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Time-varying networks describe a wide array of systems whose constituents and interactions evolve over
time. They are defined by an ordered stream of interactions between nodes, yet they are often represented in
terms of a sequence of static networks, each aggregating all edges and nodes present in a time interval of size
Dt. In this work we quantify the impact of an arbitrary Dt on the description of a dynamical process taking
place upon a time-varying network. We focus on the elementary random walk, and put forth a simple
mathematical framework that well describes the behavior observed on real datasets. The analytical
description of the bias introduced by time integrating techniques represents a step forward in the correct
characterization of dynamical processes on time-varying graphs.

T
ime-varying networks are ubiquitous. Examples are found in the social, cognitive, technological and eco-
logical domains as well as in many others1. The temporal nature of such systems has a deep influence on
dynamical processes occurring on top of them2–21. Indeed, the spreading of sexual transmitted diseases, the

diffusion of topics over social networks, and the propagation of ideas in scientific environments are affected by
duration, sequence, and concurrency of contacts2,4,17–19,22,23. In all these cases the timescale characterizing the
evolution of the network is comparable with the timescale ruling the unfolding of the process, and they cannot be
decoupled. However, empirical datasets are often reduced to a series of static networks by introducing a time-
integrating window, Dt1,24–27. This is the case, for instance, of face-to-face interaction networks28, for which the
fine-grained temporal resolution of (e.g.) phone call networks is not available, or of infants’ semantic networks29,
whose evolution can be studied only through the analysis of few snapshots30. In other instances, a time window is
introduced to reduce the amount of stored information, or to simplify the application of mathematical frame-
works developed for static or annealed systems. This is the case, for example, of online social networks where,
although usually the original information has time resolutions down to the second, the available datasets are
integrated over different windows of hours, days, months, or even years. Thus, the introduction of an integrating
window is either intrinsic to the system under study or dictated by practical reasons.

In this work we address the impact of an arbitrary Dt on the description of a discrete dynamical process taking
place upon a time-varying network. Despite recent results showing that the presence of any level of temporal
aggregation may affect the correct characterization of dynamical processes evolving on top of such datasets2–21, an
analytical formalization, characterization, and understanding of these effects for a general Dt is still missing.

In particular, we focus on the prototypical random walk process evolving on time-varying networks integrated
over a general time window Dt. First, we clarify the relevance of the integrating window issue by studying the
behavior of random walk processes on real time-varying networks as a function of Dt. Then, we introduce a
mathematical framework that well describes the observed behavior on synthetic activity driven networks17 as well
as on two different real datasets.

Results
We aim to understand howDt affects the behavior of dynamical processes taking place on time-varying networks.
To this end, we consider the fundamental random walk (RW) process on two different real time-varying networks
in which the links have been integrated over different integrating windows Dt (see Fig. 1). Typically, the RW
asymptotic occupation probability r (see Methods for the formal definition) is computed grouping the nodes
according to their the degree k31–33. The quantity rk is then defined as the average asymptotic occupation
probability of a node in the degree class k31–33. However, in time-varying networks the degree of a node is not
univocally defined and, more importantly, is a function of Dt. For example, the degree might be the number of
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connections integrated over the time window, or the average number
of connections across the T/Dt static frames (where T is the total time
span of the data). Thus, the same node could contribute to different
degree classes depending on the value of Dt. We, therefore, focus on a
different node measure that has been shown to be mostly invariant to
Dt, namely the activity rate a of a node17. The activity rate a is defined
as the average rate at which each node interacts with others during
the observation period [0, T], and can be interpreted as the intrinsic
attitude of each node to engage in interactions with other nodes. We
aim to calculate the occupation probability as a function of a.

In our simulations we consider two real time-varying networks,
and investigate the RW occupation probability function of activity
rate a and the integrating window Dt: ra(Dt). The first dataset is the
co-authorship network of the Physical Review Letters (PRL) journal
from 1980 to 200634. The second dataset is the Yahoo! music dataset
with ,4.6 3 105 songs rated by ,2 3 104 Yahoo! users over six
months35. We run the RW process over these two time-varying net-
works for different values of Dt, and record the occupation probabil-
ity over multiple runs (see SI for details). Fig. 2 shows the empirical
values of ra(Dt) (solid points) observed in the PRL dataset for four
distinct values of Dt 5 {1, 10, 60, 182} days. Error bars represent the
the standard deviation obtained from distinct simulation runs start-
ing at times t0 g {0, 1, …, Dt 2 1} from the beginning of the dataset.

