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Many genome variants shaping mammalian phenotype are hypoth-

esized to regulate gene transcription and/or to be under selection.

However, most of the evidence to support this hypothesis comes

from human studies. Systematic evidence for regulatory and evolu-

tionary signals contributing to complex traits in a different mamma-

lian model is needed. Sequence variants associated with gene

expression (expression quantitative trait loci [eQTLs]) and concentra-

tion of metabolites (metabolic quantitative trait loci [mQTLs]) and

under histone-modification marks in several tissues were discovered

frommultiomics data of over 400 cattle. Variants under selection and

evolutionary constraint were identified using genome databases of

multiple species. These analyses defined 30 sets of variants, and for

each set, we estimated the genetic variance the set explained across

34 complex traits in 11,923 bulls and 32,347 cowswith 17,669,372 im-

puted variants. The per-variant trait heritability of these sets across

traits was highly consistent (r > 0.94) between bulls and cows. Based

on the per-variant heritability, conserved sites across 100 vertebrate

species and mQTLs ranked the highest, followed by eQTLs, young

variants, those under histone-modification marks, and selection sig-

natures. From these results, we defined a Functional-And-Evolutionary

Trait Heritability (FAETH) score indicating the functionality and pre-

dicted heritability of each variant. In additional 7,551 cattle, the high

FAETH-ranking variants had significantly increased genetic variances

and genomic prediction accuracies in 3 production traits compared

to the low FAETH-ranking variants. The FAETH framework combines

the information of gene regulation, evolution, and trait heritability

to rank variants, and the publicly available FAETH data provide a set

of biological priors for cattle genomic selection worldwide.
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Understanding how mutations lead to phenotypic variation
is a fundamental goal of genomics. With a few exceptions,

complex traits with significance in evolution, medicine, and
agriculture are determined by many mutations and environmental
effects. Genome-wide association studies (GWASs) have been
successful in finding associations between single-nucleotide poly-
morphisms (SNPs) and complex traits (1). Usually, there are many
variants, each of small effect, which contribute to trait variation.
Consequently, very large sample size is needed to find significant
associations that explain most of the observed genetic variation. In
humans, the sample size has reached over 1 million (2).
To test the generality of the findings in humans, it is desirable to

have another species with very large sample size, and cattle is a
possible example. There are over 1.46 billion cattle worldwide (3),
and millions are being genotyped or sequenced as well as pheno-
typed (4, 5). Cattle have been domesticated from 2 subspecies of
the humpless taurine (Bos taurus) and humped zebu (Bos indicus),
which diverged ∼0.5 million years ago from extinct wild aurochs
(Bos primigenius) (6). The increasing amount of genomic data and

an outbred genome make cattle the only comparable GWASmodel
to humans. In addition, cattle have a very different demographic
history than humans. While humans went through an evolutionary
bottleneck about 10,000 to 20,000 y ago and then expanded to a
population of billions, cattle have declined in effective population
size due to domestication and breed formation, leading to a dif-
ferent pattern of linkage disequilibrium (LD) to humans. Insights
into the genome–phenome relationships from cattle provide a
valuable addition to the knowledge for other mammals. The
knowledge of cattle genomics is also of direct practical value as
rearing cattle is a major agricultural industry worldwide.
Despite the huge sample sizes used in human GWASs, identi-

fication of the causal variants for a complex trait is still difficult.
This is due to the small effect size of most causal variants and the
LD between variants. Consequently, there are usually many vari-
ants in high LD, any one of which could be the cause of the var-
iation in phenotype. Prioritization of these variants can be aided by
functional information on genomic sites. For instance, mutations
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that change an amino acid are more likely to affect phenotype than
synonymous mutations.
Many mutations affecting complex traits regulate gene

transcription-related activities. This has been demonstrated in
many studies of human genomics, including but not limited to the
analysis of intermediate trait quantitative trait loci (QTLs), such as
metabolic QTLs (mQTLs) (7) and expression QTLs (eQTLs) (8)
and analysis of regulatory elements, such as promoters (9) and
enhancers (10), which can be identified with chromatin immuno-
precipitation sequencing (ChIP-seq). In animals, the Functional
Annotation of Animal Genomes (FAANG) project has started
(11), and animal functional data have been accumulating (12–14).
However, it is unclear which types of functional information im-
prove the identification of causal mutations.
Mutations affecting complex traits may be subject to natural or

artificial selection, which leaves a “signature” in the genome (15,
16). Given the unique evolutionary path of cattle, which has been
significantly shaped by human domestication (17), it is attractive to
test whether variants showing signatures of selection contribute to
variation in complex traits. Mutations within genomic sites that are
conserved across species may also affect complex traits. A previous
study in humans showed that among a number of functional an-
notations, conserved sites across 29 mammals had the strongest
enrichment of heritability in 17 complex traits (18).
We aim to determine which of several possible indicators of

function are most useful for predicting sequence variants that are
most likely to affect 34 traits in B. taurus dairy cattle. The indi-
cators considered fall into 3 groups: 1) functional annotations of
the bovine genome based, for instance, on ChIP-seq experi-
ments; 2) evolutionary data, such as a site being under selection;
and 3) GWAS data from traits that are relatively close to the
primary action of the mutation, such as gene expression. Using
these indicators of function, we define 30 sets of variants and
estimate the variance explained by each set across 34 traits in
44,270 cattle. We then combine the estimates of heritability per
variant across traits and across functional and evolutionary cat-
egories to define a Functional-And-Evolutionary Trait Herita-
bility (FAETH) score that ranks variants on variance explained
in complex traits. We validate the FAETH score in an in-
dependent dataset of 7,551 Danish cattle. The FAETH score of
over 17 million variants with detailed user instructions is publicly
available at https://doi.org/10.26188/5c5617c01383b (19). A tu-
torial demonstrating the calculation of the FAETH score along
with demo data and R scripts can be found at https://ruidongxiang.
com/2019/07/19/calculation-of-faeth-score-2/.

Results

Analysis Overview.Our approach was to estimate the trait variance
explained by a set of variants defined by some external data, such
as the mapping of the gene expression QTLs (geQTLs), RNA
splicing QTLs (sQTLs), or genome annotation, for 34 traits mea-
sured in dairy cattle. Sequence variants available to this study in-
cluded over 17 million SNPs and indels. Any large set of variants
can explain almost all of the genetic variance due to the LD be-
tween surrounding and causal variants. Therefore, we fitted each
externally defined set of variants in a model together with a
standard set of 630,000 SNPs from the bovine high-density (HD)
SNP array. We combined the results from all 34 traits and all sets
of variants to derive a score for each variant based on its expected
contribution to the genetic variance in these 34 traits and tested
the validity of this score in an independent cattle dataset.
Our analysis had 4 major steps (Fig. 1).

