibility of gas trapped in the matrix. �e 
detailed mineral-scale control on the anisotropic permeability behaviour of shales shown in this study indicates 
that the broader accessible resource is more likely to be laterally around the stimulated fractures network than 
vertically. Existing natural fracture networks play an integral role in de�ning the larger scale interconnectivity at 
depth and the immediately accessible shale gas recovered during peak production of wells. Recent experiments 
are showing that the productivity of shale gas wells is enhanced by using �ner grained proppants (1 to 50 µm), 
compared to typical proppants of 100 to 300 µm in size used to stimulate unconventional gas reservoirs71,72. �ese 
“micro-proppants” in�ltrate smaller natural and induced fractures within the stimulated zone and increase the 
shale-fracture interface area, which allows for more directly accessible gas to escape via the open fractures. �ese 
technical advances in shale gas recovery are explained by our detailed characterisation of the micro-scale porous 
phase distribution and permeability structure within the matrix of shales in between the fracture network, where 
the recoverable resource in the shale matrix is stimulated laterally around the fracture network.
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