The effect of Dt is dramatic. Over large values of Dt the RW
behaves roughly as could be expected. The share of random walkers
increases with the node activity, i.e., highly active nodes are collect
more walkers at the end of the simulation than nodes with low
activity. However, asDt decreases, more active nodes lose their power
to attract walkers and the occupation probability becomes more
uniform. A similar scenario is observed over the Yahoo! dataset over
four values of Dt, namely one second, one hour, six hours, and one
day (points in Fig. 3). In the next section we will see that the reason
for this behavior rests solely in the probability that the RW sees no
edges when it decides to move, which turns out to be a function of
three factors: Dt, the activity of node the walker resides, and the
average node activity in the system.

Mathematical formulation. Let us consider a random walker diffus-
ing at discrete time steps Dt over a time-varying network charac-
terized by N nodes. Starting at node V (t) at step t, the walker takes
step t 1 1 at time (t 1 1) Dt diffusing over a network Gt(Dt), where

Gt(Dt) is the result of the union of all the edges generated in the
interval [tDt, (t 1 1) Dt). We focus on the general case of an
arbitrary time aggregation window Dt . 0.

We consider a simple class of time-varying networks called activity
driven networks17. The crucial ingredients of these models are: dF(a),
the fraction of nodes with activity rate a, and m, the number of edges
that are simultaneously created by a node (see Methods for further
details). The activity rate determines the probability per unit time for
a node to establish (m, simultaneously) edges to other nodes in the
system. The value of parameter m is dictated by the specific system
under consideration. The case m . 1 is appropriate to describe one-
to-many interactions, found for example in such systems as Twitter
and blog networks36,37. On the other hand, m 5 1 describes two-party
(dyadic) communications that are characteristic of phone-call and
text-message networks38,39. At each step t 5 0, 1, … an unweighted
network Gt(Dt) is generated as follows:

a) Gt(Dt) starts with N disconnected nodes;
b) The the number of times a node with activity a is active during

interval Dt, KDt,a, is Poisson distributed

Figure 1 | Example of time integration on time-varying networks. The

random walker is located on the colored node, and can travel on the links

depicted as continuous line, while Dt defines the integration window.

Dashed lines represent links that are present in the system, but are out of

reach for the walker.

Figure 2 | Occupation probability ra of a RW at the end of the simulation
as a function of node activity. The points are the values of ra of a RW over

the Physics Review Letters time-varying co-authorship network from 1980

to 2006 for different integrating windows Dt g {1, 10, 60, 182} days. The

error bars are evaluated starting the process at different days from the

beginning of the dataset.

Figure 3 | Occupation probability ra of a RW at the end of the simulation
as a function of node activity. Points represent the ra values of a RW over

the time-varying graph of Yahoo! song ratings for different integrating

windows Dt of one second, one hour, six hours, and one day. The standard

deviations are too small to be shown in the plots.
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P KDt,a~k½ �~ aDtð Þk

k!
exp {aDtð Þ:

b) Node generates mKDt,a undirected edges connected to mKDt,a

randomly selected nodes (without replacement or self-loops).
Inactive nodes in this observed period of Dt may receive con-
nections from other active vertices;

c) At time (t 1 1)Dt the process starts over from step a) to generate
network Gt11(Dt).

Although activity driven networks are Markovian (memoryless)
and lack of some properties observed in real temporal systems, they
can be considered as the simplest yet nontrivial framework to study
the concurrence of changes in connectivity pattern of the network
and dynamical processes unfolding on their structure17,18.

To describe the RW behavior, we need to evaluate the transition
probability that a walker starting at a node with activity a9 moves to a
node with activity a at the next Dt time step, Qaja9(Dt). Without loss
of generality in what follows we focus on the case m 5 1. Detailed
results for the m . 1 one-to-many interactions are discussed in the
Supplementary Information. At step t 1 1 the neighbors of V (t) can
be classified into two types:

1. Passive destinations, are neighbors of V (t) connected by edges
created due to the activity of V (t) itself. They are randomly
selected from the graph and thus their activity is distributed
according to dF(a). We define KDt,A(t) to be the number of such
passive destinations, where A(t) is the activity rate of node V (t).