1) The 17 million sequence variants (1000 Bull Genomes Run6)
(20) were classified according to external information from the
discovery analysis of the function and evolution of each geno-
mic site. The basis for this classification was either publicly
available data or our own data as described in Materials and
Methods. The genome was partitioned 15 different ways as
listed in Table 1. For example, the category of geQTL parti-
tioned the genome variants into a set of targeted variants with

geQTL P value < 0.0001 and a set of remaining variants (i.e.,
the “rest” of the variants). Another partition, e.g., variant an-
notation, based on a publicly available annotation of the bovine
genome, divided variants into several nonoverlapping sets, such
as “intergenic,” “intron,” and “splice sites.”

2) For each set of variants in each partition of the genome,
separate genomic relationship matrices (GRMs) were calcu-
lated among the 11,923 bulls or 32,347 cows. Where a parti-
tion included only 2 sets (e.g., geQTL and the rest), a GRM
was calculated only for the targeted set (e.g., geQTL).

3) For each of the 34 traits, the variance explained by random
effects described by each GRM was estimated using restricted
maximum likelihood (this analysis is referred to as a genomic
REML or GREML). Each GREML analysis fitted a random
effect described by the targeted GRM and a random effect
described by the GRM calculated from the HD SNP chip
(630,002 SNPs). Each GREML analysis estimated the propor-
tion of genetic variance, h2, explained by the targeted GRM in
each of the 34 decorrelated traits (Cholesky orthogonalization)
(ref. 21 and Materials and Methods) in each sex. The h2

explained by each targeted set of variants was divided by the
number of variants in the set to calculate the h2 per variant,
i.e., per-variant h2, and this was averaged for each variant
across the 34 decorrelated traits.

4) The FAETH score of all variants was calculated by averaging
the per-variant h2 across traits and informative partitions
(13 out of 15). Two partitions determined as not informative
were not included in the FAETH score computation. Variance
explained and the accuracy of genomic predictions (using an
independent dataset of 7,551 Danish cattle with 3 milk pro-
duction traits) was compared between variants of high and low
FAETH score.

Characteristics of Variant Sets with Regulatory and Evolutionary

Significance. Based on the 15 partitions of the genome in Table
1, we defined 30 sets of variants. The details of the discovery
analysis defining these sets can be found in Materials and Methods.
Briefly, regulatory variant sets including geQTLs, sQTLs, and
allele-specific expression QTLs (aseQTLs) were discovered from
multiple tissues, including white blood and milk cells, liver, and
muscle. The milk cells were dominated by immune cells. However,
they also contained mammary epithelial cells and had high tran-
scriptomic similarity to the mammary gland tissue (13, 22). The
polar lipid metabolites mQTLs were discovered using a multitrait
metaanalysis (23) of 19 metabolite profiles, such as phosphatidyl-
choline, phosphatidylethanolamine, and phosphatidylserine (24),
from bovine milk fat. The ChIP-seq data used in our analysis
contained previously published H3K27Ac and H3K4me3 marks in
liver and muscle tissues (25, 26) and newly generated H3K4Me3
marks from the mammary gland.
Fig. 2 illustrates some of the properties of these variant sets.

Many sQTLs with strong effects on the intron excision ratio (27)
were discovered in a metaanalysis of sQTLs mapped in white
blood and milk cells, liver, and muscle (13) (Fig. 2A). Many sig-
nificant aseQTLs were discovered using a gene-wise metaanalysis
of the effects of the driver variant (dVariant) on the transcript
variant (tVariant) at exonic heterozygous sites (28) from white
blood and milk cells (Fig. 2B). Fig. 2C shows that variants tagged
by the marks of H3K4Me3, a marker for promoters, were closer to
the transcription start site than other variants.
The variant annotation partition had 7 merged sets (Table 1 and

SI Appendix, Table S1) based on the Variant Effect Prediction of
Ensembl (29) and NGS-SNP (30). Additional information of variant
function annotation was obtained from the Human Projection of
Regulatory Regions (HPRS) as published in ref. 31 and predicted
CCCTC-binding factor (CTCF) sites as published in ref. 32.
The evolutionary variant sets were discovered from across- and

within-species genome analyses. Variants within cross-species
conserved sites were lifted over from human genome sites (hg38),
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those with the PhastCon score >0.9 calculated using genome se-
quences of 100 vertebrate species. The LiftOver (https://genome.
ucsc.edu/cgi-bin/hgLiftOver) rate from human conserved sites to
bovine was 92.3%, which was higher than the LiftOver rate using
the human sites with the PhastCon score >0.9 across 29 mammalian
species (33, 34). Detailed results of the analysis of conserved sites
can be found in SI Appendix, Note S1.
The within-species evolutionary analysis used the whole-genome

sequence variants from Run 6 of the 1000 Bull Genomes project
(35). Those variants with higher frequency in dairy than in beef
breeds (“selection signature”; Table 1, Fig. 2D, and SI Appendix,
Fig. S1) were detected from a GWAS where the breed type was
modeled as a binary phenotype in the linear mixed model (36) of
15 beef and dairy breeds.
With the 1000 Bull Genomes data, we used a statistic to identify

variants possibly subject to recent artificial and/or natural selection,
PPRR (the proportion of positive correlations [r] with rare variants).
SI Appendix, Fig. S2A illustrates a coalescence where a mutation has
been positively selected, i.e., is relatively young and has increased in
frequency rapidly. In this coalescence, the selected mutation was
seldom on the same branch as rare mutations, and so the LD r
between the selected mutation and rare alleles was typically nega-
tive. This was similar to the logic employed by ref. 37. In this par-

tition of the genome, the 1% of variants with the lowest PPRR, after
correcting for the variants’ own allele frequency (SI Appendix, Fig.
S2 and Materials and Methods), were defined as young variants.
The quartile categories partitioned the genome variants into

4 sets of variants of similar size based on either their LD score
(sum of LD r2 between a variant and all of the variants in the
surrounding 50-kb region, GCTA-LDS) (38) or the number of
variants within a 50-kb window (variant density) or their minor
allele frequency (MAF) (38) (Table 1). Note that the fourth
quartile had the highest value, and the first quartile had the lowest
value for LD score, MAF, and SNP density.

