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Understanding correlations in complex systems is crucial in the face of turbulence, such as the ongoing
financial crisis. However, in complex systems, such as financial systems, correlations are not constant but
instead vary in time. Here we address the question of quantifying state-dependent correlations in stock
markets. Reliable estimates of correlations are absolutely necessary to protect a portfolio. We analyze 72
years of daily closing prices of the 30 stocks forming the Dow Jones Industrial Average (DJIA). We find the
striking result that the average correlation among these stocks scales linearly with market stress reflected by
normalizedDJIA index returns on various time scales. Consequently, the diversification effect which should
protect a portfolio melts away in times of market losses, just when it would most urgently be needed. Our
empirical analysis is consistent with the interesting possibility that one could anticipate diversification
breakdowns, guiding the design of protected portfolios.

W
ild fluctuations in stock prices1–8 continue to have a huge impact on the world economy and the
personal fortunes ofmillions, shedding light on the complex nature of financial and economic systems.
For these systems, a truly gargantuan amount of pre-existing precise financial market data9–11 com-

plemented by new big data ressources12–15 is available for analyses.
The complex mechanisms of financial market moves can lead to sudden trend switches16–18 in a number of

stocks. Such sudden trend switches can occur in a synchronized fashion, in a large number of stocks simulta-
neously, or in an unsynchronized fashion, affecting only a few stocks at the same time.

Diversification in stockmarkets refers to the reduction of portfolio risk caused by the investment in a variety of
stocks. If stock prices do not move up and down in perfect synchrony, a diversified portfolio will have less risk
than the weighted average risk of its constituent stocks19,20. Hence it should be possible to reduce risk in price of
individual stocks by the combination of an appropriate set of stocks. To identify such an appropriate set of stocks
with anti-correlated price time series, the assumption mostly used is that the correlations among stocks are
constant over time21–26. This widely used assumption is also the basis for the determination of capital require-
ments of financial institutions that usually own a huge variety of constituents belonging to different asset classes.

Recent studies building on the availability of huge and detailed data sets of financial markets have analyzed and
modeled the static and dynamic behavior of this very complex system27–39, suggesting that financial markets are
governed by systemic shifts and display non-equilibrium properties.

A very well known stylized fact of financial markets is the leverage effect, a term coined by Black to describe the
negative correlation between past price returns and future realized volatilities in stock markets. According to
Reigneron et al.40, the index leverage effect can be decomposed into a volatility effect and a correlation effect. In
the course of recent financial market crises, this effect has regained center stage, and the work of different groups
has focused on uncovering its true nature40–46). Reigneron et al. analyzed daily returns of six indices from 2000 to
2010 and found that a downward index trends increase the average correlation between stocks, as quantified by
measurements of eigenvalues of the conditional correlation matrix. They suggest that a quadratic term should be
included to the linear regressions of the dependence of mean correlation on the index return the previous day.

Here, we will expand on these results utilizing 72 years of trading of the 30Dow Jones industrial average (DJIA)
components (see also47,48). Using this financial data set we will quantify state-dependent stockmarket correlations
and analyze how they vary in face of dramatic market losses. In such ‘‘stress’’ scenarios, reliable correlations are
most needed to protect the value of a portfolio against losses.
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Results
To quantify state-dependent correlations, we analyze historical daily
closing prices of the N; 30 components of the DJIA over 72 years,
from 15 March 1939 until 31 December 2010, which can be down-
loaded as a Supplementary Dataset. During these T; 18596 trading
days, various adjustments of the DJIA occurred. We explicitly con-
sider an adjustment of the index when one of the 30 stocks is
removed from the index and replaced by a new stock in order to
ensure that we accurately reproduce the index value of the DJIA at
each trading day (Fig. 1).
To calculate the official index value pDJIA, the sum of prices of all