2. Active destinations, are neighbors of V (t) connected to V (t) by
edges created due to their own activity. Thus, their activity is
distributed as adF(a)/Æaæ, where Æaæ is the average activity rate in
the system. We define define HDt as the number of such active
destinations.

The word destinations highlights the fact that the walker moves
from V (t) to one of these KDt,a9 1 HDt neighbors of V (t). For
sufficiently large N, HDt and KDt,a9 are both Poisson distributed with
average ÆaæDt and a9Dt, respectively. If V (t) has at least one edge, the
walker follows the edge of a passive destination with probability
KDt,a9/(KDt,a9 1 HDt), while it moves towards an active destination
with probability HDt/(KDt,a91 HDt). Unconditioning the latter
expressions with respect to the values of KDt,a9 and HDt we obtain

Qa a0j Dtð Þ~
X?
k~1

X?
h~0

k
kzh

dF að Þ z
h

kzh
a dF að Þ

ah i

� � 

a0Dtð Þk ah iDtð Þh

k!h!
z
X?
h~1

a dF að Þ
ah i

ah iDtð Þh

h!
zd a{a0ð Þ

!

exp { a0z ah ið ÞDtð Þ,

ð1Þ

where d(x) is the Dirac delta function. While we refer the reader to
the SI for the detailed derivation, each term in eq. (1) has a simple
interpretation. The two terms inside the double sum represent,
respectively, the probability that the walker moves to a passive des-
tination that has activity a and the probability that the walker moves
to an active destination that has activity a. The terms multiplying the
two terms inside the double summation are related to the probability
that KDt,a9 5 k and HDt 5 h. The d(a 2 a9) term considers the
probability that the node has no edges after Dt and thus the walker
must remain at V (t).

Thankfully, eq. (1) can be simplified (see SI) yielding

Qa a’j Dtð Þ~ a’za
a’z ah i dF að Þ 1{fa’,Dt

� �
zd a’{að Þfa’,Dt , ð2Þ

where fa9,Dt 5 e2(a91Æaæ)Dt is the probability that no edge is created at a
node with activity a9 during interval Dt. Note that in eq. (2) the
parameter Dt only affects the probability that no edge is created until
the next time step.

To find the RW stationary distribution we first note that the RW
on the time-varying network is stationary and ergodic (see SI). Thus,
the RW occupation probability ra, defined as the probability of find-
ing the walker in a given node of activity a, exists and is unique40. The
value of ra is the fixed point solution of the following Chapman-
Kolmorogov set of equations41

ra~
1

N dF að Þ

ð
a’[V

Qa a’j Dtð Þra’dF a’ð Þ, Va[V, ð3Þ

whereV is the set of all activity rates in the system. The solution to eq.
(3) can be obtained numerically. Interestingly, we can extend eq. (3)
to consider lazy random walks where the walker moves with prob-
ability p g (0, 1] or does not move with probability 1 2 p. For the
lazy walker we just need to replace Qaja9(Dt) in eq. (3) with Qaja9(Dt)p
1 d(a9 2 a)(1 2 p). A simple algebraic manipulation shows that ra

does not change with p. Hence, the steady state of the lazy walker for
any p g (0, 1) is the same as the walker that moves with probability
p 5 1.

We also find that closed-form solutions of eq. (3) exist in the limits
of Dt?1 and Dt=1. In the Dt?1 case, links are integrated over a
large time window and the time-varying network can be considered
static. Recall that fa,Dt 5 e(a1Æaæ)Dt. For Dt?1 the value of fa,Dt < 0, a
g V, and thus the second term of eq. (2) is close to zero. In this
scenario Qaja9(Dt) 5 C(a 1 Æaæ)dF(a), where C 5 1/2Æaæ yielding the
fixed point solution of eq. (3)

ra<
az ah i
2N ah i : ð4Þ

The asymptotic occupation probability of a given node of class a is
simply proportional to its activity. Since in the regime of large Dt the
degree of a node v, kv, is proportional to its activity, av, eq. (4) yields
rav

!kv . Thus, for sufficiently large Dt, we recover the well-known
behavior of static networks, where the occupation probability of a
node is proportional to its degree31. Furthermore, in the SI we show
that eqs. (2), (3), and (4) hold for weighted aggregation procedures
where integrated edges have weights proportional to how often they
appeared during an interval Dt.