The Proportion of the Genetic Variance for 34 Traits Explained by Each

Set of Variants. In the test datasets of 11,923 bulls and 32,347 cows,
common variants (MAF ≥ 0.001) of the sets described above were
used to make GRMs (36). Each of these GRMs was then fitted
together with the high-density variant chip GRM (variant number =
632,002) in the GREML analysis to estimate the proportion of
additive genetic variance explained by each functional and evolu-
tionary set of variants, h2set, in each of the 34 decorrelated traits,
separately in bulls and cows (Table 2). Overall, the ranking of the

averaged h2set across 34 traits, h2set, was highly consistent between

bulls and cows (r = 0.94). All of the h2set estimates, except that of the

Fig. 1. Overview of the analysis. The discovery analysis involved the selection of variants from functional and evolutionary datasets; this figure shows examples of

some of the datasets used. In the test analysis, each of the variant sets was used to make GRMs. Then, each one was analyzed in the GREML (gGi), together with the

high-density SNP chip GRM (gGHD) for each of the 34 traits (Yj, j= f1..34g). Once the heritability, h2
set, of each gGi was calculated, it was averaged across traits and

adjusted for the number of variants used to build the gGi to calculate the per-variant h2
set. The FAETH scoring of each variant was derived based on their

memberships to differentially partitioned sets and the per-variant h2
set. In the validation analysis, variants with high and low FAETH ranking were tested in a Danish

cattle dataset for GREML and genomic prediction of 3 production traits. The Australian test dataset contained 9,739 bulls and 22,899 cows of Holstein breed,

2,059 bulls and 6,174 cows of Jersey, 2,850 cows of mixed breeds, and 125 bulls and 424 cows of Australian Red. The Danish reference set contained 4,911 Holstein,

957 Jersey, and 745 Danish Red bulls, and the Danish validation population contained 500 Holstein, 517 Jersey, and 192 Danish Red bulls.
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intergenic variants, were higher for bull traits than cow traits,
consistent with the higher heritability of phenotypic records in bulls
than in cows (39) because bull phenotypes are actually the average
of many daughter phenotypes of the bull. When the HD variants were
fitted alone, they explained on average 17.8% (±2.7%) of the variance

in bulls and 4.7% (±1.4%) in cows (SI Appendix, Table S2). The h2set
estimates of mQTLs and the conserved sites across 100 species
(termed as “conserved 100 species” in Table 2 and the following text)
were much larger than their genome fractions in both sexes (Table 2).

For other variant sets, the h2set estimates generally increased with the
number of variants in the set. For example, eQTLs, including exon
expression QTLs (eeQTLs), sQTLs, and aseQTLs, which included
around 5% of the total variants, explained 11 to ∼15% of trait
variance in bulls and 2.5 to ∼4% of trait variance in cows. The
young variants inferred by the statistic PPRR, which accounted for
0.54% of the total number of variants, explained 0.78% of the trait
variance in bulls and 0.12% of the trait variance in cows.
The h2set increased greatly from MAF quartiles 1 to 4. However,

the dramatically low h2set estimates for the first MAF quartile may
be associated with the reduced imputation accuracy for low MAF

variants. By contrast, h2set increased only slightly with LD score and
even less with variant density.

Estimates of h2set were divided by the number of variants in the

set to calculate the per-variant h2set allowing comparison of the
genetic importance of variant sets made with a varied number of

variants. Since the per-variant h2set was estimated independently in
bulls and cows and yet showed high consistency between sexes (SI

Appendix, Fig. S3), the average per-variant h2set across sexes was
used to rank each variant set (Fig. 3). Conserved 100 species and
mQTLs made the top of the rankings (Fig. 3), due to their highly

concentrated h2set (41.4% in bulls and 17.4% in cows for conserved
100 species, and 0.71% in bulls and 0.12% in cows for mQTLs;
Table 2) in a relatively small genome fraction (2.2% and 0.03%,
respectively; Table 2). These 2 top sets were followed by sev-
eral expression QTL sets, including eeQTLs, sQTLs, geQTLs,

and aseQTLs (Fig. 3). Similar rankings were achieved by the
“non.coding related” set (0.03% of genome variants) that included
variants annotated as “non_coding_transcript_exon_variant” and
“mature_miRNA_variant” (SI Appendix, Table S1), the “splice.site”
set (0.06% of genome variants, including all of the variants an-
notated as associated with splicing functions), and the set of
young variants (0.54% of genome variants). The “UTR” set, which
included variants annotated as within 3′ and 5′ untranslated regions
of genes, and the “geneend” set, which included variants annotated
as downstream and upstream of genes, both had modest rank-
ings along with the ChIP-seq and selection signatures sets. The
“coding.related” set, dominated by variants annotated as synony-
mous and missense (SI Appendix, Table S1), ranked higher than
the top 1% HPRS, intergenic variants, and predicted CTCF sites.
Intron and the first quartile MAF set had the lowest per variant h2.
The impact of MAF on the ranking of variant sets was examined

by calculating, for each set, the per-variant h2set expected from the
number of variants in a set belonging to each MAF quartile. This

MAF expected per-variant h2set was then subtracted from the ob-

served per-variant h2set to calculate the MAF adjusted per-variant

h2set (SI Appendix, Note S2). Excluding the sets based on MAF

quartiles, the ranking of the unadjusted per-variant h2set was well
correlated (r = 0.9) with their ranking on the MAF adjusted per-

variant h2set. These results suggested an overall small impact of

MAF on the variant set ranking of per-variant h2set.

Variants from sets highly ranked for per-variant h2set were high-
lighted in important QTL regions with the multitrait GWAS results
(Fig. 4). In the expanded region of beta-casein (CSN2), a major but
complex QTL for milk protein due to the existence of multiple QTL
with strong LD, different high-ranking variant sets tended to tag
variants with strong effects from multiple locations (Fig. 4A). Many
variants with the strongest effects and close to CSN2 were tagged by
sQTLs. Several clusters of variants from up- and downstream of
CSN2 with slightly weaker effects were tagged by sets of ChIP-seq
marks, young variant, and mQTLs. Conversely, for the expanded

Table 1. Variant sets selected from functional and evolutionary partitions

Partitions Targeted variant sets (no. of variants) Animal no.

Gene expression QTLs geQTLs with metaanalysis P < 1e−4 from blood and milk cells, liver, and muscle (110,200) 209

Exon expression QTLs eeQTLs with metaanalysis P < 1e−4 from blood and milk cells, liver, and muscle (945,832) 209

Splicing QTLs sQTLs with metaanalysis P < 1e−4 from blood and milk cells, liver, and muscle (1,112,324) 209

Allele specific expression QTLs aseQTLs with metaanalysis P < 1e−4 from blood and milk cells (1,100,446) 112

Polar lipid metabolite QTLs mQTLs with metaanalysis P < 1e−4 from 19 types of milk metabolites (5,365) 338

ChIP-seq peaks Under H3K4Me3 and H3K27Ac peaks from liver, muscle, and mammary gland (1,166,795) 15

Variant annotation Annotated as UTR (42,350), intergenic (11,869,145), gene end (1,007,214), intron (4,629,025),

splice.sites (11,080), coding.related (105,969), and noncoding.related (4,589)

na

Predicted CTCF sites Variants tagged by mapped CTCF-binding motifs from humans, mice, dogs, and macaques as

published in ref. 32 (252,234)

na

HPRS Genome sites within the top 1% gkm SVM score from the HPRS as published in ref. 31