30 stocks is divided by a normalization factor dDJIA, known as the
DJIA divisor. The DJIA divisor anticipates index jumps caused by
effects of stock splits, bonus issues, dividends payouts or replace-
ments of individual index components keeping the index value con-
sistent (Fig. 1A). Consequently, the index value of the DJIA at day t is
given by

pDJIA tð Þ~

P

N

i~1

pi tð Þ

dDJIA
, ð1Þ

where pi(t) reflects the price of DJIA component i at day t in units of
USD and where t is measured in units of trading days. The normal-
ization factor dDJIA is also measured in units of USD. Consequently,

the value of the DJIA is dimensionless. Due to changes in the com-
ponents of theDJIA, a component i does not necessarily reflect prices
of one stock only. A subscript i is also used for a component’s pre-
decessor or successor.
To quantify state-dependent correlations, we calculate the mean

value of Pearson product-moment correlation coefficients49 among
all DJIA components in a time interval comprising Dt trading days
each (Fig. 2). In each time interval comprising Dt trading day, we
determine correlation coefficients for all pairs ofN; 30 stocks. From
these correlation coefficients, we calculate their mean value for each
time interval separately.
We relate mean correlation coefficients to corresponding market

states, which we quantify by DJIA index returns for time intervals
starting at trading day t and ending at trading day t 1 Dt,

rDJIA t,Dtð Þ~
log pDJIA tzDtð Þð Þ

log pDJIA tð Þð Þ
: ð2Þ

We normalize the time series of DJIA index returns, rDJIA(t, Dt), by
its standard deviation, sDJIA(Dt), defined as

sDJIA Dtð Þ:
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Figure 1 | Index components of the Dow Jones Industrial Average (DJIA). (A) To calculate the index value of the DJIA, we determine the sum of prices

of all 30 stocks belonging to the index and divide them by the depicted ‘‘DJIA Divisor’’. Adjustments of this divisor ensure that various corporate actions

such as stock splits do not affect the index value. (B) We analyze DJIA values and prices of all index components for 72 years fromMarch 15, 1939 until

December 31, 2010. Vertical dashed lines correspond to events in which at least one stock was removed from the index and replaced by another stock. The

index changes are explicitly taken into account to ensure that the dataset, comprising 18,596 trading days, accurately reflects all 30 daily closing prices

needed for the index calculation. We use current and historical ticker symbols to abbreviate company names50.
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The normalized time series ofDJIA index returns,R(t,Dt), is given by

R t,Dtð Þ~

rDJIA t,Dtð Þ{
1

T

X

T

t~1

rDJIA tð Þ

sDJIA Dtð Þ
: ð4Þ

In each time interval comprising Dt trading days, we calculate a local
correlation matrix consisting of Pearson correlation coefficients49

capturing the dependencies among individual stock returns. Time-
dependent returns of an individual stock i are given by

ri tð Þ~
log pi tz1ð Þð Þ

log pi tð Þð Þ
: ð5Þ

In a Dt trading day interval, we calculate a correlation coefficient
between return time series of stock i and return time series of stock j
by

ci,j t,Dtð Þ~

Dt
P

tzDt{1

t~t

ri tð Þrj tð Þ{
P

tzDt{1

t~t

ri tð Þ
P

tzDt{1

t~t

rj tð Þ

Dt2si t,Dtð Þsj t,Dtð Þ
ð6Þ

with the standard deviation of return time series i determined in the
same time interval comprising Dt trading days defined as

si t,Dtð Þ:
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The mean correlation coefficient of all DJIA components is given by
the mean of all non-diagonal matrix elements of ci,j

C t,Dtð Þ~
1

N N{1ð Þ

X

i,j,i=j

ci,j t,Dtð Þ ð8Þ

Figure 2 | Visualization of the analysis method. (A) For a time interval of Dt trading days, we calculate for the index the price return log(pDJIA(t1Dt))/

log(pDJIA(t)) in this interval. (B) We determine the Pearson correlation coefficients of all pairs of all 30 DJIA components depicted in a matrix of

correlation coefficients. Ticker symbols are used to abbreviate company names in this example.We calculate themean correlation coefficient by averaging

over all non-diagonal elements of this matrix.
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Figure 3 | Quantification of state-dependent correlations among index components. (A) Graphs reflect the relationship between the average correlation
coefficientC among stocks belonging to the Dow Jones Industrial Average and its normalized return in intervals ofDt trading days. Themean correlation

coefficient shows a striking, non-constant behavior, with aminimum between 0 and11 standard deviations reflecting typical market conditions. For the

range of all Dt values analyzed, we find the data collapse onto a single line. Corresponding error bars are shown in Fig. 4A. The data collapse suggests that

the striking increase of themean correlation coefficient for positive and negative values of the normalized index return is independent of the time interval