In the regime of very short aggregating windows we have limDtR0

fa,Dt R 1, a g V. Thus, the first term of eq. (2) is zero yielding
Qaja9(Dt) 5 dF(a) and the trivial fixed point solution of eq. (3)

ra<
1
N
: ð5Þ

Thus, the walker is equally likely to be found at any node regardless of
its activity rate. In fact, when Dt is small the probability a node has
more than one edge is close to zero. Consequently, highly active
nodes lose and gain walkers at the same rate, giving rise to homo-
geneous occupation probabilities in eq. (5). Interestingly, in previous
work on general time-varying network processes we show that the
result in eq. (5) holds even when aggregated snapshots have arbitrary
strong spatio-temporal correlations40.

Numerical validation on synthetic networks. We validated our
analytical results through extensive numerical simulations. We
considered networks with N 5 105 nodes and a power-law activity
distribution dF(a) / a2c (as observed in many real networks17),
restricted to the interval V 5 [1023, 1] to avoid divergencies in the
limit a=1. As shown in Fig. 4, the exact solution reproduces the
simulations accurately for the entire spectrum of integrating
windows Dt (case m 5 1 in main panel). Interestingly, as Dt grows,
the occupation probability increases sharply in high-activity vertices
while slightly decreasing at low activity nodes. Moreover, as Dt

www.nature.com/scientificreports
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increases ra / a as predicted by eq. (4), while asDt gets smaller, ra 5

1/N, as predicted by eq. (5). The equations describe correctly also the
behavior observed for one-to-many simultaneous connections m,
characterized by a smoother increase in ra at high activity nodes
(see m 5 6 case in Fig. 4, inset). The SI contains more details on
the formulation of the m . 1 case.

Numerical validation on real-world networks. The analytical frame-
work discussed above qualitatively reproduce also the behavior
observed in real datasets. In Figs. 5 and 6 the solid lines show the
numerical solution obtained by applying eq. (2) into eq. (3) (see SI),
for the PRL and Yahoo! datasets, respectively. The gray points in
Figs. 5 and 6 reproduce the simulation results already shown in
Figs. 2 and 3, respectively. All numerical solutions use the same
activity distribution dF(a), extracted from the time-varying graph of
Dt 5 1 day for the PRL dataset and Dt 5 1 second for the Yahoo!

dataset (dF(a) extracted from larger values of Dt provide similar
results17, see SI for details).

The theoretical results accurately describe real data, with some
deviations for nodes in the intermediate activity range at Dt of one
day. The RW occupation probability is uniform and independent of
node activity for small Dt as predicted by eq. (5). As predicted by eq.
(4), the RW occupation probability ra approaches (a 1 Æaæ)/(2NÆaæ)
(black curve) as Dt increases, an effect particularly noticeable for
high-activity nodes. It is also worth highlighting that the data
matches well the theoretical equations for the case m 5 1, suggesting
a connection between the datasets and the fundamental mechanisms
described in our model (for the similarity in behavior between m 5 1
and projected networks such as the PRL co-authorship networks see
SI).

Discussion
Our results clarify the effect of time aggregation procedures on the
behavior of the RW, taken as the simplest instance of dynamical
process, even when aggregation windows are ‘‘short’’. We have quan-
tified this effect in a rigorous mathematical framework that (i) allows
us to recover the results concerning static networks in the limit of
infinite aggregation windows, (ii) accurately describes the behavior
observed in numerical simulations upon synthetic time-varying net-
works, and (iii) captures the phenomenology observed on real data-
sets. Overall, while for practical or technical reasons researchers are
often forced, or simply tempted, to work with time aggregated repre-
sentations of time-varying networks, our work suggests that caution
should be used when drawing general conclusions about dynamical
processes based upon time-aggregated networks. At the same time,
moreover, our theoretical results may help to investigate possible
distortions introduced by the aggregating windows of data collection
methods.