(169,773)

na

Conserved 100 species Bovine genome sites lifted over from human sites with PhastCon score (34) > 0.9 calculated

using genomes of 100 vertebrate species (378,301)

na

Selection signature GWAS P < 1e−4 between 7 beef and 8 dairy breeds, 1000 Bull Genome (6,218) 1,370

Young variants Ranked within the bottom 1% of the proportion of positive correlations (PPRR) with rare

variants, 1000 Bull Genome (893,986)

2,330

LD score quartiles First quartile (4,417,033/4,416,205), second quartile (4,418,731/4,419,930), third quartile

(4,415,633/4,415,481), and fourth quartile (4,417,975/4,417,756)

44,270

Variant density quartiles First quartile (4,429,833), second quartile (4,414,996), third quartile (4,427,220), and fourth

quartile (4,397,323)

MAF quartiles First quartile (4,414,292/4,417,036), second quartile (4,421,093/4,417,428), third quartile

(4,416,834/4,418,157), and fourth quartile (4,417,153/4,418,157)

For the 3 categories of quartiles, the numbers of variants on the left and right side of the slash were for the bulls and cows, respectively. LD score indicates

the sum of linkage disequilibrium correlation between a variant and all variants in the surrounding 50-kb region, GCTA-LDS (38). The details of the variant

annotations can be found in SI Appendix, Table S1. The animal numbers are the sample size in each discovery analysis. Fourth quartile scores > third quartile >

second quartile > first quartile. na, not applicable.
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region of microsomal GST 1 (MGST1), a major QTL for milk fat,
variants from high-ranking sets were more enriched in 2 major loca-
tions (Fig. 4B). The top variant within the MGST1 gene was again a
sQTL, confirming previous results that regulatory variants are enriched
in this region (13). Although not enriched in theMGST1 peak region,
conserved sites tagged many variants that were not tagged by other top
sets. The young variant sets appear to have tagged a different variant
cluster around 0.7 Mb downstream from MGST1 (Fig. 4B).

The FAETH Score of Sequence Variants. To quantify the relative
importance of variants using a combination of functionality, evo-
lutionary significance as well as their trait heritability, a framework
was introduced to score variants based on their memberships to
the sets of variants. Each time the genome variants were parti-
tioned into nonoverlapping sets, each variant was a member of

only one set and was assigned the per-variant h2set of that variant.
Therefore, all variants were assigned the same number (13 parti-

tions) of per-variant h2set, and the average of these 13 partitions was
calculated for each variant and called the FAETH score. A cri-

terion of per-variant h2set > per-variant h2rest was also imposed to
determine whether the variant set was informative. This criterion
determined that 2 variant sets (HPRS and predicted CTCF sites)
were not informative, and they were not included in the FAETH
scoring (Materials and Methods). The FAETH score of 17,669,372

sequence variants for their genetic contribution to complex traits
has been made publicly available at https://doi.org/10.26188/
5c5617c01383b (19). A tutorial of the calculation of FAETH scores

after h2set was obtained can be found at https://ruidongxiang.com/
2019/07/19/calculation-of-faeth-score-2/.

Variants with High FAETH Score Have Consistent Effects. In the above
analyses, the effect of a variant was estimated across all breeds.
However, it is possible to fit a nested model in which both the main
effect and an effect of the variant nested within a breed are in-
cluded. If a variant is causal or in high LD with a causal variant, we
might expect the effect to be similar in all breeds. Whereas if the
variant is merely in LD with the causal variant, the effect might
vary between breeds. Based on the FAETH score, the top 1/3 and
bottom 1/3 ranked sequence variants in the Australian data were
selected as “high” and “low” ranking variants, respectively. Fig. 5A
shows the estimates of across-breed and within-breed variances for
both high- and low-ranking variants. In both cases, the within-
breed variance was small, but the high-ranking variants had a
larger across-breed variance and a smaller within-breed variance
than the low-ranking variants. This implied that the FAETH score
identified variants with consistent phenotypic effects across breeds.
Additional data were obtained to test the FAETH score. Table

3 highlights the FAETH annotation of several causal or putative
causal mutations where all of them were categorized as high FAETH

Fig. 2. Examples of regulatory and evolutionary signals from the discovery analysis. (A) A Manhattan plot of the metaanalysis of sQTLs from white blood and milk

cells and liver and muscle tissues. (B) A Manhattan plot of the metaanalysis of aseQTLs in the white blood cells. (C) A distribution density plot of variants tagged by

H3K4Me3 ChIP-seq mark from mammary gland within 2 Mb of gene transcription start site. (D) Artificial selection signatures between 8 dairy and 7 beef cattle

breeds with the linear mixed-model approach using the 1000 Bull Genome database. The blue line indicates −log10(P value) = 4.
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ranking. Fig. 5B showed that the high-ranking variants had signifi-
cantly (Z-score test: P < 0.0001) higher heritability estimates than the
low-ranking ones for fat yield, body length, and rump length (original
traits, not the Cholesky-transformed traits) that were not part of the
Australian dairy 34 traits used to calculate the FAETH score. Also,
as a proof of concept, high FAETH-ranking variants had signif-
icant enrichment (P = 4.5e−35), with pleiotropic SNPs significantly
associated with 32 traits in beef cattle containing B. taurus and B.
indicus subspecies (SI Appendix, Fig. S4). The enrichment of the low
FAETH-ranking variants in these significant beef cattle pleiotropic
SNPs was not different from random (SI Appendix, Fig. S4). These
results supported the generality of the FAETH variant ranking in
different traits, breeds, and subspecies.

Validation of the FAETH Score in Danish Cattle. An independent
dataset of 7,551 Danish cattle of multiple breeds was used to test
the FAETH score. The Australian high- and low-ranking variants
were mapped in the Danish data. In the GREML analysis of Danish
data, the high-ranking variants had significantly higher heritability
than the low-ranking variants across three production traits (Z-score
test: P < 0.001 for protein yield and P < 0.0001 for fat and milk yield)
(Fig. 5C). The genomic best linear unbiased prediction (gBLUP) of
Danish traits was also evaluated where the models were trained in
the multiple-breed reference data to predict 3 production traits in
each of 3 breeds (3 × 3 = 9 scenarios; Fig. 5D). Out of these 9 sce-
narios, high-ranking variants had higher accuracies than the low-

ranking variants in 8 scenarios. Based on the sample sizes of the
Danish candidate subset (500 Holstein, 517 Jersey, and 192 Danish
Red), the significance levels of the increase in prediction accuracy for
the high-ranking variants for these 8 scenarios are specified in Fig. 5D.