Dt. The largest mean correlation coefficients coincide with the most negative index returns. (B) Normalized DJIA returns, R(t,Dt), and mean correlation

coefficients, C(t, Dt), shown for Dt 5 10 days. For both time series, we reject the null hypothesis of non-stationarity on the basis of results from the

Augmented Dickey-Fuller test. For R(t, Dt 5 10), we obtain DF 5 224.28, p , 0.01, while for C(t, Dt 5 10) we obtain DF 5 213.45, p , 0.01.
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Figure 3A depicts the relationship between normalizedDJIA index
return and corresponding mean correlation coefficient capturing the
dependency amoung its components. Figure 3B depicts both nor-
malized DJIA index returns and mean correlation coefficients which
are used in our analysis forDt5 10 days. Negative index returns tend
to come with stronger correlation coefficients than positive index
returns (Fig. 3A). Results for different time intervals Dt collapse into
one single curve, suggesting a universal relationship.
To quantify the relationship between normalized index return and

average correlation, we aggregate mean correlation coefficients for
different values ofDt ranging from 10 trading days to 60 trading days
(Fig. 4),

C� tð Þ~
1

Dtmax{Dtminz1

X

Dtmax

Dt~Dtmin

C t,Dtð Þ: ð9Þ

We find consistency with two linear relationships quantifying the
increase of the aggregated correlation C1 for positive index return R
and the aggregated correlation C2 for negative index return R,

Cz
:azRzbz ð10Þ

with a1 5 0.0646 0.002 and b1 5 0.1886 0.004 (p-value, 0.001)
quantifies the right part in Fig. 4A. The aggregatated correlations,

C{
:a{Rzb{ ð11Þ

with a2 5 20.085 6 0.002 and b2 5 0.267 6 0.005 (p–value ,
0.001) quantifies the left part in Fig. 4A. The larger is a negative or
positive DJIA return the larger is the corresponding mean correla-
tion. In contrast, a reference scenario of randomly shuffled stock
returns leads to a constant relationship (Fig. 4B), supporting our
findings in Fig. 4A. However, this method destroys all correlations
of this complex financial system and not only the link between
aggregated correlation C* and normalized index returns R. As an
additional test, we use non-shuffled time series of underlying stock
returns for our analysis and randomly shuffle the DJIA return time
series only (Fig. 4C).We find that the linear relationships reported in
Fig. 4A also vanishes in this scenario highlighting the robustness of
our findings.
Our findings are qualitatively consistent with results reported in

previous work40,43,44 but quantitatively different. Instead of linear
relationships, Reigneron et al.40 suggest that a quadratic term should
be included in the linear regressions of the dependence of mean
correlation on the index return on the previous day.

Discussion
In summary, we find a universal relationship between the mean
correlation among DJIA components which can be considered as a
stock market portfolio and the normalized returns of this portfolio.
This suggests that a ‘‘diversification breakdown’’ tends to occur when
stable correlations are most needed for portfolio protection. Our
findings, which are qualitatively consistent with earlier findings42,44

but quantitatively different, could be used to anticipate changes in
mean correlation of portfolios when financial markets are suffering
significant losses. This would enable a more accurate assessment of
the risk of losses. Thus, we suggest that in order to anticipate under-
lying correlation risks the possibility exists to hedge index deriva-
tives. Our results could also shed light on why correlation risks in
mortgage bundles were underestimated at the beginning of the recent
financial crisis. Future work will build upon the relationship quan-
tified here to uncover the underlying mechanisms governing this
phenomenon.
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