The proposed framework considers inherently discrete processes,
such as spreading phenomena in contact networks that are, also at
the smallest time resolution possible, discrete. We leave the general-
ization to continuous processes for further work.

Methods
Occupation probability. The asymptotic occupation probability is the steady state
probability of finding the walker in a node with activity a, which is guaranteed to exist
and be unique if the time-varying network that is stationary, ergodic, and T-
connected (see SI), such as in activity driven networks. A time-varying network is T-
connected if there is a temporal path between any two nodes40. In our simulations we
consider the RW occupation probability ra to be the probability of finding the walker

Figure 4 | Occupation probability ra of a RW over an activity-driven
network with activity distribution dF(a) / a22, a g (1023, 1), N 5 105, for
different values of m. Curves in the main plot concern the m 5 1 case,

where each node can only simultaneously connect to one node. In the inset,

the case m 5 6 is considered, where a node simultaneously connect to six

other nodes. Solid curves represent the analytical prediction of eq. (3)

integrated over Dt 5 1, 10, 100 (diamonds, squares and circles) time

windows. Note that in both panels as Dt gets larger ra < a. Averages

performed over 103 independent simulations.

Figure 5 | Occupation probability ra of a RW at the end of the simulation
as a function of node activity. The points are the values of ra of a RW over

the Physics Review Letters time-varying co-authorship network from 1980

to 2006 for different integrating windows Dt g {1, 10, 60, 182} days. The

solid curves show the respective numerical solutions of eq. (3) and the

black curve shows eq. (4).

Figure 6 | Occupation probability ra of a RW at the end of the simulation
as a function of node activity. The points are the values of ra of a RW over

the time-varying graph of Yahoo! song ratings for different integrating

windows Dt of one second, one hour, six hours, and one day. The solid

curves show the respective numerical solutions of eq. (3) and the black

curve shows eq. (4).

www.nature.com/scientificreports
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in a node with activity a at the end of the simulation period [0, T], given the walker
starts at a random node.

Activity-driven networks. Activity-driven network models are based on the activity
patterns of nodes, that are used to explicitly model the evolution of the network
structure over time17. It can be shown that the full dynamics of the network are
encoded in the activity rate distribution, dF(a) and that the time-aggregated
measurement of network connectivity yields a degree distribution that follows the
same functional form as the distribution dF(a) in the limit of small k/Dt and k/N17.
This is an important feature of the model, that is able to reproduce basic statistical
properties found in many real networks giving a simple prescription to characterize
explicitly dynamical connectivity patterns.

Datasets & simulation. In this study we considered two different empirical
projections of bipartite time-varying networks. The collaborations in the journal
Physical Review Letters (PRL) published by the American Physical Society34, and the
Yahoo! music dataset made available by Yahoo!35.

PRL dataset. The bipartite network representation of this dataset has two type of
nodes: authors and papers. An author is connected to all the papers she/he wrote in a
integrating window Dt. We study the bipartite projection of the authors. In this
representation each author of an article in PRL as a node. Undirected edges connect
authors that collaborate in the same article. We focus just on small collaborations
filtering out all the articles with more than 10 authors. We consider the period
between 1958 and 2006. The datasets contains 80,554 authors and 66,892 articles. The
smallest timescale available is one day.

Yahoo! music dataset. In this dataset the bipartite network has two type of nodes: users
and songs. We study the bipartite projection over the songs. Each node is a song and
two songs are connected if at least one user rated both in a time window Dt. The
dataset contains 4.6 3 105 songs rated by 199,719 users of Yahoo! users collected in
the course of six months35. User activity is recorded at a time resolution of seconds.

Simulation setup. We obtain the empirical walker occupation probability, ra, as
follows. Construct the transition probability matrix Pt associated to the RW on the t-
th aggregated network Gt(Dt), t 5 0, …, T/Dt, where T is the time of the last event in
the dataset. The empirical RW occupation probability is obtained by multiplying the
matrices P0 P1 � � �Pn and then left-multiplying the result by the vector (1/N, …, 1/N),
which gives equal probability that for the walker to start at any node. We note in
passing that similar results are obtained when the walker starts at a handful of high
activity nodes.
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