Discussion

GWASs have been very successful in finding variants associated
with complex traits, but they have been less successful in identifying
the causal variants because often there are a large group of vari-
ants, in high LD with each other (particularly in livestock) that are
all associated with the trait. To distinguish among these variants, it
would be useful to have information, external to the traits being
analyzed, that points to variants that are likely to have an effect on
phenotype. In this paper, we have evaluated 30 sources of external
information based on genome annotation, evolutionary data, and
intermediate traits such as gene expression and milk metabolites.
Then, we assessed the variance that each set of variants explained
when they were included in a statistical model that also included a
constant set of 600,000 SNPs from the bovine HD SNP array. The
purpose of this method is to find sets of variants that add to the
variance explained by the HD SNPs, presumably because they are
in higher LD with the causal variants than the HD SNPs are. Since
the causal variants themselves are likely to be among the sequence
variants analyzed, this method is a filter for classes of variants that
are enriched for causal variants or variants in high LD with them.
Although developed in cattle, the general framework of estimating
FAETH score by combining the information of functionality,
evolution, and complex trait heritability can be directly applied to
other species. Additional tests of FAETH outside of the analyzed
34 traits and multiple beef cattle traits and the positive validation
results in the Danish data support the across-breed, across-
subspecies, and across-country usage of the FAETH score.
Further, FAETH score not only contains a ranking of millions of
variants that can be used as biological priors for genomic pre-
diction (e.g., BayesRC) (40) but also includes the information of
the variant membership to different functional and evolutionary
categories. This additional information can be used by other
researchers to annotate their variants of interests (e.g., Table 3).
Our results agreed with the report in humans (18) that the

conserved sites had very strong enrichment of trait heritability.

Table 2. The relative proportion of selected variant in sets

compared to the total number of variants analyzed (genome

fraction) and their averaged heritability (h2
set) in bulls and cows,

across 34 traits

Category

Genome

fraction, %

h2 in

bulls, %

h2 in

cows, %

eeQTLs 4.77 14.52 (2.2) 3.96 (1.2)

sQTLs 5.57 15.08 (2.5) 3.88 (1.2)

aseQTLs 5.21 11.0 (2.0) 2.47 (0.7)

mQTLs 0.03 0.71 (0.2) 0.12 (0.04)

geQTLs 0.53 1.54 (0.4) 0.19 (0.06)

ChIP-seq 6.60 4.21 (0.8) 0.90 (0.3)

Noncoding.related 0.03 0.06 (0.02) 0.013 (0.004)

Splice.sites 0.06 0.08 (0.02) 0.02 (0.005)

UTR 0.24 0.18 (0.03) 0.03 (0.01)

Coding.related 0.60 0.26 (0.06) 0.04 (0.012)

Geneend 5.70 3.76 (0.8) 0.80 (0.2)

Intron 26.2 5.56 (0.7) 1.53 (0.3)

Intergenic 67.2 10.3 (1.3) 17.3 (2.2)

Predicted CTCF sites 1.43 0.36 (0.08) 0.046 (0.02)

HPRS 0.96 0.31 (0.08) 0.045 (0.02)

Conserved 100 species 2.1 41.4 (2.6) 17.4 (2.3)

Selection signatures 0.02 0.011 (0.004) 0.002 (0.0008)

Young variants 0.54 0.78 (0.2) 0.12 (0.05)

LD score q1 25 4.57 (0.6) 1.18 (0.3)

LD score q2 25 5.56 (0.7) 1.45 (0.3)

LD score q3 25 6.38 (0.8) 1.75 (0.4)

LD score q4 25 6.94 (0.9) 2.01 (0.5)

Variant density q1 25 5.59 (0.7) 1.49 (0.3)

Variant density q2 25 5.42 (0.7) 1.45 (0.3)

Variant density q3 25 5.72 (0.7) 1.55 (0.3)

Variant density q4 25 5.99 (0.7) 1.65 (0.4)

MAF q1 25 1.36 (0.2) 0.35 (0.08)

MAF q2 25 11.5 (1.3) 3.51 (0.7)

MAF q3 25 29.2 (2.4) 10.3 (1.8)

MAF q4 25 40.5 (2.8) 15.6 (2.4)

SEs are in parenthesis. q1 ∼ q4 were the genome partitions based on the

first, second, third, and fourth quartiles of MAF, LD score, and the number of

variants (variant density) per 50-kb windows. Fourth quartile > third quartile >

second quartile > first quartile.

Fig. 3. The proportion of genetic variances explained by sets of variants se-

lected from functional and evolutionary categories. The ranking of variant sets

based on the log10 scale of per-variant h2
set, averaged across bulls (left error bar)

and cows (right error bar).
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Interestingly, our analysis showed that genomic sites with conser-
vation across a larger number of species appeared to have tagged
variants with stronger enrichment of heritability, compared to the
sites conserved across a smaller number of species (SI Appendix,
Note S1). It may be worth studying the impact of the extent of

the cross-species conservation on the amount of trait variation
explained by the tagged variants in the future.
Our analysis also highlights the importance of intermediate trait

QTL, including QTLs for metabolic traits and gene expression
(mQTLs, geQTLs, eeQTLs, sQTLs, and aseQTLs). This is not a

Fig. 4. Examples of top-ranked variant sets in important bovine trait QTL. (A) Manhattan plot of the metaanalysis of GWAS of 34 traits in the ±2 Mb region sur-

rounding the beta casein (CSN2) gene, a major QTL for milk protein yield. (B) Manhattan plot of the metaanalysis of GWAS of 34 traits in the ±1 Mb region of the

microsomal GST 1 (MGST1) gene, a major QTL for milk fat yield. The dots are colored based on their set memberships. The black bar between the gray dots and the

X-axis indicates the gene locations.

Fig. 5. Further tests of the variant FAETH score. (A) The heritability of high and low FAETH ranking variants for the multibreed GRM and the within-breed GRM (2

GRMs fitted together) estimated across 34 traits in the Australian data. The error bars are the SE of heritability calculated across 34 traits. (B) The heritability of high

and low FAETH ranking variants for 3 additional traits to the 34 traits in the Australian data used to calculate the FAETH score. (C) Themultibreed heritability of high

and low FAETH variants for 3 production traits in Danish data. The error bars are the SEs of the heritability of each GREML analysis. (D) Prediction accuracy of gBLUP

of 3 production traits in Danish data using high and low FAETH variants (averaged between bulls and cows). The genomic predictors were trained in multiple breeds

and predicted into single breeds (HOL, Holstein; JER, Jersey). P values of significant difference based on Z-score test: •P < 0.1; **P < 0.01; ***P < 0.001; ****P <

0.0001. Note that for the prediction accuracy r, the significance of difference was based on the sample sizes of the Danish candidate subset where there were 500

Holstein, 517 Jersey, and 192 Danish Red (Materials and Methods).

19404 | www.pnas.org/cgi/doi/10.1073/pnas.1904159116 Xiang et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1904159116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1904159116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1904159116


surprising result as the significant contribution of different in-
termediate trait QTLs to complex trait variations have been
reported in humans (7, 27, 41–43) and cattle (13, 44–46). An ad-
vantage of these intermediate traits over conventional phenotypes
is that individual QTL explain a larger proportion of the variance.
For instance, cis eQTL tend to have a large effect on gene ex-
pression. This increases the signal-to-noise ratio and so increases
power to distinguish causal variants from variants in partial LD
with them. However, an intermediate QTLmapping study requires
a large number of resources, especially when considering different
metabolic profiles and tissues with large sample size. In the current
analysis, we utilized several methods to combine results from in-
dividual studies of intermediate QTL mapping (21, 23, 28) (Ma-
terials and Methods and SI Appendix, Eqs. 1, 2, 3, and 5 and Note
S3). This could reduce the noise from individual analyses, and this
is likely to increase the chance of finding causal mutations.
To our knowledge, no study has systematically compared the

genetic importance of mQTLs with eQTLs. The high ranking of
mQTLs over eQTLs in our study might be related to the fact that
the mQTLs were discovered from the milk fat, and the analyzed
phenotype in the test data contained several milk-production traits.
However, out of the 5,365 chosen mQTL variants, 961 variants were
from the ±2 Mb region of DGAT1, while no mQTLs were from
chromosome 5, which harbors MGST1 (SI Appendix, Table S3 and
Fig. 4B), both of which are known major milk fat QTL. This suggests
that many variants from the mQTL set not only influence milk fat
production but may have other functions, including contributing to
variation in the general process of fat synthesis, which is active in many
mammalian tissues. Several large-scale human studies have high-
lighted the importance of mQTLs in various complex traits (7, 47).
Consistent with previous studies in cattle and humans (13, 27,

43), splicing sQTLs and the related eeQTLs ranked slightly
higher than other eQTLs (Fig. 3). Cattle aseQTLs and geQTLs
were found to have a similar magnitude of enrichment with trait
QTL (28) and this is consistent with the current observation.
We proposed a method to identify variants that are young but at

a moderate frequency and found this set was enriched for effects
on quantitative traits (Figs. 3 and 4). However, Kemper et al. (48)
showed that variants identified by selection signatures using tra-
ditional methods, such as fixation index (49) and integrated hap-
lotype score (50) had little contribution to complex traits in cattle.
In the current study, the selection signatures between beef and
dairy cattle (“selection signature” set as shown in Table 1) explained
some genetic variation in complex traits, although its contribution is
relatively small (Table 2 and Fig. 3). It is possible that the inclusion
of many nonproduction traits in the current study increased the
chance of finding the trait-related sequence variants that are under
artificial selection. Also, the use of sequence variants in the current
study may have increased power compared to the study conducted
by Kemper et al. (48), which used HD chip variants.
The set of variants with low PPRR (“young variants”) had a

higher ranking of genetic importance to the complex traits than the
other artificial selection signatures (Fig. 3). The identification of
relatively young variants is based on the theory that very recent
selection will increase the frequency of the favored alleles (37).
Thus, the young variant set could contain variants that were either
under artificial selection and/or recently appeared, and this may be
the reason that it explained more trait variation than the artificial

selection signatures. As shown in Fig. 4, many young variants can
be found in major production trait QTL.
Genome-regulatory elements such as enhancers and promoters

are important regulators of gene expression, and they can be
identified by ChIP-seq assays. In humans, ChIP-seq–tagged bind-
ing QTLs (bQTLs) showed significant enrichments in complex and
disease traits (51). We did not have enough individuals with ChIP-
seq data to identify bQTLs. However, with only a limited amount
of ChIP-seq data, variants tagged by H3K4me3 ChIP-seq showed a
closer distance to the transcription start sites (Fig. 2C), and
H3K4me3 and H3K27ac together tagged variants that had some
contribution to complex trait variation (Fig. 3). Also, the FAETH
ranking of the ChIP-seq–tagged variant set was similar to the
ranking of variant annotation sets of gene end (variants within
regions up- and downstream of genes) and UTR (variants within 3′
and 5′ UTR). It is logical that variants with the potential to affect
promoters and/or enhancers are annotated as close to genes or
located in gene-regulatory regions.
The variant annotation sets of noncoding-related and splice

sites ranked relatively high for their contribution to trait varia-
tion (Fig. 3). Previously, variants annotated as splice sites had a
high ranking of genetic importance to cattle complex traits (52).
The majority of the variants from the noncoding-related set are
“non_coding_transcript_exon_variant” (SI Appendix, Table S1),
which is “a sequence variant that changes noncoding exon se-
quence in a noncoding transcript” according to VEP (29). This
group of variants can be associated with long noncoding RNAs,
and they are found to contribute to complex traits in humans
(53) and cattle (54). Variants annotated as coding-related, of
which the majority of variants are missense and synonymous (SI
Appendix, Table S1), had a relatively low ranking of genetic
importance to complex traits (Fig. 3). It seems a surprising result,
but Koufariotis et al. (52) also reported similar observations in
cattle. Perhaps coding variants that influence phenotype are
subject to purifying selection and hence have low heterozygosity
and hence low contribution to variance.
The contribution of variants with different LD properties to

complex traits is an ongoing debate in humans (55–57). In our
analysis of cattle, a domesticated species with strong LD between
variants, variant LD differences had negligible influence on com-
plex traits (Table 2). Also, variants within regions that have more
variants (variant density) did not explain more trait variation.
Common variants, as expected (58), had a substantial contribution
to complex traits (Table 2 and Fig. 3).
Based on the variant membership to differentially partitioned

genome sets and the value of the per-variant h2set, the FAETH
score of sequence variants combined the information of evolu-
tionary and functional significance and heritability estimates across
multiple complex traits for each variant. This analytical framework
provides a simple but effective and comprehensive ranking for
each variant that entered the analysis. Additional information on
functional and/or evolutionary datasets can be easily integrated
and linked to the variant contributions for multiple complex traits.
A single score for each variant also makes the potential use of
FAETH score easy and straightforward. For example, variants can
be categorized as high and low FAETH ranking to create bi-
ological priors to inform Bayesian modeling for genomic selection
(40). Additionally, different genome partitions of the variant sets
in the FAETH data can be used to annotate interesting variants

Table 3. FAETH annotation of previously identified causal or putative causal mutations for dairy cattle complex

traits using the top variant sets

Loci Causal candidates Annotation Tagging variant sets FAETH ranking

SLC37A1 Chr1:144377960 (45) Intron aseQTL High

DGAT1 Chr14:1802266 (41) Coding.related mQTL, eeQTL, sQTL, aseQTL, ChIP-seq High

FASN Chr19:51386735 (71) Intron mQTL, eeQTL, sQTL, ChIP-seq High

GHR Chr20:31909478 (71) Coding.related Conserved 100 species High

“High” means that the variant was ranked within the top 1/3 of the FAETH score.
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such as finding conserved sites that are also eQTLs. For example,
we used FAETH data to annotate some causal or potential causal
mutations for dairy cattle complex traits (Table 3). These results
could improve our understanding of the biology behind the variant
contribution to complex traits.
The FAETH score was further tested using Australian data. By

building the within-breed GRM and comparing it with the multi-
breed GRM in the Australian data (Fig. 5A) using a method
proposed by Khansefid et al. (59), our analysis implied that the
variants with the high FAETH ranking contained variants with
consistent effects across different breeds. Although estimated us-
ing 34 traits, our results show that FAETH ranking of variants can
distinguish informative and uninformative variants beyond these
34 traits (Fig. 5B). Also, FAETH ranking of variants showed signs
of being able to identify informative genetic markers for multiple
traits in beef cattle including B. indicus subspecies (SI Appendix,
Fig. S4). All of these results support the general use of FAETH
variant scoring across different traits and breeds.
The FAETH score based on GREML using multiple Australian

breeds was first tested with GREML using multiple Danish breeds
(Fig. 5C). In this test, variants with high FAETH ranking explained
significantly more genetic variance in protein, fat, and milk yield
than the low-ranking variants. When the genomic predictors were
trained in multiple Danish breeds and used to predict into single
breeds (Fig. 5D), significant increases in prediction accuracies for
the high-FAETH variants were mostly seen in the Holstein breed,
and the increases for the Jersey breed were not significant. Several
reasons contributed to this, including the most noticeable fact that
the Holstein breed, which is genetically distant from the Jersey (60,
61), dominated both Danish (Holstein: Jersey = 5:1) and Austra-
lian (Holstein: Jersey = 4:1) populations. The relatively small
sample size of the Danish validation population (519 for Jersey
and 192 for Danish Red) reduced the power of Z-score test of
significance of difference between correlations (i.e., prediction
accuracies) of high- and low-FAETH variants. Also, since the
Jersey breed has the smallest effective population size (62), it is
expected that the advantage of a dense set of selected sequence
variants is lowest (or absent) in that breed (63). Future tests in
larger populations with increased breed diversities will provide
better evaluation of the performance of the FAETH-ranked var-
iants in multibreed analyses. Increasing the breed diversity, sample
size, and tissues types in the functional genomic data may also
improve the genomic prediction performances of FAETH ranking
in specific cattle breeds. Nevertheless, the test results of the
FAETH score in additional dairy traits and in beef cattle GWASs
support that the FAETH ranking can prioritize informative vari-
ants in different populations.
In humans, Finucane et al. (18) combined many sources of data

to calculate a prior probability that a variant affects a phenotype.
Our approach is different from theirs in some respects. They used
GWAS summary data and stratified LD score regression, whereas
we used raw data and GREML. They fitted all sources of in-
formation simultaneously, whereas we fitted one variant set at a
time in competition with the HD variants. We were unable to fit all
sources at once with GREML for computational reasons but also
because the extensive LD in cattle makes it harder than in humans
to separate the effects of multiple variant sets. On the other hand,
GREML is more powerful than LD score regression (64).
Our study demonstrates that the increasing amount of genomic

and phenotypic data makes the cattle model a robust and critical
resource for testing genetic hypotheses for large mammals. A re-
cent large-scale study for cattle stature also supports the general
utility of the cattle model in GWASs (5). In the current study, we
highlight the contribution of the variants associated with in-
termediate QTLs and noncoding RNAs to complex traits, and this
is consistent with many observations in human studies (8, 9, 27).
However, we also provide contrasting evidence to results from
humans. We found LD property of variants (e.g., variants from
genomic regions with high LD) had negligible influences on trait
heritability, contrasting with the recent evidence for the strong in-
fluence of LD property on human complex traits (55). In addition,

variants under artificial selection had limited contributions to bo-
vine complex traits, while in humans (where artificial selection is
absent), natural selection clearly operates on complex traits (65).
While the reasons for these contrasting results are yet to be studied,
our findings from cattle add valuable insights into the ongoing
discussions of the genetics of complex traits.
Our study has limitations. While some discovery analyses of

the intermediate QTLs used relatively large sample size, the
number of tissues and/or types of “omics” data included for
discovering expression QTLs and mQTLs is yet to be increased.
Also, in the discovery analysis, the selection criteria for in-
formative variants to be included for building GRMs were rel-
atively simple. In the test analysis, the heritability estimation for
different GRMs used the GREML approach, which has been
under some debate because of its potential bias (56, 66). Analysis
of functional categories by the genomic feature models with
BLUP has been previously tested (67), although this method can
be computationally intensive. We aimed to treat each discovery
dataset as equal as possible, and all GRMs were analyzed in the
test dataset in the same systematic way. The positive results from
the validation analysis suggest that informative variants have
been well captured in the discovery and test analyses. The cur-
rent version of FAETH score is based on included functional and
evolutionary datasets. The FAETH score will be updated as
more functional and evolutionary datasets become available.

Conclusions

We provide an extensive evaluation of the contribution of sequence
variants with functional and evolutionary significance to multiple
bovine complex traits. While developed using genomic and phe-
notypic data in the cattle model, the analytical approaches for the
functional and evolutionary datasets and the FAETH framework of
variant ranking can be applied equally well in other species. With
their utility demonstrated, the publicly available FAETH score will
provide functional and evolutionary annotation for sequence vari-
ants and effective and simple-to-implement biological priors for
advanced genome-wide mapping and prediction.

Materials and Methods
Discovery Analysis. Discovery data availability is detailed in SI Appendix, Table

S4. A total of 360 cows from a 3-y experiment at the Ellinbank research facility

of Agriculture Victoria in Victoria, Australia, were used to generate RNA-seq

and milk fat metabolite datasets. Animal use was approved by Agriculture

Victoria Animal Ethics Committee Application 2013-23.

The geQTLs, eeQTLs, and sQTLs in white blood andmilk cells in a total of 131

Holstein and Jersey cows previously published (13) were used. The geQTLs,

eeQTLs, and sQTLs in liver and semitendinosus muscle samples from Angus

steers were also used (13). The aseQTLs were discovered using RNA-seq data

fromwhite blood andmilk cells in a total of 112 Holstein cows (5). Themetaanalysis

of these 4 types of eQTLs, including SI Appendix, Eqs. 1–3 (published in refs.

13 and 68), are detailed in SI Appendix, Note S3.

The discovery of polar lipid metabolite mQTLs in bovine milk fat was based

on the mass spectrometry-quantified concentration of 19 polar lipids from

338Holstein cows. The lipid extractiondescription and themultitraitmetaanalysis

of single-trait GWASs including SI Appendix, Eqs. 4 and 5 (23) can be found in SI

Appendix, Note S3.

ChIP-seq marks indicative of enhancers and promoters were discovered

from a combination of experimental and published datasets. ChIP-seq peak

data of trimethylation at lysine 4 of histone 3 (H3K4me3) from 9 bovine

muscle samples (26) and H3K4me3 and acetylation at lysine 27 of histone 3

(H3K27ac) from 4 bovine liver samples (25) were downloaded. The genera-

tion of mammary H3K4me3 ChIP-seq peaks from 2 lactating Holstein cows

(collected with the approval of Agriculture Victoria Animal Ethics Committee

Application 2014-23) is detailed in SI Appendix, Note S3.

The discovery of variant sets with evolutionary significance was based on

the whole-genome sequences of Run 6 of the 1000 Bull Genomes project (35).

The analysis used a subset of 1,370 cattle of 15 dairy and beef breeds with a

linear mixed-model method (SI Appendix, Eq. 6 and Note S3).

To fully utilize the 1000 Bull Genomes data, the metric PPRR (MAF <0.01),

was developed to infer the variant age. PPRR was then calculated as

π+r =
Nk ½+rðwc ,wrareÞ�
Nk ½rðwc ,wrareÞ�

(Eq. 7), where π+r was the PPRR; Nk ½+rðwc ,wrareÞ� was the

count (N) of all of the positive correlations (r) between the genotypes of
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common variants ðwcÞ and the genotypes of rare variants ðwrareÞ in a given

window with a size of k (k = 50 kb for this study for computational efficiency).

Nk ½rðwc ,wrareÞ� was the count of all correlations regardless of the sign. The

calculation of π+r can be easily and effectively performed using plink1.9

(www.cog-genomics.org/plink/1.9/). The rationale of PPRR computation is de-

tailed in SI Appendix, Note S3.

Conserved genome sites in cattle were based on the lifted over (https://

genome.ucsc.edu/cgi-bin/hgLiftOver) human sites with PhastCon score (34) >

0.9 computed across 100 vertebrate species. The analysis is detailed in SI Ap-

pendix, Note S1.

The variant annotation category was based on Ensembl variant Effect

Predictor (29) and NGS-variant (30). Several variant annotations were merged

from the original annotations to achieve reasonable sizes for GREML (SI Ap-

pendix, Table S1). The gkm SVM score of predicted regulatory potential for

bovine genome sites was obtained from the HPRS (31). Variants in our study

that overlapped with HPRS and within the top 1% of the SVM score

(169,773 variants) were selected. The predicted CTCF sites were obtained from

Wang et al. (32) and variants that overlapped these predicted bovine CTCF

sites from ref. 32 were selected (252,234 variants).

Variant sets based on their distribution of LD score, density, and MAF were

created using the GCTA-LDSmethod (38) based on imputed genome sequences of

the test dataset of 11,923 bulls and 32,347 cows (detailed below). Over 17.6million

genome variants were partitioned into 4 quartiles of LD score per region (region

size = 50 kb), the number of variants per window (window size = 50 kb), andMAF

sets of variants that were used to make GRMs. The quartile partitioning of se-

quence variants followed the default setting of the GCTA-LDS. As a byproduct of

GCTA LD score calculation, the number of variants per 50 kb window was

computed, and the quartiles of the value of variant number per region for

each variant was used to generate the variant density sets.

Test Analysis. The test analysiswithAustraliandata, includingmodel SI Appendix,

Eqs. 8 and 9, are detailed in SI Appendix, Note S3. Briefly, a total of 11,923 bulls

(data provided by DataGene, http://www.datagene.com.au/ and CRV, https://

www.crv4all-international.com/) and 32,347 cows (only provided by DataGene)

fromHolstein (9,739 _/22,899 \), Jersey (2,059 _/6,174 \), mixed breed (0 _/2,850 \)

and Red dairy breeds (125 _/424 \) with 34 phenotypic traits (deviations for

cows and daughter trait deviations for bulls [20]) were used (SI Appendix, Table

S2). The trait decorrelation followed the procedure of Cholesky factorization

(21). A total of 17,669,372 imputed sequence variants withMinimac3 imputation

accuracy (69) R2 > 0.4 were used as genotype data. The construction of GRM

used GCTA (36) and the heritability analysis with 2-GRM REML used MTG2 (70).

An online tutorial for calculating FAETH score after the heritability estimation is

available at https://ruidongxiang.com/2019/07/19/calculation-of-faeth-score-2/.

Validation Analysis. The validation used variants within the top 1/3 (high) and

bottom1/3 (low) ranking from theAustralian analysis tomakeGRMs in a total of

7,551 Danish bulls of Holstein (5,411), Jersey (1,203), andDanish Red (937), with a

total of 8,949,635 imputed sequence variants in common between the Danish

and Australian datasets, with a MAF ≥ 0.002 and imputation accuracy measured

by the info score provide by IMPUTE2 ≥ 0.9 in the Danish data (62). Deregressed

proofs (DRPs) were available for all animals in the Danish dataset for milk, fat,

and protein yield. The Danish dataset was divided into a reference and vali-

dation set, where the reference set included 4,911 Holstein, 957 Jersey, and 745

Danish Red bulls, and the candidate set included 500 Holstein, 517 Jersey, and

192 Danish Red bulls. Over 1.25 million high-ranking variants and over

1.25 million low-ranking variants were used to make the high- and low-ranking

GRMs. For the individuals in the reference set, each trait of protein, milk, and

fat yield was analyzed with the GREML model yDan =Χβ+ΖDanuDan +e (Eq. 10)

using GCTA (36), where yDan was the vector of DRP of analyzed Danish indi-

viduals; βwas the vector of fixed effects (breeds); Χwas a design matrix relating

phenotypes to their fixed effects; u was the vector of animal effects where

uDan ∼Nð0,  GDanσ
2
gÞ, GDan was the genomic relationship matrix between Danish

individuals, ΖDan was the incidence matrix, and ewas the vector of residual. This

allowed the estimate of h2 of high- and low-ranking variants in the Danish data.

To test the variant ranking, genomic prediction with gBLUP was performed by

dividing the Danish individuals into reference and validation datasets. The –blup-

variant option in GCTA (36) was used to obtain variant effects from the GREML

analyses, which were used to predict genomic estimated breeding value (GEBV) in

the validation population. Prediction accuracies were computed for each of the

breeds in the validation population, as the correlation between GEBV and DRP.

More tests of the FAETH score using additional Australian dairy and beef cattle data

are detailed in SI Appendix, Note S3.
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